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Small Signal Models of MOSFET
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Figure 6.31 (a) Small-signal model of MOSFET., (b) inclusion of channel-length modulation.
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‘ Model with Output Resistance
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6.14
A MOSFET is biased at a drain current of 0.5 mA. If p1,,C,,. = 100 pA/V2, W/L = 10, and
X = 0.1 V™!, calculate its small-signal parameters.
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Figure 6.25 Variation of I in saturation region.
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Figure 6.34 (a) Diode-connected NMOS and PMOS devices, (b) small-signal model of (a), (¢) small- Gm?2
signal model of (b).

For the NMOS version, the small-signal equivalent appears as depicted in Fig. 6.34(b). yielding
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In both cases, the small-signal resistance is equal to 1/g,, if A — 0.

In analogy with their bipolar counterparts [Fig. 4.44(a)]. the structures shown in Fig. 6.34(a)
are called “diode-connected” devices and act as two-terminal components: we will encounter
many applications of diode-connected devices in Chapters 9 and 10.




'MOSFET Amplifier
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Figure 4.26 (a) Basic structure of the common-source amplifier. (b) Graphical construction to determine the transfer characteristic of

the amplifier in (a).
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Figure 4.26 (Continued) (c) Transfer characteristic showing operation as an amplifier biased at point Q.

‘Input signal of amplifier circuit
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Figure 4.28 Example 4.8.
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‘Realization of Current Sources
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Figure 7.4 (a) NMOS device operating as a current source, (b) PMOS device operating as a current source,
(c) PMOS topology not operating as a current source, (d) NMOS topology not operating as a current source.

Ex 1 Determine the bias current of M, in Fig. 7.1 assuming punCox = 100 HA/V?
Vig= 0.5V, W/L =5/0.18, and A = 0. What is the maximum allowable value of R, for

M , to remain in saturation?

Vpp=18V

4KkQ =Ry Rp

10kQ =R, Rg=1kQ

Ex 2 Determine the bias current of M, in Fig. assuming K = 0.5 mA/V?,

VTH=0.5Vand7u=0

Vpp=+15V

Iy =
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— o Vy=+I10V

I, =
0.5 mA
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Figure 4.31 Circuit for Example 4.9.

Ex 3 Calculate the drain current of M, in Fig. 7.3 if unCox = 100 HA/V?, V=05V,

and A = 0. What value of R, is necessary to reduce I, by a factor of two?

Vpp=1.8V
Rp = 1kQ
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6.2 Common Source (CS) Amplifier
Small Signal Analysis
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Figure 7.5 (a) Common-source stage, (b) small-signal mode.
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Figure 7.6 Example of CS stage.
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To check the operation region, we first determine the gate-source voltage:
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=1.1V. (7.43)

The drain voltage 1s equal to Vpp — Bpdp = 0.8 V. Since Vg — Ve = 0.6 V. the device
mdeed operates 1 saturation and has a margin of 0.2 'V with respect to the triode region. For
example. if Bp 1s doubled with the intention of doubling A, then M, enters the triode region

and its transconductance drops.

CS Stage with Degeneration

Figure 7.14 (a) CS stage with degeneration, (b) small-signal model.
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a result identical to that expressed by (5.157) for the bipolar counterpart.

CS Core with Brasing
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Figure 7.20 (a) CS stage with input coupling capacitor, (b) inclusion of gate resistance, (c) use of bypass

capacitor.




Thus, if the circuit is driven by a finite source impedance [Fig. 7.20(b)], the voltage gain falls to
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6.3. Common Gate (CG) Amplifier
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where A is assumed to be zero.
As mentioned in Chapter 5. it is possible to utilize degeneration for bias point stability but Input Applied /
eliminate its effect on the small-signal performance by means of a bypass capacitor [Fig. 7.20(c)]. to Source
Unlike the case of bipolar realization, this does not alter the input impedance of the CS stage: Ficure 7.21 C
igure 7. omimon-gate stage.
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Figure 7.23 (a) Input and (b) output impedances of CG stage.
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Figure 7.24 Simplification of CG stage with signal source resistance.
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Figure 7.25 (a) CG stage with gate resistance, (b) output resistance of CG stage.

Ruuf = (]- + grri?'O}RS +ro.

CG Stage with Biasing
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Figure 7.27 CG stage with biasing.

Since the impedance seen to the right of node X is equal to R3||(1/g,,). we have

Vout — ?‘;Y . Vout (7 ]18)
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where channel-length modulation is neglected. As mentioned earlier. the voltage divider consist-
ing of R; and R» does not affect the small-signal behavior of the circuit (at low frequencies).




6.4. Common Drain or Source Follower Amplifier
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Figure 7.28 Source follower.
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(a) Small-signal equivalent of source follower, (b) simplified circuit.

Figure 7.29(a) depicts the small-signal equivalent of the source follower, including channel-

length modulation. Recognizing that ro appears in parallel with I2;, we have
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Output impedance of the source follower.
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Figure 7.31

Output resistance of source follower.
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Source Follower with Biasing
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Figure 7.32 Source follower with input and output coupling capacitors.




CMOS Technology
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Figure 6.35 CMOS technology.

The CMOS inverter

Simplified circuit schematic for the inverter.
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Comparison of Bipolar and MOS Devices

Bipolar Transistor

MOSFET

Exponential Characteristic
Active: Vgg >0
Saturation: Vgg <0
Finite Base Current
Early Effect
Diffusion Current

Quadratic Characteristic
Saturation: Vpg> Vgs— V1H
Triode: Vpg < Ves— VrH
Zero Gate Current
Channel-Length Modulation
Drift Current
Voltage-Dependent Resistor

Table 6.2 Comparison of bipolar and MOS transistors.

Ex The CMOS inverter
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The CMOS inverter analysis
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Voltage transfer characteristic of the CMOS inverter.
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Figure 4.25 Circuits for Example 4.7.
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Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms;
(c) trajectory of the operating point as the input goes high and C discharges through Q,; (d) equivalent circuit during the

capacitor-discharge:

the operating point; and (c) equivalent circuit. -
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CMOS inverter operation 19NA1561999 (Reference)
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v, is low: graphical construction to determine the operating
point; and (c) equivalent circuit.




