Lecture 1 Introduction to Electronic

Present by: Thawatchai Thongleam Faculty of Science and Technology Nakhon Pathom Rajabhat University

Electronic Engineering

- Lecture 1 Introduction to Electronic
- Lecture 2 Diode and Diode Application
- Lecture 3 Bipolar Junction Transistors (BJT)
- Lecture 4 Enhancement MOSFET (MOSFET)
- Lecture 5 Differential and Multistage Amplifier
- Lecture 6 Frequency Response
- Lecture 7 OP-Amp Applications
- Lecture 8 Feedback
- Lecture 9 Filter
- Lecture 10 Oscillator
- Lecture 11 Power Amplifier
- Lecture 12 Power Electronic Device

Introduction to Electronic

- Microelectronic in Market
 - Computation
 - Communication
 - Other

Serving the \$1 Trillion Electronic Market

Classification of Level Voltage on Circuit

Applications of Semiconductors

- Logic Circuit
 - □ Computer, Digital Signal Processing
- Amplifier
 - □ HI-Fi, Wireless and Microwave Communication, Telephone
- Memories
 - □ DRAM, SRAM, NVRAM
- Lasers
 - Optical Fiber Communication, CD Players
- Photodiodes
 - Receivers for Optical Communication, Digital Camera
- Charge Coupled Device (CCD)
 - Digital Camera
- Many Others
 - □ Sensors, Actuators, MEMS, Displays

Low Voltage Circuit

Low Voltage Circuit (con)

- Op-Amp Architecture
- MOS Transistor

High Voltage Circuit

Buck Converter circuit

High Voltage Circuit (con)

Transistor

- Transistor is a semiconductor element
- Has three terminals
- A small current or voltage applied to one terminal controls the current through the other two
- It is the key component in all modern electronics

What can Transistor do?

- In digital circuits
 - □ Very fast electrical switch
 - □ Function as logic gate
 - □ RAM-type memory
- In analog circuits
 - □ Amplify current signals
 - □ Amplify voltage signals

The First Transistor 1948

VLSI- Transistor 2004

- Side-intersection for an integrated transistor
- Today's technology reached the nanometer scale
- 90nm transistors are used in Pentium 4

The Transistor vs. the Vacuum Tube

- Transistor
 - Made from semiconductor
 - Small
 - Fast
 - □ Reliable and effective
- Vacuum Tube
 - □ Similar to Light Bulb
 - □ Big and bulky
 - □ Slow
 - generates a lot of heat
 - Burns out

ENIAC - The first electronic computer (1946)

Intel 4004 Micro-Processor

- **1971**
- 1000 Transistors
- 1 MHz Operation

Pentium (IV) microprocessor Intel

- 2002
- 60 Million Transistors
- 3.0 3.6 GHz Operations

Moor's Law

Package Types

1.1 Signal $v_s(t)$ $v_$

1.2 Frequency Spectrum of Signals

1.4 Amplifiers

$$A_{v} = \frac{v_{out}}{v_{in}}$$

Amplifiers

Linear Signal Amplification:

$$v_0(t) = Av_i(t)$$

- A: Amplifier gain equals the slope
- Distortion changes waveform as in figure
- No real life amplifier is perfectly linear, distortion due to clipping

Fig. 1.13 An amplifier transfer characteristic that is linear except for output saturation.

1.5 Circuit Models for Amplifiers

Nonlinearity

- Most amplifiers are only linea in a narrow range of operatio
- To linearize, bias the circuit with a dc voltage, labeled Q, the quiescent point.

Fig. 1.14 (a) An amplifier transfer characteristic that shows considerable nonlinearity.

1.6 Frequency Response of Amplifiers

- Low Pass Filter (LPF) Frequency Response
- Magnitude Response

Fig. 1.23 (a) Magnitude of STC networks of the low-pass type.

LPF Frequency Response

Phase Response

Fig. 1.23 (b) phase response of STC networks of the low-pass type.

High Pass Filter Frequency Response

Magnitude Response

Fig. 1.24 (a) Magnitude of STC networks of the high-pass type.

High Pass Filter Frequency Response

Phase response

Fig. 1.24 (b) phase response of STC networks of the high-pass type.

Thank you