

Artificial Intelligence in
Wireless Communications

For a listing of related Artech House titles,
turn to the back of this book.

Artificial Intelligence in
Wireless Communications

Thomas W. Rondeau
Charles W. Bostian

a r techhouse . com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Cover design by Igor Valdman

ISBN 13: 978-1-60783-234-8

© 2009 ARTECH HOUSE
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, includ-
ing photocopying, recording, or by any information storage and retrieval system, without per-
mission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

10 9 8 7 6 5 4 3 2 1

To my parents, Jo and Mike Rondeau – TWR

Tomy wife, Frieda Bostian – CWB

And to all of our friends, students, and colleagues for their insights,
inspiration, and encouragement.

Contents

Acknowledgments xiii

1 Introduction to Cognitive Radio 1

1.1 Brief Concept of Cognitive Radio 2

1.2 Very Brief Cognitive Radio History 3

1.3 Definition 5

1.4 Contributions 6

1.5 Contents 8
References 8

2 The Cognitive Engine:
Artificial Intelligence for Wireless Communications 11

2.1 Cognitive Radio Design 12

2.2 Cognitive Engine Design 14

2.3 Component Descriptions 16
2.3.1 Sensors 16
2.3.2 Optimizer 19
2.3.3 Decision Maker 20
2.3.4 Policy Engine 20
2.3.5 Radio Framework 21
2.3.6 User Interface 23
2.3.7 Cognitive Controller Configuration 23

vii

viii Artificial Intelligence in Wireless Communications

2.4 Artificial Intelligence in Wireless Communications 24

2.5 Artificial Intelligence Techniques 25
2.5.1 Neural Networks 26
2.5.2 Hidden Markov Models (HMM) 27
2.5.3 Fuzzy Logic 28
2.5.4 Evolutionary Algorithms 28
2.5.5 Case-Based Reasoning 28

2.6 Conclusions 29
References 30

3 Overview and Basics of Software Defined Radios 33

3.1 Background 34

3.2 Benefits of Using SDR 36

3.3 Problems Faced by SDR 38

3.4 GNU Radio Design 39
3.4.1 The Universal Software Radio Peripheral 40
3.4.2 The USRP Version 2 41
3.4.3 Flow Graphs 41
3.4.4 Parallel Programming in GNU Radio 44
3.4.5 Flow Graph for Simulation and Experimentation 45
3.4.6 Available Knobs and Meters 47

3.5 Conclusions 50
References 51

4 Optimization of Radio Resources 53

4.1 Objective Space 53

4.2 Multiobjective Optimization: Objective Functions 55
4.2.1 Bit Error Rate (BER) 56
4.2.2 Bandwidth (Hz) 61
4.2.3 Spectral Efficiency (bits/Hz) 62
4.2.4 Interference 63
4.2.5 Signal to Interference Plus Noise Ratio (SINR) 64
4.2.6 Throughput 65
4.2.7 Power 66
4.2.8 Computational Complexity 67

4.3 Multiobjective Optimization: A Different Perspective 68

Contents ix

4.4 Multiobjective Analysis 68
4.4.1 Utility Functions 68
4.4.2 Population-Based Analysis 71

4.5 Conclusion 73
References 74

5 Genetic Algorithms for Radio Optimization 77

5.1 A Brief Review 77

5.2 Simple Example: The Knapsack Problem 78

5.3 Multiobjective GA 84

5.4 Wireless System Genetic Algorithm 86
5.4.1 Details of Chromosome Structure 88
5.4.2 Objective Function Definition 90
5.4.3 Optimal Individual Selection 91

5.5 Conclusions 93
References 94

6 Decision Making with Case-Based Learning 97

6.1 Case-Based Decision Theory 98

6.2 Cognitive Engine Architecture with CBDT 99
6.2.1 Memory and Forgetfulness 101

6.3 Cognitive Engine Case-Based Decision Theory Implementation 102

6.4 Simple CBDT Example 105

6.5 Cognitive Radio Example Problem 113

6.6 Conclusion 117
References 118

7 Cognitive Radio Networking and Rendezvous 119

7.1 Waveform Distribution and Rendezvous 120

7.2 Cognitive Radio Networks 121

7.3 Distributed AI 122

7.4 Conclusions 123
References 123

x Artificial Intelligence in Wireless Communications

8 Example Cognitive Engine 125

8.1 Functional System Design 126

8.2 Simple Simulations 129
8.2.1 BER-only 129
8.2.2 BER and Power (1) 131
8.2.3 BER and Power (2) 132
8.2.4 Throughput 134
8.2.5 Waveform Efficiency 134

8.3 Interference Environment 137
8.3.1 Interference (1): Simple BER Tests 138
8.3.2 Interference (2): Sensor Problems 140
8.3.3 Interference (3): Correcting for Sensors 141
8.3.4 Interference (4): Throughput with Low Spectral Footprint 146

8.4 Case-Based Decision Theory Example 148

8.5 Over-the-Air Results 149

8.6 Conclusions 155
References 156

9 Conclusions 157

9.1 Application to Multicarrier Waveforms 158

9.2 Strategies, Not Waveforms 159

9.3 Enhanced Learning Systems 160

9.4 Final Thoughts 161
References 161

A Analysis of GNU Radio Simulation 163

A.1 Bit Error Rate Plots 163

B Additional BER Formulas 169
References 171

C OProfile and Results of Profiling GNU Radio 173

C.1 Introduction toOProfile 173

C.2 OProfileResults of GNU Radio Modulators 173
References 176

Contents xi

D XML and DTD Representation of
the Cognitive Components 181

D.1 Waveform Representation 181

D.2 Objectives Sensor 185

D.3 Meters Sensor 186

D.4 PSD Sensor 187

D.5 Cognitive Controller Configuration 187

E Optimal Solutions of Knapsack Problems 191

F Simulation of an SINR Sensor 195

F.1 Sensor Design 195

F.2 Simulation 196

F.3 MATLAB Code 198
F.3.1 SINR Calculation Function 198
F.3.2 Plotting SINR with No Interference Power 200
F.3.3 Plotting SINR with Varying Interference Power 201

Acronyms 203

About the Authors 207

Index 211

Acknowledgments

The work described here was supported in part by the National Science Foun-
dation (Grants 9984363, DGE-9987586, and CNS-0519959) and the National
Institute of Justice, Office of Justice Programs, U.S. Department of Justice
(Grant 2005-IJ-CX-K017). Any findings, conclusions, or recommendations in
this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation or the Department of Justice.

xiii

1
Introduction to Cognitive Radio

The current methods of communications are becoming less relevant under
today’s growing demand for and reliance on constant connectivity. Of
decreasing relevance are the models of a single radio to perform a single
task. The expansion of wireless access points among coffee shops, airports,
malls, and other public arenas is opening up opportunities for new services
and applications. In the data market, new technologies like the IEEE 802.16
WiMAX standard are being deployed, and mobile phone companies are
offering services to customers for wireless connectivity over their networks
without reliance on a WiFi access point. With current mobile phone access
increasing worldwide and the Third Generation Partnership Project (3GPP)
Long Term Evolution (LTE) project rapidly developing into a full standard,
mobile phone companies are seriously competing in the wireless data market.

All of these applications and technologies offer trade-offs in quality of
service and cost of service where quality of service is the effectiveness of
the communications given requirements of time, data rate, form factor, and
location. A person sending a text message on a train is not expecting an
immediate response, but a conference call set up over a WiMAX connection
demands real-time service. Because of these trade-offs, the market is
responding by loading devices with more and more radios to allow consumers
the ability to select their service depending on need and availability.

It is in these choices that we see the need for more intelligent decision-
making from our devices. And this concept does not stop with just the
choice between standards; the complexity of the standards themselves is
growing. While WiFi devices manage their very few choices based on
simple connection quality metrics, WiMAX and LTE include many waveform
choices with highly complex interactions and consequences to the device
behavior.

1

2 Artificial Intelligence in Wireless Communications

As both the applications for wireless services and the complexity of
the devices increase, opportunities arise for more efficient ways to use and
manage the wireless resources. The first major work being pursued here is
the idea of dynamic spectrum access (DSA), which is technology that senses
open channels and allows devices to communicate in underused parts of the
spectrum. The idea of using intelligent signal processing and decision-making
builds on this concept by enabling radios to manage not just spectrum but also
the other available wireless resources. These radios would dynamically select
spectrum, waveform design, time diversity, and spatial diversity options. They
could even make changes at higher layers, for example, by modifying the
medium access protocols or changing their routing behavior based on the
network topology.

Radios that are capable of these intelligent decisions are calledcognitive
radios, and their actions are based on observing their wireless connections
and then using intelligent algorithms and computational learning to optimize
their behavior. Such actions modify aspects of different layers of the protocol
stack for better performance as the current situation demands. To perform its
activities, a cognitive radio applies a variety of techniques and capabilities
developed in communications and networking research in a situationally
dependent form. Where a mobile phone standard has addressed issues like
operating at speeds under high multipath conditions, the standards-based
solutions are trade-offs to provide the highest reliability among all of the
possible conditions. These solutions will be suboptimal for many given
situations. A better approach is to select the waveform and communications
capabilities that work best for the given environment and situation.

In this book, we address the use of cognitive radio technology to provide
communications systems with a specified quality of service by adapting
the physical (PHY) and, to a small extent, Medium Access Control (MAC)
layers. The major contribution is the formalization of radio optimization as
a multiobjective optimization problem where radio resources are traded off
to affect a desired quality of service driven either by a user or a specific
application.

1.1 Brief Concept of Cognitive Radio

In discussing cognitive radio, we frequently talk about turningknobsand
readingmeters.1 These terms come from classical transceivers with adjustable

1. To the best of our knowledge, our colleague Christian Rieser originated the terms “knobs”
and “meters” as applied to cognitive radio in 2001 or 2002. They were quickly adopted by the
research community and like other natural terminology, they may have arisen independently
more than once.

Introduction to Cognitive Radio 3

controls (knobs) that determine the radio’s operating parameters and meters
that display certain performance or operating parameters of the system. An
example is a broadcast frequency modulation (FM) receiver with a tuning
knob to select which station to receive as well as equalizer knobs to adjust
the sound quality. Meters might consist of a received signal strength measure
or simply a light showing if the station is being received as mono or stereo
sound.

We show a simple model of a cognitive radio in Figure 1.1 with the
interaction between the cognitive engine and the radio through its knobs
and meters. In cognitive radio terms, the waveform is the wireless signal
transmitted that represents the current settings of all of the radio’s knobs.
Meters represent the metrics used in the radio optimization. Knobs include
the type of modulation and modulation parameters, frequency channel,
symbol rate, and channel and source coding. Meters include bit error rate
(BER), frame error rate (FER), signal power, battery life, and computational
resources.

Figure 1.1 Simple model of a cognitive radio where the cognitive engine interacts
with the radio through its knobs and meters.

Expressed in a single sentence, cognitive radio uses the meters to build
an understanding of the environment so as to adjust the knobs to improve the
communications.

1.2 Very Brief Cognitive Radio History

Early radios were designed with specific tasks in mind, like an FM radio or a
television receiver for example. Even many contemporary devices operate in
this way, such as public safety and WiFi networks. Mobile phones share many
of these same features as they are normally dedicated to a single service, voice
communications, but they are branching out more and more. Modern mobile
phones generally support many different modes or waveforms for different
networks and frequency bands as well as the ability to send text messages

4 Artificial Intelligence in Wireless Communications

and, increasingly, data. Many are now equipped with Bluetoothand WiFi
radios to extend their use and capabilities to different services. Other features
include such techniques as adaptive power control or modulation adaptation
in response to signal quality.

As both communications and computing technology advanced, it was
inevitable that the two continue to integrate, defining the field known today
as software defined radio (SDR). Communications devices are increasingly
putting signal processing capabilities into software. As we discuss in more
detail later, SDR provides many advantages and improvements in waveform
design. With the flexibility SDRs offer, the next step was to utilize the
computing power to adapt more of the waveform, making better use of the
available communication system.

Joseph Mitola is credited with inventing the field of cognitive radios [1]
with an interest in using the radio system as a personal assistant of sorts that
intelligently reacts to the user’s perceived needs. The concept of cognitive
radios has since evolved towards a more communications-centric view of
the radio. With a reconfigurable SDR system, a cognitive radio uses sensors
to collect environmental information as well as an intelligent core to react
to changes and challenges provided by the environment and user needs. A
cognitive radio reacts and adapts to changes in the environment to provide
continuous communications at a required quality of service (QoS).

In 2003 along with Christian Rieser and Bin Le at Virginia Tech, we
successfully demonstrated a fully functional cognitive radio. We used a 5.8-
GHz Proxim Tsunami radio system with a cochannel interferer. Our cognitive
radio demonstrated streaming video. When the interferer interrupted the
communications, the cognitive radio was able to develop a new waveform to
overcome the interference. This work is described in detail in our SDR Forum
paper [2].

For a comprehensive history and review of the goals of cognitive
radio, the bookCognitive Radio Technologyprovides the first published
collection of cognitive radio research [3]. Its chapters cover many different
areas of cognitive radios, including history, policy and regulations, and
implementation technology. Another comprehensive source of cognitive radio
discussion is a set of papers published by Simon Haykin [4, 5]. We reference
his work in the chapters to come. Other areas that are directly related to
the implementation of cognitive radio and cognitive radio-like technology
include the DARPA XG program, the IEEE 802.22 standard, and the IEEE
P.1900 effort, now known as Standards Coordinating Committee (SCC) 41.
The XG program [6] is a dynamic spectrum access (DSA) system that
provides seamless communications while changing frequencies to keep from
interfering with other networks while managing its own received interference.

Introduction to Cognitive Radio 5

The sensing, selection, and coordination of the use of radio spectrum, as well
as a workable system, are all significant advances in the field. The goal of the
IEEE 802.22 standard is to use cognitive radio technology to take advantage
of unused spectrum for wireless regional area networks (WRAN) [7] while the
IEEE SCC 41 works on more general cognitive radio and dynamic spectrum
access standardization efforts [8].

The most significant and sustained work and research in cognitive
radios comes from the field of DSA. Most of this work is chronicled in the
proceedings of the IEEE DySPAN symposia [9, 10, 11]. The 2007 and 2008
symposia included a demonstrations section where companies and research
groups were able to both demo their capabilities as well as experiment with
other such devices. While DSA can be achieved without artificial intelligence,
a lot of the research and solutions proposed used cognitive radio capabilities
in their sensing and decision-making approaches.

The interest in DSA has been driven largely by the TV white spaces
debates where the unused television channels could be repurposed for
communications, which would require sophisticated sensing capabilities and
frequency agility. The Federal Communications Commission (FCC) has
recently published a positive report on testing such TV white-space sensing
devices [12] and ruled on allowing such devices to operate [13], which is a
major step forward for DSA and eventually cognitive radios. The FCC has
not been silent on the subject in the past, either, issuing a report and order in
2005 on SDR and CR [14].

While we are still a few years away from commercial devices supporting
the type of cognitive radios that this book discusses, the momentum is pushing
in the right direction.

1.3 Definition

The definition of cognitive radio has been under debate since its introduction.
In particular, much of the early work in cognitive radio dealt with the concept
of DSA, and some authors equate cognitive radio with DSA. While this
is one of the applications of cognitive radio, it is certainly not the only
one. The other aspects of cognitive radio develop more of a service-oriented
view of communications whereby the entire communications system adapts
intelligently to offer better quality of service. The service model extends
beyond the DSA model by looking at the system performance and not just
the slice of spectrum allocated.

Instead of worrying about exact definitions as they are argued in the
standardization bodies, the remainder of this book will deal with the goals
of cognitive radio. These are to build a flexible, reconfigurable radio that

6 Artificial Intelligence in Wireless Communications

is guided by intelligent processing to sense its surroundings, learn from
experience and knowledge, and adapt the communications system to improve
the use of radio resources and provide desired quality of service.

In this way, a cognitive radio follows traditional artificial intelligence
systems [15]. These systems, as illustrated in Figure 1.2, act as agents that
take input through sensors and respond to the input through actuators. The
input to these systems are the radio’s meters and the actuators are the radio’s
knobs. The intelligent agent completes the cognitive radio by providing the
learning and intelligent algorithms that understand the meters and control the
knobs.

Figure 1.2 Typical artificial intelligent agent diagram that receives information through
sensors and provides responses through actuators. When applied to a
radio system, the agent provides the cognition to the cognitive radio.

1.4 Contributions

To enable the goals of cognitive radio, we discuss in this book an architecture
of a cognitive engine to realize the necessary components of a cognitive
radio. The cognitive engine, at a minimum, is designed to coordinate a set
of sensors, an optimization routine, a learning and decision-making system,
and the underlying reconfigurable radio system. We will show the design
and implementation details of the cognitive engine components. Through the
design of the cognitive engine, we discuss different applications of artificial
intelligence to solve the problems faced by a cognitive radio and demonstrate
how some of these methods improve communications.

The major theoretical work is in the detailing and discussion of the
cognitive engine adaptation as a multiobjective optimization problem. For
its application to cognitive radio, we describe the physical layer as a set of
objective functions, methods of analyzing them, and ways that they can be
traded off in the optimization system based on performance criteria. While
this discussion provides the analysis only for the physical layer, we hope that it
will show how to extend these techniques to other aspects of radio adaptation.

Introduction to Cognitive Radio 7

One particularly successful method to solve the multiobjective cognitive
radio problems is the implementation of a highly flexible genetic algorithm.
The operation of the genetic algorithm optimization system easily allows
updates and additions to the optimization problem space as well as the
dynamic creation of chromosomes to represent the waveform, and thus, it
provides a solution independent of the search space and communications
system.

As a way to augment the optimization process, we also introduce the use
of case-based decision theory. This is a memory feedback system that learns
and improves the cognitive radio behavior.

The cognitive radio design we will be discussing throughout this book
covers all of these topics. We graphically summarize our approach in Figure
1.3 from the sensing to the monitoring feedback system.

Figure 1.3 Overview of the major functions in our cognitive engine approach.

Although we provide both theory and a practical implementation of
methods to build cognitive radios, we also understand that there is a lot of
research left to be done to fully understand the cognitive radio behavior and
optimization processes. Because of this, we have designed a mechanism that
allows for easy introduction of new cognitive radio methods and components
to test, experiment, and compare different solutions. The process also has
the benefit of allowing easy distribution and sharing of cognitive components
throughout a network, enabling knowledge sharing and distributed processing
among cognitive radios.

We then provide experimental results of the cognitive engine on a real
software radio platform. These experiments serve two purposes. First, they
provide a scientific analysis of the theory we have developed. Second, we
move the experiments between a simulated environment and real radios. Both

8 Artificial Intelligence in Wireless Communications

of these systems are based on a similar underlying platform butwith different
capabilities. The cognitive radio methods are shown to easily transition
between these two environments, supporting changing radio capabilities as
well as performance objectives.

1.5 Contents

We begin this book by describing what a cognitive radio is and the pieces
that, together, make a cognitive radio. The basic processing elements and their
capabilities are implemented as modular components, and each component
can be developed and tested independently before integration with the rest of
the engine. This is discussed in detail in Chapter 2 and built upon throughout
the rest of the chapters.

Contributions to the cognitive radio theory include specific implementa-
tions of artificial intelligence (AI) to radio optimization. Chapter 2 discusses
the use of AI within the context of wireless communications and reviews some
of the work that has developed here.

Chapter 3 introduces the principles of SDR. While there is no new theory
added to the field of SDR, it is necessary to understand how they work in
order to support the remaining chapters. The chapters on AI and SDR lead
to the main theoretical focus of this book that includes radio optimization
in Chapter 4, the genetic algorithm optimization method in Chapter 5, and
case-based decision theory and decision-making in Chapter 6 that is used to
improve the optimization.

Chapter 7 addresses the practical issue of controlling radio nodes in a
network during reconfiguration of the physical layer waveform. Following
these concepts of optimization and control with a cognitive engine, Chapter
8 provides a few working examples of the developed cognitive engine and
experimental scenarios to understand the performance and behavior. Chapter 9
concludes the book by discussing a number of advanced topics and extensions
to the theory and implementation provided here.

References

[1] J. Mitola,Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio,
PhD diss., Royal Institute of Technology, 2000.

[2] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian, “Cognitive Radios with Genetic
Algorithms: Intelligent Control of Software Defined Radios,” inSoftware Defined Radio
Forum Technical Conference, Phoenix, AZ, 2004, pp. C-3 – C-8.

[3] B. Fette, editor,Cognitive Radio Technology, New York: Elsevier, 2006.

Introduction to Cognitive Radio 9

[4] S. Haykin, “Cognitive Dynamic Systems,”IEEE Proc. Acoustics, Speech and Signal
Processing, Vol. 4, pp. IV-1369 – IV-1372, Apr. 2007.

[5] Simon Haykin, “Cognitive Radar: A Way of the Future,”IEEE Signal Processing
Magazine, Vol. 23, No. 1, pp. 30 – 40, Jan. 2006.

[6] M. McHenry, E. Livsics, T. Nguyen, and N. Majumdar, “XG Dynamic Spectrum Access
Field Test Results,”IEEE Comm. Mag., Vol. 45, No. 6, pp. 51 – 57, June 2007.

[7] IEEE 802.22, 2007.

[8] IEEE 1900, 2007.

[9] IEEE. IEEE Proc. DySPAN, 2005.

[10] IEEE. IEEE Proc. DySPAN, 2007.

[11] IEEE. IEEE Proc. DySPAN, 2008.

[12] OET, “Evaluation of the Performance of Prototype TV-Band White Space Devices: Phase
II,” Technical Report, FCC, October 2008.

[13] FCC, “Second Report and Order and Memorandum Opinion and Order,” Technical
Report ET Docket No. 08-260, Federal Communications Commission, 2008.

[14] FCC, “Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use
Employing Cognitive Radio Technologies: Report and Order,” Technical Report ET
Docket No. 05-57, Federal Communications Commission, 2005.

[15] M. Negnavitsky,Artificial Intelligence: A Guide to Intelligent Systems, Harlow, England:
Addison-Wesley, 2002.

2
The Cognitive Engine:
Artificial Intelligence for Wireless
Communications

For a radio to become cognitive, we have to address many aspects in
communications and computer science. We will also see how these concepts
and their application to communications systems require a breadth of
understanding of multiple disciplines. This makes cognitive radio a very
exciting but also a very difficult research topic to study. Our intention in this
chapter is to leap directly into the core framework of cognitive radio design
before pulling back in subsequent chapters to some of the fundamental areas
of research. In this way, we want to provide the big picture of cognitive radio
research and design that paves the way for the importance of the fundamentals.

From our definition in Chapter 1, a cognitive radio is the application of
intelligent processing and adaptation to a wireless communications system.
We implement this as a processing engine to translate observations about the
environment to action. We call this part of the radio acognitive engine. In this
chapter, we describe the function of a cognitive engine as well as the design of
the cognitive engine we have developed. The description and development of
the cognitive engine leads to a more general treatment of the use of learning
techniques and artificial intelligence in wireless communications systems at
the end of the chapter.

The cognitive engine (CE) is the intelligent core of the system described
by Figure 1.2. Its design serves two simultaneous objectives:

1. Develop and apply cognitive radio algorithms;
2. Deploy cognitive radio functionality.

11

12 Artificial Intelligence in Wireless Communications

Figure 2.1 The cognition cycle with an outer loop for observation and optimization
and inner loop for learning.

In particular, the actions of a cognitive radio (CR) follow the cognition
cycle first proposed by Mitola [1]: observe, orient, plan, decide, learn, and act.
A revision of the cognition cycle, published in a similar format in [2], is shown
in Figure 2.1. This figure simplifies the actions of Mitola’s loop and provides a
system closer to a real implementation. In a way, it is a more detailed version
of the AI agent of Figure 1.2. The radio platform provides both the input to the
sensors and receives controls from the actuators. The sensors are labeled here
as environment observations and cover a number of domains of information
useful for a cognitive radio. The sensors pass the information on to the rest
of the cognitive engine, which is a mixture of modeling, optimization, and
learning algorithms. The outer loop contains a more straightforward synthesis
of optimized waveforms while the inner loop provides long-term learning
and reasoning abilities. The results of the cognitive engine are then used to
control the radio by applying new knobs to create new waveforms. We use
the theoretical aspects of this cognition loop to develop the cognitive engine
architecture through this chapter.

2.1 Cognitive Radio Design

A cognitive radio is a flexible and intelligent radio capable of creating any
waveform and using any protocol supported by the radio hardware and
software. Waveforms consist of all of the parameters that define the way
in which the radio transmits and receives information, including transmitter
power, operating frequency, modulation, pulse shape, symbol rate, coding, and
so forth. Protocols are the rules by which network nodes transfer information.

The Cognitive Engine: Artificial Intelligence for Wireless Communications 13

A cognitive radio develops waveforms and chooses protocols inreal-time
using artificial intelligence. These actions require three components:

1. Perception: Sensors that collect data on both external factors (channel
conditions, other radios, regulations, user needs) and internal factors
(waveform capabilities, available computational resources, remaining
battery power).

2. Conception: An intelligent core that learns and understands how
to combine knowledge from the sensing mechanism to aid the
adaptation mechanism.

3. Execution: An optimization and adaptation mechanism that alters the
radio’s behavior.

Figure 2.2 presents a generic architecture for a cognitive radio. The
cognitive engine is a separate entity within that radio that works alongside
the normal communications path. The engine relies on information from
the user, radio, and policy domains for instructions on how to best control
the communication system. This structure works well as a generalized
architecture as it makes no recommendations about how the cognitive engine
(and therefore the rest of the cognitive radio) should behave while still
mapping the interactions of the rest of the systems. The communications
module itself appears as a simplified protocol stack, again showing the
independence of the cognitive engine from the overall system.

Figure 2.2 shows three input domains that concern the cognitive radio.
The user domain tells the cognitive engine the performance requirements of
services and applications. Service and application requirements are related
to the quality of service measures of a communications system. As each
application requires different QoS concepts like speed and latency, this
domain sets the performance goals of the radio.

The external environment and RF channel provide environmental con-
text to the radio’s transmission and reception behavior. Different propagation
environments cause changes in the performance of waveforms that correspond
to optimal receiver architectures. A heavy multipath environment requires a
more complex receiver than simple line-of-sight propagation or log-normal
fading. The external radio environment also plays a significant role in
performance and adaptation. This environmental information helps provide
optimization boundaries on the decision-making and waveform development.

Finally, the policy domain restricts the system to working within the
boundaries and limitations set by the regulatory bodies as interpreted by the
policy engine. The policy environment might determine a maximum amount
of power a radio can use in a given spectrum or other spectrum rights with
respect to other users, as was done in the 700-MHz band recently auctioned by

14 Artificial Intelligence in Wireless Communications

Figure 2.2 Generic cognitive radio architecture that receives input from three
domains and controls a communications system.

the FCC [3]. Important regulatory action in the United States for our purposes
includes the report and order on cognitive radio [4], recent action against
open source software for software radios [5], and the regulations on Part 15
devices for use in unlicensed spectrum [6]. The rules from the FCC and other
regulatory bodies impose constraints on the optimization space with respect
to spectrum use and power.

2.2 Cognitive Engine Design

In order to better explain the operation of a cognitive engine, we now expand
the discussion by introducing some specifics of our implementation.

To develop the cognitive capabilities of Figure 2.2, Figure 2.3 presents
an architecture of the cognitive engine. It includes a central component called
the cognitive controller that acts as the system kernel and scheduler to handle
the input/output and timing of the other attached components. The other major
components include:

Sensors: collect radio/environmental data.

Optimizer: given an objective and environment, create an optimized wave-
form.

The Cognitive Engine: Artificial Intelligence for Wireless Communications 15

Figure 2.3 The cognitive engine developed at Virginia Tech’s Center for Wireless
Telecommunications (CWT) (patent no. 7289972).

Decision Maker: coordinate information and decide how to optimize and
act.

Policy Engine: enforce regulatory restrictions.

Radio Framework: communicate with the radio platform to enable new
waveforms and pull information from the sensors.

User Interface: provide control and monitor support to the cognitive engine.

In this figure, we point out some components that we have worked with
and studied beyond what is covered in this book. One major point of the
cognitive engine is to enable the integration of other algorithms and systems.
For example, one user interface being developed at the Virginia Tech (VT)
Center for Wireless Telecommunications (CWT) is a public safety cognitive
radio (PSCR), which is an interface and control system for the cognitive
engine designed for the public safety community [7].

The number of available SDR platforms is rapidly increasing. We
have personal experience and working knowledge of a few for use with

16 Artificial Intelligence in Wireless Communications

the cognitive engine. First, as we will be discussing in more detail, is the
GNU Radio system, and open source SDR. We have also built an interface
for Implementing Radio in Software (IRIS), developed by CTVR at Trinity
College, Dublin [8]. The Kansas University Agile Radio (KUAR) is an SDR
developed by the wireless team at Kansas University. While we have not
developed an interface for this radio, we include it in the figure because of
our knowledge of the radio system as a viable candidate for such a purpose
[9].

Each component is launched as a separate process that interfaces and
exchanges data with other processes through some generic interface (e.g.,
sockets or a message passing interface).

The architecture is designed around two important aspects. First, it
allows development, testing, and launching of each component separately
for low coupling between processes. This feature also enables distributed
processing, where different components can reside on different processors
or hosts with little change in behavior. Second, this architecture enables
the testing of different types of algorithms and processes to realize each
component. For example, many different sensors may be defined for different
purposes and easily fit into the system, or different optimization functions may
be developed and compared for performance. This architecture encourages
both research and development.

2.3 Component Descriptions

The following sections provide more detail about the purpose and design of
the system components.

Along with a standard interface to transfer information, the system
also requires a standard for encoding the information. We chose eXtensible
Markup Language (XML) as our method of conveying data and information.
Using this standard satisfies a couple of competing goals. XML provides a
method of encoding data that is open, flexible to support new and developing
sensors, and both human and machine readable. XML also has a standardized
format and methods of verifying the format, via a document type definition
(DTD), to make integration with the cognitive controller easy. Finally, XML
is an open, simple standard with many tools available to read and write it,
including libraries for almost any programming language.

2.3.1 Sensors

Sensors collect data from the radio or other systems to describe and model
the environment. Environmental data can include almost anything that will

The Cognitive Engine: Artificial Intelligence for Wireless Communications 17

help the radio adjust its behavior, including radio propagation, interference
models (temperature), position and location, time, and possible visual cues.
The sensors collect the information by any means available or necessary:
developed by a third party, prebuilt libraries, or specifically developed for
use with the cognitive engine. In whatever manner the data is collected, the
important aspect of a sensor is having a standard approach to how data is
transferred to the cognitive controller. The application programming interface
(API) is described as a simple state machine with a few important states:

• Initialization;
• Waiting for data request from cognitive controller;
• Collecting data and building model;
• Transferring model to cognitive controller.

Initialization builds the proper interfacing to the cognitive controller.
The sensor then enters a wait state to listen to its interface for a request
for data from the cognitive controller. When the sensor receives a request,
it performs its data collection process, possibly by calling external libraries or
applications, and then packages the data into an XML format to describe the
sensor data. The XML data is transmitted to the cognitive controller, and the
state machine returns to its wait state.

Another look at the structure of a sensor is shown in Figure 2.4. This
figure shows that the cognitive engine sends information to the sensor through
some generic interface. Sockets and Simple Object Access Protocol (SOAP)
are two simple ways to communicate information between software programs
either colocated on the same hardware or distributed and connected through
a network layer. These are only two possible methods for providing the
communications between the sensor and the engine. Functions and processing
algorithms are retrieved through an external application or library. The use
of an external interface here allows the sensor to access new or different
functionality through simple and independent updates to a library or API.

Figure 2.5 lists the basics of the XML format for conveying sensor
information to the cognitive controller.

The first line simply defines this as an XML v1.0 file. The next line says
that this is a model from a sensor process. The particular model name is then
the character data of the “model-name” tag. The remaining tags contain the
model data. The important practice for proper representation of model data is
shown in the fourth line where the data type, size, and unit are defined. The
specification of the data type can be any type used by a particular database
or language specific to the processing of the data. For instance, data used
with a MySQL database can have the type “int,” “float,” or “char.” The size
information indicates the number of items included in this data tag; basically,

18 Artificial Intelligence in Wireless Communications

Figure 2.4 Sensor state machine architecture that receivers information from the
cognitive engine.

<?xml version=“1.0”? >
<sensor >

<model-name >“model-name” < \model-name >
<data-tag type=“type” size=“size” unit=“unit” >“value” < \data-tag >
. . .

< \sensor >

Figure 2.5 Skeleton XML format for describing a sensor.

this is defined to help represent vector data. If this attribute is ignored, a
value of “1” is assumed. The “size” attribute is an admittedly ugly method
of enabling lists or vectors of data that are comma- or space-separated values.
The final standard attribute describes the unit value the data represents, for
example, dBm for power or Hz for frequency.

The script in Figure 2.6 below shows an example of a possible model
received from a power spectral density (or energy detector) sensor. This
example contains information on the system’s noise floor at -85 dBm and one
signal present in the environment that has a received amplitude of -50 dBm
between the frequencies 449 to 451 MHz.

Perhaps the most important sensor is the sensor that collects meter
information from the system, which we show in Figure 2.7. This sensor
collects the system information such as noise power, signal power, bit error
rate, battery life, or any other available meter. This information is very
important to the optimization process, and lack of this information or wrong
information could seriously impact the optimization process.

More information on these documents, format, and the initialization
procedures are provided later as the cognitive engine is further developed.

The Cognitive Engine: Artificial Intelligence for Wireless Communications 19

<?xml version=“1.0”? >
<sensor name=“psd” >

<noise-floor type=“double” size=“1” unit=“dBm” >-85 < \noise-floor >
<signal >

<amplitude type=“float” size=“1” unit=“dBm” >-50 < \amplitude >
<fmin type=“float” size=“1” unit=“Hz” >449e6 < \fmin >
<fmax type=“float” size=“1” unit=“Hz” >451e6 < \fmax >

< \signal >
< \sensor >

Figure 2.6 Example XML description of a PSD sensor.

<?xml version=“1.0”? >
<sensor name=“meters” >

<ber type=“float” size=“1” >0< \ber >
<per type=“float” size=“1” >0< \per >
<ebno type=“float” size=“1” units=“dB” >0< \ebno >
<tx_signal_power type=“float” size=“1” units=“dBm” >0

< \tx_signal_power >
<rx_signal_power type=“float” size=“1” units=“dBm” >0

< \rx_signal_power >
<noise_power type=“float” size=“1” units=“dBm” >0< \noise_power >

< \sensor >

Figure 2.7 Example XML description of a meters sensor.

2.3.2 Optimizer

The optimization process takes environmental or user-oriented information
from the sensors or user interface to select or design a waveform that will
maximize the performance. Items that affect the optimization process include
the user/application needs, the physical (propagation) environment, available
resources (e.g., spectrum and computational resources), and the regulatory
environment. Given a required QoS, the cognitive engine asks the optimizer
to produce a waveform that comes as close to the QoS values as possible with
respect to the provided environmental data. Depending on the implementation,
the optimization may build a new waveform or select it from a list of
predefined waveforms designed for specific problems.

The optimization process makes up a large part of this work and will
be discussed in detail later, specifically in Chapter 5. Furthermore, there are
many implementations of an optimization process with plenty of research in
the field remaining. We touch upon some of these techniques later in this

20 Artificial Intelligence in Wireless Communications

chapter, while the genetic algorithm approach presented in Chapter 5 provides
a complete implementation as a starting point.

2.3.3 Decision Maker

The decision-making component of the cognitive engine helps understand
the information provided by the sensors and helps make decisions about
actions to take. The decision maker uses the sensor information to determine
if reconfiguration is required due to poor performance or signs of decreasing
performance. If optimization is required, the decision maker should also
provide some context, such as an optimization goal (e.g., high throughput or
low battery consumption) or a time limit for when a new waveform is required.
The decision maker also uses past knowledge to provide the optimization
process with information to help it in its work.

The current method of decision making in our work uses case-based
decision theory (CBDT) [10]. CBDT keeps a database of observed cases, the
actions taken to respond to those cases, and results of the action. When the
sensor provides new data, the case that is the most similar and most useful is
chosen from the case base as an action, or initial solution, to the optimization
process. The decision maker then determines if optimization is needed to
build a better waveform, use a waveform from the case base, or maintain the
current waveform. If using a waveform from the case base, the cognitive radio
could attempt to optimize the past solutions or bypass the optimization process
altogether if that waveform performs well or if there is not enough time to find
an alternative solution.

The decision maker and CBDT are discussed in detail in Chapter 6.

2.3.4 Policy Engine

The optimization process takes sensor data and creates a new waveform
to meet some specified QoS. However, before the waveform returned by
the optimization process can be sent to the radio, the cognitive controller
must ensure it is legal with respect to the local regulatory restrictions. The
policy engine does just that. The policy engine must test and authenticate a
waveform. There are many ways to look at this process, but most of them
involve databases of regulatory policies that restrict waveform transmission
based on frequency and power with time as another possible dimension.

An important aspect of policy engines is that they must meet two
competing goals within the cognitive radio world. First, the policy engine
must be secure such that unauthorized waveforms cannot be transmitted.
Second, it must be liberal enough to allow many different types of waveforms

The Cognitive Engine: Artificial Intelligence for Wireless Communications 21

Figure 2.8 Translation process from generic XML format to radio-specific commands.

to run on the system as well as grow and change to match changing regulatory
environments or waveform capabilities. Both of the above objectives require
some form of authentication. The policy engine exists as an external
component in the generic cognitive radio architecture of Figure 2.2 to help
satisfy these requirements by allowing verified third-party systems to function
here. We will not pursue the problem of policy and verification further. There
is other work developing in this area, and we have pursued work such as [11]
for our solution.

2.3.5 Radio Framework

The radio framework is the component that translates between the cognitive
engine and the radio platform. This is effectively middleware between the
generic representation used by the cognitive engine and the implementation-
specific requirements of different radio systems.

When the cognitive engine wants to reconfigure the radio’s waveform, it
uses a generic,communications theoryrepresentation in XML that is most
likely meaningless to the radio. The representation describes the physical
layer behavior in terms of communications concepts like symbol rate,
modulation type, and carrier frequency. The radio framework then translates
these values to commands specific to the radio platform.

The mapping between the XML format to the radio-specific format is
done by first parsing the XML file from the cognitive engine and formatting
the commands used to configure the radio. The diagram in Figure 2.8 shows
a generic interface for performing the translation with different modules
plugged into the system for each different radio, as though they were device
drivers. The XML Parser block is the translation block. It reads the XML
format and converts to whatever format is required by the SDR. This could
be a C++, Python, Java, or any other programming language API. The SDR
control can also be accomplished by a more external interface such as through
HTTP, message passing, or a proprietary interface.

The radio framework used in this work is the GNU Radio software radio.
This radio is discussed in detail in Chapter 3. A simple Python XML parser

22 Artificial Intelligence in Wireless Communications

reads the XML format and builds a GNU Radio flow graph. Scaperoth’s paper
[12] provides both the philosophy behind the use of XML for the interface
language as well as the starting point to the waveform representation. The
following XML shows a basic representation for describing a GNU Radio
transceiver. The description is split into a hierarchy that describes the transmit
and receive chains independently, and under each of these are branches to
describe different parts of the communications stack, such as the physical and
link layers. The values of the knobs in a particular layer are then defined in
the leaves. It should be obvious how to add and define new knobs.

<?xml version=“1.0” encoding=“utf-8”? >
<waveform type=“digital” >

<Tx>
<PHY>

<rf >
<tx_freq >408500000 < \tx_freq >
<tx_power >0.1 < \tx_power >

< \rf >
<mod>

<tx_mod type=“PSK” >
<tx_mod_bits >1< \tx_mod_bits >
<tx_mod_differential >1< \tx_mod_differential >

< \tx_mod >
<tx_rolloff >0.35 < \tx_rolloff >
<tx_bt >0.0 < \tx_bt >
<tx_gray_code >0< \tx_gray_code >
<tx_symbol_rate >200000 < \tx_symbol_rate >

< \mod>
< \PHY>
<LINK >

<frame >
<tx_pkt_size >1450 < \tx_pkt_size >
<tx_access_code >0< \tx_access_code >

< \frame >
< \LINK >

< \Tx>
<Rx>

<PHY>
<rf >

<rx_freq >408500000 < \rx_freq >
<rx_gain >35< \rx_gain >

< \rf >
<mod>

<rx_mod type=“PSK” >
<rx_mod_bits >1< \rx_mod_bits >
<rx_mod_differential >1< \rx_mod_differential >

< \rx_mod >
<rx_rolloff >0.35 < \rx_rolloff >
<rx_bt >0.0 < \rx_bt >
<rx_gray_code >0< \rx_gray_code >
<rx_symbol_rate >200000 < \rx_symbol_rate >

< \mod>

The Cognitive Engine: Artificial Intelligence for Wireless Communications 23

< \PHY>
<LINK>

<frame >
<rx_pkt_size >1450 < \rx_pkt_size >
<rx_access_code >0< \rx_access_code >

< \frame >
< \LINK >

< \Rx>
< \waveform >

2.3.6 User Interface

The user interface has widely varying responsibilities depending on the
cognitive radio use case. In one instance, it could be a control window
where all actions and responses are controlled by a human operator, such as
with a public safety radio. For more consumer-related applications where the
cognitive radio should react autonomously and adapt based on the user and
applications’ requirements, the user interface may be a simple configuration
window setting up certain parameters. In the most idealistic view of cognitive
radios, there is no user interface and the cognitive engine simply acts on its
own.

2.3.7 Cognitive Controller Configuration

An important aspect of the cognitive controller is its ability to use many
different implementations of the components described above. To enable
this capability, each component is defined around a basic state machine that
interfaces between the controller and the component. The cognitive controller,
then, is configured through an XML file that defines which components are
currently attached, as shown below. The interfacing can be defined as any
potential transport layer. For example, in the current design, simple TCP
sockets are used and defined by the hostname of the system running the
component and the port number the component is listening to. This design
makes it simple to distribute processes among networked nodes just by
changing the hostname. To do this, of course, the transport needs to be secure
and stable.

<?xml version=“1.0” encoding=“utf-8”? >
<cognitive-controller >

<knowledge-base >
interface information

< \knowledge-base >
<sensor >

<name>meters < \name>
interface information

24 Artificial Intelligence in Wireless Communications

< \sensor >
<sensor >

<name>psd < \name>
interface information

< \sensor >
<optimizer >

interface information
< \optimizer >
<radio >

interface information
< \radio >
<user-interface >

interface information
< \user-interface >
<policy-engine >

interface information
< \policy-engine >

< \cognitive-controller >

In this listing, each type of component is defined. Because a cognitive
radio will likely have multiple input methods for gathering information, the
cognitive controller can define and connect to multiple sensors. Here, the
cognitive radio has a sensor to collect the PSD of the radio environment as
well as a sensor that collects radio performance meters. Each is described by
a specific name that the cognitive controller uses to identify the sensor when
collecting information.

2.4 Artificial Intelligence in Wireless Communications

Successful cognitive radios are aware, can learn, and can take action for any
situation that might arise. Applications range from voice communications
under low power conditions to communications in high interference zones
to more complex, critical, and hostile military networks of interoperating
vehicles and soldiers with many different network needs. A radio must
respond to any of these scenarios and adapt the many different parameters
that define its waveform and protocols. These radios do not just require
learning; instead, they need highly sophisticated learning and decision-
making capabilities.

Machine learning has been well documented and received both criti-
cisms [13] and praise [14]. Successful applications of AI are often limited to
narrowly defined, well-bounded applications. While waveform adaptation is a
bounded problem, the technical demands for intelligence in a radio exceed
those normally associated with successful applications of classic artificial
intelligence techniques, such as expert systems or neural networks. Waveform

The Cognitive Engine: Artificial Intelligence for Wireless Communications 25

optimization requires stronger reasoning capabilities and the potential to
create and test new design solutions.

A common theme we will continue to develop is the combined use of
both learning and optimization processes. Feedback from a learning system
can augment the optimization routines through comparisons between the
radio’s actions and the desired outcomes of the optimization. Furthermore,
as touched upon in this chapter and developed in Chapter 6, a learning
system can significantly aid decision-making in time-constrained situations.
If the cognitive radio requires an immediate solution, the learning system
can provide a known working solution developed in the past. Given time
constraints or lack of valid solutions, the optimization process can develop
new solutions or evolve old solutions for better operation.

Information and knowledge are both important concepts for a cognitive
radio. Information is data about the environment collected through the
available sensors. Information can include such items as position, interfer-
ence, battery life, or performance analysis. The information collected from
the sensors feeds both the learning and the optimization routines to help
them make decisions. Knowledge is a concept developed from information.
Knowledge is a useful representation of the information that says something
about what the information means. The sensors might provide the cognitive
radio with time and position information, but the radio needs to know
what that information might mean about potential use patterns and known
problems, such as areas of service outage or high interference during a daily
commute.

More information is good, but only if the cognitive engine can transform
the information into usable knowledge. Some sensors might provide a lot of
information such as ambient temperature, but if the models used to make
decisions do not use that information, the sensor adds no useful knowledge to
the system. On the other hand, sophisticated sensors that provide information
about interference power over a wide bandwidth can find immediate use by a
cognitive radio seeking access to a particular amount of spectrum.

2.5 Artificial Intelligence Techniques

Below, we list several AI techniques/areas receiving considerable attention
in the literature on cognitive radio. We present and review a few particularly
relevant papers regarding each AI technique, specifically the papers that well
represent the field or that provide comprehensive background themselves.

There are a couple of well-known areas of AI techniques that we
purposefully leave out. One large technique in signal processing is the
Bayesian network. This powerful learning technique based in Bayes’ theorem

26 Artificial Intelligence in Wireless Communications

uses past experience to enhance future decisions. The reason this technique
is excluded from the following discussion is because there is little published
work in the use of Bayesian networks in cognitive radio. Haykin, who has a
history of work with these and other AI techniques in communications, cites
the approach in his article on cognitive radar [15], but does not offer details
for how to employ it. Brief discussions of Bayesian networks appear in a few
publications, and they are used in other aspects of communications and signal
processing, and so the technique will likely start making a serious impact
soon.

Another popular AI technique is the expert system. Expert systems have
been successful in some applications, particularly early in the development
of AI, such as the DENDRAL project in organic chemistry [16]. Mitola
addresses the concept of expert systems at length in his dissertation on
cognitive radio [17] in which he mentions the ideas of “knowledge-
engineering bottlenecks and software of limited flexibility.” The bottlenecks
occur due to the need for domain experts to define all knowledge, action, and
behavior of the expert system. This same principle also limits any refinement
of the expert system without further relying on such experts, thereby limiting
how flexible the system is to new situations and in the face of new constraints
and information. There may exist limiting cases for the use of expert systems,
but it is not an independent approach to realizing cognitive radio.

The next few sections highlight different artificial intelligence tech-
niques that use information to make knowledgeable decisions in the cognitive
radio. As Arthur C. Clarke famously said, “any sufficiently advanced
technology is indistinguishable from magic.” Likewise, it might be true that
any sufficiently advanced signal processing algorithm is indistinguishable
from artificial intelligence.

2.5.1 Neural Networks

Neural networks are among the oldest form of AI in computer science,
starting with the mathematical formulation by McCulloch and Pitts [18]. They
have come and gone as a fad over the decades, but recent advances, both
hardware and software, enable their use in more applications. Of particular
importance to cognitive radios, neural networks provide a means for signal
and modulation detection and classification.

Chan et al. [19] did some of the early published work on signal
classification algorithms with decision theoretic and pattern matching. Both
methods used time-based statistics, and neither proved too robust under low
SNR conditions. Azzouz and Nandi then did some important work on the
subject [20] and did some of the early work using neural networks as the signal

The Cognitive Engine: Artificial Intelligence for Wireless Communications 27

processing technique of choice that showed greater promise inclassification
of signals under noisier conditions [21]. The use of neural networks in
modulation classification has since become a well-accepted technique using
both time-based statistics [22] and frequency analysis [23] as the inputs to the
network.

Neural networks are really signal processing elements that perform
simple operations on data. However, the collection of artificial neurons and
clever learning algorithms allow networks to build and adapt to represent and
process data in interesting ways. In signal classification, they take multiple
noisy input items and provide accurate answers to the type of modulation
represented.

2.5.2 Hidden Markov Models (HMM)

In some circles, hidden Markov models (HMM) [24] might be considered
artificial intelligence, though we certainly would not categorize them as such.
A HMM is a processing tool that uses past data to help predict future actions;
an implementation of Bayes’ law. We discuss them here because they are
useful in communications and cognitive radios.

The best reference to learn about how HMMs work is Rabiner’s tutorial
[24]. Channel modeling has extensively used Markov models in research.
Probably the most famous is the two-state Gilbert-Elliot model [25] that
describes a channel as in either a good state or bad. When in one state,
there is a probability of either staying in that state or moving to the other
state. The channel properties determine the type of transition probabilities.
Researchers have developed other, more extensive models, and [26] provides
a good comprehensive overview of these.

The idea of developing such a model lends itself to cognitive radios.
Rieser and Rondeau looked into using HMMs in channel models where they
used a genetic algorithm as the training method instead of the Baum-Welch
algorithm [27]. The HMM in this instance was used to provide a compact
channel model based on information gathered in a live system to represent
the current channel statistics. The idea was to use the HMMs as a sensor to
understand the channel behavior in a cognitive engine, although the research
was not taken much farther in this direction.

Mohammad’s work used HMMs for a similar purpose, but was able to
develop classification schemes in order to use the models for decision making
in a cellular network [28]. The ability he developed to calculate a similarity
distance between HMMs provides promise for future implementation in
a cognitive radio system, especially in the context of the environmental
modeling used in a case-based system as discussed in Chapter 6.

28 Artificial Intelligence in Wireless Communications

2.5.3 Fuzzy Logic

Fuzzy logic is a famous technique that started during the early development
of artificial intelligence [29, 30]. Because it deals extensively with uncertainty
in decision making and analysis, it has great potential for application to
cognitive radio. However, only a little work has so far been published in
the field, notably by Baldo and Zorzi [31]. Their implementation suggests
some interesting applications, and the discussion points out larger uses than
the specific application of adapting the TCP layer used in the paper. A
problematic aspect of this work is the amount of domain-specific rules
required. All implementations of AI require domain information, but fuzzy
logic must establish a rule related to the specific situation in which it is used.
Programming these rules recalls some of the limitations of expert systems,
although fuzzy logic is still far more flexible and powerful. Fuzzy logic has
potential in either specific problem solving areas or as a part of a cognitive
radio.

2.5.4 Evolutionary Algorithms

Along with Christian Rieser, we pioneered the use of genetic algorithms
[32, 33] early in cognitive radio research [34, 35, 36], which this work
extends. The basic principles, as discussed throughout, are that the large
search space involved in optimizing a radio is more complex than many
search and optimization algorithms can handle. Among those algorithms that
are suited to the task, evolutionary, specifically genetic, algorithms offer a
significant amount of power and flexibility. Cognitive radios are likely to
face dynamic environments and situations as well as radio upgrades due to
advancing technology, so the flexible representation of the problem space
allowed genetic algorithms are particularly applicable.

More recently, Newman et al. [37] have also contributed significantly
to the use of genetic algorithms for cognitive radios. As we discuss in detail
in Chapters 4 and 5, one of the main issues involved in successful genetic
algorithm behavior is the selection of the fitness, or objective, function(s).
Newman’s work has developed a single, linear objective function to combine
the objectives of BER minimization, power minimization, and throughput
maximization.

2.5.5 Case-Based Reasoning

The final traditional AI technique to discuss here is case-based reasoning
(CBR) [39]. CBR systems use past knowledge to learn and improve future
actions. In these systems, a case base stores actions and receives inputs from

The Cognitive Engine: Artificial Intelligence for Wireless Communications 29

a sensor. Those inputs help find the action in the case base that best fits the
information received by the sensor. As mentioned previously, an optimization
routine could, instead of designing a new waveform, select a waveform from a
predefined list. CBR is a method used to make the associations. Although this
may sound like an expert system, CBR systems generally provide learning
and feedback to continuously and autonomously improve their performance.
As information is received and actions taken, the results can help the system
improve its response the next time.

Another contribution from Newman et al. [37] develops a similar idea
in the experiments they run using previous knowledge to seed the next run
of the genetic algorithm. The cognitive radio remembers solutions found
for one particular problem to apply to the next problem to initialize the
population with known successful chromosomes. The population seeding in
[37] resembles the case-based decision theory work presented in Chapter 6.
Their seeding concept uses a factor to calculate the expected change in the
environment between runs of the genetic algorithm to provide context for how
successful a new chromosome might be with respect to the new environment.
We will show later how the case-based work extends this idea by keeping a set
of previously observed cases and finding which case best matches the current
environment as opposed to assuming certain changes in the environment.

2.6 Conclusions

In this chapter, we introduced the concept of the cognitive engine and began
to show the implementation we developed to realize the structure in an
extensible, flexible platform. The major components of the platform include
sensors, optimizer, decision maker, policy engine, radio framework, and the
user interface. The discussion of this chapter focused mostly on defining the
roles and responsibilities of each component to provide the context from
which to build a cognitive radio. From this initial discussion, we now begin
developing the theory that enables the different parts of the engine. We will
then revisit the engine’s design in much greater detail.

To realize a cognitive radio, AI provides many viable techniques and
tools. We have discussed many of these techniques with a brief literature
review of each as related to their application in cognitive radio. In later
chapters, we use and develop these ideas more deeply in the design of the
cognitive engine framework presented here.

Our work deals largely in the optimization routine in Chapters 4 and
5 and on the decision maker and learning routine in Chapter 6. From this
introduction of the cognitive radio and cognitive engine, the next chapter

30 Artificial Intelligence in Wireless Communications

introduces the radio framework required for use by the AI approaches in the
later chapters.

References

[1] J. Mitola and G. Q. Maguire, Jr., “Cognitive Radio: Making Software Radios More
Personal,”IEEE Proc. Personal Communications, Vol. 6, 1999, pp. 13 – 18.

[2] T. W. Rondeau, C. W. Bostian, D. Maldonado, A. Ferguson, S. Ball, B. Le, and S. Midkiff,
“Cognitive Radios in Public Safety and Spectrum Management,”Telecommunications
Policy and Research Conference, Vol. 33, Sep. 2005.

[3] FCC, “Implementing a Nationwide, Broadband, Interoperable Public Safety Network in
the 700 MHz Band,” Federal Communications Commission, Tech. Rep. PS Docket No.
06-229, Dec. 2006.

[4] ——, “Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use
Employing Cognitive Radio Technologies: Report and Order,” Federal Communications
Commission, Tech. Rep. ET Docket No. 05-57, 2005.

[5] ——, “Cognitive Radio Technologies and Software Defined Radios,” Federal
Communications Commission, Tech. Rep. ET Docket No. 03-108; FCC 07-66, 2007.

[6] ——, “Title 47 of the Code of Federal Regulations: Part 15-Radio Frequency Devices,”
Federal Communications Commission, Tech. Rep., 2001.

[7] B. Le, P. Garcia, Q. Chen, B. Li, F. Ge, M. ElNainay, T. W. Rondeau, and C. W. Bostian,
“A Public Safety Cognitive Radio Node System,”Software Defined Radio Forum
Technical Conference, Denver, Colorado, 2007.

[8] P. Sutton, L. Doyle, K. E. Nolan, “A Reconfigurable Platform for Cognitive Networks,”
IEEE Proc. Cognitive Radio Oriented Wireless Networks and Communications
(CROWNCOM), Jun. 2006, pp. 1 – 5.

[9] J. D. Guffey, A. M. Wyglinski, and G. J. Minden, “Agile Radio Implementation of OFDM
Physical Layer for Dynamic Spectrum Access Research,”IEEE Proc. GLOBECOM,
Washington, D.C., Nov. 2007, pp. 4051 – 4055.

[10] I. Gilboa and D. Schmeidler,A Theory of Case-Based Decisions, Cambridge: Cambridge
University Press, 2001.

[11] P. Cowhig, “A Complete & Practical Approach to Ensure the Legality of a Signal
Transmitted by a Cognitive Radio,” Masters thesis, Virginia Tech, 2006.

[12] D. Scaperoth, B. Le, T. W. Rondeau, D. Maldonado, C. W. Bostian, and S. Harrison,
“Cognitive Radio Platform Development for Interoperability,”MILCOM, Washington,
D.C., Oct. 2006, pp. 1 – 6.

[13] J. Hawkins,On Intelligence, New York: Times Books, 2004.

[14] M. Negnavitsky,Artificial Intelligence: A Guide to Intelligent Systems, Harlow, England:
Addison-Wesley, 2002.

The Cognitive Engine: Artificial Intelligence for Wireless Communications 31

[15] S. Haykin, “Cognitive Radar: A Way of the Future,”IEEE Signal Processing Magazine,
Vol. 23, No. 1, pp. 30 – 40, Jan. 2006.

[16] B. G. Buchanan, G. L. Sutherland, and E. A. Feigenbaum, “Heuristic DENDRAL:
A Program for Generating Explanatory Hypotheses in Organic Chemistry,”Machine
Intelligence, Vol. 4, pp. 209 – 254, 1969.

[17] J. Mitola, “Cognitive Radio: An Integrated Agent Architecture for Software Defined
Radio,” Ph.D. diss., Royal Institute of Technology, 2000.

[18] W. McCulloch and W. Pitts, “A Logical Calculus of Ideas Immanent in Nervous Activity,”
Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–133, 1943.

[19] Y. Chan, L. Gadbois, and P. Yansounix, “Identification of the Modulation Type of a
Signal,” IEEE Proc. Acoustics, Speech, and Signal Processing, Vol. 10, Apr. 1985, pp.
838 – 841.

[20] E. E. Azzouz and A. K. Nandi, “Procedure for Automatic Recognition of Analogue and
Digital Modulations,”IEE Proc. Communications, Vol. 143, No. 5, pp. 259 – 266, Oct.
1996.

[21] A. K. Nandi and E. E. Azzouz, “Algorithms for Automatic Modulation Recognition of
Communication Signals,”IEEE Trans. Communications, Vol. 46, No. 4, pp. 431 – 436,
Apr. 1998.

[22] B. Le, T. W. Rondeau, D. Maldonado, D. Scaperoth, and C. W. Bostian,
“Signal Recognition for Cognitive Radios,”Software Defined Radio Forum Technical
Conference, 2006.

[23] A. Fehske, J. Gaeddert, and J. H. Reed, “A New Approach to Signal Classification Using
Spectral Correlation and Neural Networks,”IEEE Proc. DySPAN, 2005, pp. 144 – 150.

[24] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition,”Proc. IEEE, Vol. 77, No. 2, pp. 257 – 286, Feb. 1989.

[25] E. N. Gilbert, “Capacity of a Burst-Noise Channel,”Bell Labs Technical Journal, Vol. 39,
pp. 1253 – 1266, Sep. 1960.

[26] L. N. Kanal and A. R. K. Sastry, “Models for Channels with Memory and Their
Applications to Error Control,”Proc. of the IEEE, Vol. 66, No. 7, pp. 724 – 744, Jul.
1978.

[27] T. W. Rondeau, C. J. Rieser, T. M. Gallagher, and C. W. Bostian, “Online Modeling
of Wireless Channels with Hidden Markov Models and Channel Impulse Responses for
Cognitive Radios,”IEEE Proc. IMS, 2004, pp. 739 – 742.

[28] M. Mohammad, “Cellular Diagnostic Systems Using Hidden Markov Models,” Ph.D.
diss., Virginia Tech, 2006.

[29] L. A. Zadeh, “Fuzzy Sets,”Information and Control, Vol. 8, pp. 338 – 353, 1965.

[30] M. Black, “Vagueness: An Exercise in Logical Analysis,”Philosophy of Science, Vol. 4,
No. 4, pp. 427 – 455, Oct. 1937.

[31] N. Baldo and M. Zorzi, “Fuzzy Logic for Cross-Layer Optimization in Cognitive Radio
Networks,”IEEE CCNC, Jan. 2007, pp. 1128 – 1133.

32 Artificial Intelligence in Wireless Communications

[32] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley, 1989.

[33] J. Holland,Adaptation in Natural and Artificial Systems, Boston: MIT Press, 1975.

[34] C. J. Rieser, “Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed
Genetic Algorithms for Secure and Robust Wireless Communications and Networking,”
Ph.D. dissertation, Virginia Tech, 2004.

[35] C. Rieser, T. Rondeau, C. Bostian, and T. Gallagher, “Cognitive Radio Testbed: Further
Details and Testing of a Distributed Genetic Algorithm Based Cognitive Engine for
Programmable Radios,”IEEE Military Communications Conference, Nov. 2004.

[36] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian, “Cognitive Radios with Genetic
Algorithms: Intelligent Control of Software Defined Radios,”Software Defined Radio
Forum Technical Conference, 2004, pp. C–3 – C–8.

[37] T. R. Newman, R. Rajbanshi, A. M. Wyglinski, J. B. Evans, and G. J. Minden,
“Population Adaptation for Genetic Algorithm-Based Cognitive Radios,”IEEE Proc.
Cognitive Radio Oriented Wireless Networks and Communications, Aug. 2007.

[38] P. Mähönen, M. Petrova, J. Riihijarvi, and M. Wellens, “Cognitive Wireless Networks:
Your Network Just Became a Teenager,”IEEE INFOCOM, 2006.

[39] J. Kolodner,Case-Based Reasoning, San Mateo, CA: Morgan Kaufmann Pub., 1993.

3
Overview and Basics of Software
Defined Radios

One of the most important enabling technologies to the application and
success of cognitive radios is an adaptive, flexible, and powerful radio
platform. Many cognitive radio techniques can work with more traditional
radio designs. For instance, new mobile phones and laptop computer chips
are offering access to multiple radio technologies and services. Such service
selection can be accomplished by cleverly designing RFICs and software
to take advantage of different standards like WiFi, WiMAX, LTE, CDMA,
and GSM. A simple, but useful, cognitive radio implementation would use
multistandard technology to automatically select the carrier and standard that
best provides the QoS and pricing for the current application. We present a
method to do this in Chapter 6.

More interesting applications and cognitive radio capabilities become
evident when we break away from traditional, fixed standards-based radios
and move to more flexible platforms. Such flexibility is coming about by
moving the signal processing into the software domain. Device capabilities are
easily adjusted and turned on and off through software functions, and software
updates provide paths to introduce new and better services. With the added
flexibility, radios can then determine and negotiate their own waveforms as
needed to satisfy their service requirements. In this chapter, we introduce
software radios. The rest of the book will take the basics we develop here
as the context for building cognitive radio applications.

The first part of this chapter covers a basic introduction to SDR or
software radio (SR). We will not get into any notational argument between
SDR and SR and will use them interchangeably. We will not provide an
in-depth analysis of the subject of software radio, but we will present the

33

34 Artificial Intelligence in Wireless Communications

necessary information on SDR technology to explain why it is used as
the implementation platform for cognitive radio. Within this context, it is
important to point out both the benefits and potential problems with SDR.
For a more complete coverage of SDR technology as well as a comprehensive
list of references in the field, see Reed [1] and Tuttlebee [2].

In the second half of this chapter, we present a discussion of the
GNU Radiosoftware radio. This is an open-source SDR implementation
that provides many benefits to the cognitive radio researcher. It is free,
open and transparent, and increasingly powerful as new capabilities and
updates are introduced to the core system. This information is intended to
provide the reader with an understanding of how GNU Radio, as a specific
software radio implementation, can be used as the platform for cognitive radio
experimentation.

3.1 Background

As the name suggests, a software defined radio is a radio system where the
majority of physical layer signal processing is done in software. The signal
processing encompasses modulation, forward error correction, spreading,
filtering, phase, frequency, timing synchronization, and so on.

Figure 3.1 shows the concept of anidealSDR where the received signal
comes in from an antenna, is converted to the digital domain via the analog
to digital converter (ADC), and the rest of the signal processing is done
in software. Likewise, the transmitter performs all the signal processing in
software and sends the signal out of the antenna via the digital to analog
converter (DAC). Unfortunately, in this type of system, the requirements of the
ADC and DAC as dictated by dynamic range, sampling rates, and bandwidth
specifications far exceed practical capabilities (see [3] for details of ADC
technology). Likewise, running software instead of hardware implementations
of communications systems introduces performance limitations.

Figure 3.1 Ideal SDR with direct conversion between analog and digital world at the
antenna port.

Given the limitations of realizing the ideal SDR, hardware can perform
some of the signal processing while processors of different types, such as

Overview and Basics of Software Defined Radios 35

field programmable gate arrays (FPGA), digital signal processors (DSP),
and general purpose processors (GPP) can handle other parts. Figure 3.2
shows a very high-level view of a radio transmitter that includes some of
the main functions required in a transmitter. Each block has different levels
of flexibility performance demands. Things like forward error correction
(FEC) and interleaving operate on bits at the bit rate. These tend to be low-
complexity operations in the transmitter, but the respective decoding process
at the receiver is a very computationally intensive procedure. The modulator
converts bits into symbols in the complex plane for transmission. Again, this is
usually straightforward in the transmitter. In the receiver, this process requires
computationally expensive frequency, phase, and timing synchronization to
properly demodulate digital signals. The pulse shaping filter then bandwidth-
limits the signal for transmission.

Before the symbols can be sent to the analog portion of the transmitter
through the DAC, we often need some rate conversion step. The DAC and the
analog hardware will be clocked at some rate that must be at least twice as fast
as the bandwidth of the signal going into the DAC to meet the Nyquist criteria.
This requires some rate conversion algorithm that upsamples the signal to
match the DAC’s sampling rate.

Again, these processes must balance performance with flexibility. For
a specified radio standard that uses only one form of modulation or FEC
coding, there is no need for flexibility and all of these operations can be
realized in hardware. However, for any cognitive radio purpose, we require
a great amount of flexibility. It is imperative that the coding and modulation
are performed in software to support new and different methods or techniques.
On the other hand, given a particular set of analog hardware, the resampling
stage is a generic method that operates the same for many different kinds
of waveforms, and so it is not required to be as flexible. Furthermore, the
sampling rate is directly related to the computational cost and a performance-
limiting parameter for software.

An SDR designer must decide which components should be in hardware
or software, and what types of processors should run the software based on
design needs and trade-offs. Components can be implemented in GPPs, DSPs,
FPGAs, and application-specific integrated circuits (ASIC). These elements
have been listed in this way to represent the general trend from flexibility
to performance with GPPs being highly flexible and versatile while ASICs
are designed for a particular purpose but perform their tasks very efficiently.
FPGAs are flexible to some extent in that they are reprogrammable, but
their programming does not have any real-time dynamics, yet they are more
powerful for a given task than a GPP would be.

36 Artificial Intelligence in Wireless Communications

As we discuss in the following sections, we perform most of the signal
processing elements in GPP software. The resampling to match the DAC
sampling rate is more universal to waveforms as we mentioned, so we allow
the FPGA to take care of this process. The rest is done in analog hardware.
The receiver lines are drawn in the respective stages as the transmitter. After
the ADC, and FGPA downsamples and filters the signal while the full receive
chain is handled in software. Other SDR implementations favor splitting
between FPGAs and DSPs with more emphasis on the former. These are
design choices to maximize the required behavior.

Figure 3.2 High-level SDR physical-layer transmitter with bits received from the upper
layers of the protocol stack.

To help us make these decisions, software radio engineers must first
understand what systems are capable of performing the different tasks
most efficiently. We will first explore what can be done with software
before exploring the limitations. From this discussion, we will develop an
understanding of what communications capabilities can be expected to run in
software and therefore what a cognitive radio can control.

3.2 Benefits of Using SDR

Probably the greatest benefit of SDR technology is the flexibility it can
provide. Developing software to perform signal processing offers large
opportunities for improving the development cycle. From an operations
standpoint, developing and debugging software is much easier, more practical,
and more cost-effective than designing and producing hardware like an ASIC
where the turnaround time is long and expensive and constitutes a large barrier
to entry into the field. From a service provider’s perspective, SDR offers easy
upgrades and bug fixes in deployed systems. If a new system or waveform is
required, as long as there is enough processor power, software updates can
be pushed to a system operating in the field [4]. A successful example of this

Overview and Basics of Software Defined Radios 37

was the recent upgrade of Vanu, Inc.’s mobile base stations that were running a
global system for mobile communications (GSM) system and were upgraded
to support code division multiple access (CDMA) [5]. This capability saved
time and cost of design and deployment, and it lowered the costs to the
service provider, who did not have to install a new system. Although in the
particular case of Vanu, Inc., the SDR is implemented primarily in general
purpose processors, many SDR platforms are being built around FPGAs,
which can easily handle software upgrades when changes are infrequent and
do not require real-time adaptation of a waveform. While FPGAs offer higher
performance for lower power, changes to the FPGA firmware can take on the
order of seconds; this is an acceptable lag when updating a system, but not
quite fast enough for reconfiguring a waveform in a cognitive radio setting.

Another benefit of software radio is the concept of software reusability.
When software is modular and well-written, it can be ported between
processors with minimal rewriting required. Unfortunately, this is not entirely
the case in today’s FPGA-based SDR systems where the software language,
generally very high-speed integrated circuit hardware description language
(VHDL), is too low level and does not provide sufficient abstraction to be
platform independent. We suspect this will change as more influence from
the computer science community affects development practices in the SDR
world. Nevertheless, in systems that are GPP based, code portability is a major
advantage.

Cognitive radio depends on having as much flexibility in waveform
design and reconfiguration as possible, and the more flexible the underlying
platform, the more useful the cognitive radio is. The case of cognitive
radio, unlike over-the-air downloads or service upgrades, requires real-
time reconfiguration of much of, if not the entire, waveform. For the
reconfiguration, given current technology, a GPP should handle the majority
of the signal processing; that is, minimum hardware, maximum GPP.

Another benefit of SDR is that, being software already, it is easy to test
individual signal processing blocks, simulate performance, and test behavior
in a closed system and then reuse the same software for a real, over-the-
air system. Later in this chapter, we discuss the GNU Radio SDR platform
used in which we simulate the performance of our cognitive radio prototype.
The transmitter and receiver from the simulation are then used for over-the-
air experiments by adding the USRP radio front-end instead of a software
interconnect.

In software radio, we are benefiting from two parallel development
paths, one from the hardware domain and one from software. First, Moore’s
law is one of our best friends. The technology trend in integrated circuits is
constantly giving us more computational resources. Currently, the multicore

38 Artificial Intelligence in Wireless Communications

and parallel processing systems increasingly available on the market are
providing us with more processing capabilities at lower power consumption
to make SDR an even more promising technology. A second reality of these
technology shifts are increasing capabilities within the processing elements
themselves. The push of DSP-type elements such as single instruction
multiple data (SIMD) into general purpose processors is giving us more
throughput at lower cost.

A second factor is the paradigm shift from the early digital emulations
of analog circuits to more recent digital building blocks that have no analog
counterpart. In his multirate signal processing book, fred harris has shown
new ways of thinking about and solving old problems [6]. Exploiting digital
signal processing techniques, harris offers many advances that both improve
performance and reduce overhead.

Because of the work in both processor technology and signal processing
research, the trend is increasingly favoring SDR for implementing wideband,
complex, and dynamic radio systems.

3.3 Problems Faced by SDR

Of course, all the benefits of SDR come with a cost such as power
consumption, speed, and efficiency. In hardware, the designer can optimize
a circuit or chip for a particular purpose that will provide the processing
required at the lowest possible power consumption, and hence the name
application specificintegrated circuit. On the other hand,general purpose
processors provide the flexibility and reuse concepts discussed previously,
but they do not achieve the same efficient performance as a hardware system
dedicated to a particular waveform.

Many of the problems identified here are engineering challenges that
cross a variety of disciplines. Processor technology is stepping up to the
computing challenges with multicore techniques, advanced instruction sets
like SIMD, and graphics processing units (GPUs) being used in multimedia
processing and gaming physics engines [7, 8]. Multicore processors currently
offer some of the most incredible advances in general purpose computing
power [9], especially with concepts like those used in the IBM CELL
processor and future asymmetric multicore processors [10]; that is, different
types of cores for different processing purposes. In this type of design,
GPP-like cores can provide logic and control while GPU-type cores enable
high-speed, efficient signal processing. A further advantage of multicore and
multiprocessors systems is that operations can take place in parallel.

Parallelization lends itself directly to SDR processing. First, paral-
lelizing the processing elements allows the receive and transmit paths

Overview and Basics of Software Defined Radios 39

to operate simultaneously. Second, when segmenting a data stream into
blocks of samples, these blocks can be processed simultaneously through
different parts of the transmit or receive path. With this structure, the
SDR can simultaneously perform different tasks like timing synchronization,
demodulation, decoding, and framing.

As these general purpose processing elements are increasing in capa-
bilities and our ability to program them is improving, the cost savings
of using these systems instead of ASICs becomes even more compelling.
While a general purpose processor can be designed once to solve many
different problems, the cost of creating an ASIC mask is getting increasingly
expensive. To make it worthwhile, an application requiring an ASIC demands
a significant customer base. Applications that can be done with GPPs start
making more economic sense because of the reduced hardware cost of entry
into a market. Along with employing reusable software, companies can
drastically lower cost with standard off-the-shelf processor components and
portable software.

There will always be a need for some signal processing such as
amplification and high frequency mixing to take place in hardware. Other
functions such as multirate processing and filtering between the baseband
processing and the ADC and DAC will greatly benefit from implementation
in FPGAs. Meanwhile, cognitive radio operates most effectively in general
purpose baseband processing for the most flexible systems available. In the
next section, GNU Radio implementation provides an example of a GPP-
based SDR useful in cognitive radio work.

3.4 GNU Radio Design

One of the most popular SDR implementations is GNU Radio [11], a GNU
(the clever recursive acronym for “GNU is Not Unix”) project of the Free
Software Foundation (FSF) to provide a GPP-based open source software
defined radio. We focus on these SDR products extensively in this book
for many reasons. First, one of us, Rondeau, is an active developer for the
GNU Radio project and so has extensive knowledge of it. Second, GNU
Radio is one of the most complete and widely used SDRs for cognitive
radio development. GNU Radio and USRPs are used in academic research,
with amateur radio enthusiasts, for government needs, and increasingly small
business innovations.

As an open source project licensed under the general public license
(GPL), these SDR tools make themselves easily and readily available for use
in both research and development. With years of work gone into producing
the GNU Radio framework and the USRPs, these projects offer a quality

40 Artificial Intelligence in Wireless Communications

foundation for software and cognitive radio work.1 The free software licensing
of GNU Radio also means that anyone reading this book can download and
experiment with the ideas we are presenting.

GNU Radio is a software package that provides signal processingblocks,
discrete components to perform a specific task. Each of these components
is a C++ class that a developer can connect to other blocks to create aflow
graph. A block can be a source with only output ports, a sink with just input
ports, or a general block with both inputs and outputs. Currently, the GNU
Radio supports many signal processing blocks and a number of waveforms.
Blocks include finite impulse response (FIR) and fast Fourier transform
(FFT) filters, simple arithmetic operations, complex number processing and
transformations, frequency translation, waveform-specific techniques [12],
and timing synchronization blocks [13, 14, 15, 16].

In GNU Radio, each separate signal processing block is implemented
in C++ and gets built into a library. Python, a high-level programming
language (www.python.org) is then used as an interface language to connect
the signal processing blocks from the C++ library together. This is performed
by “wrapping” the C++ library into a Python module so that Python can call
the C++ functions through the “wrapper.” Blocks are connected to build a flow
graph, an architectural construct that represents the flow of samples through
the radio. Blocks can be connected in a hierarchical fashion as well, which
allows us to build blocks of more specialized processing capabilities out of
smaller, more general blocks. Recently, the project has allowed all of these
capabilities to be done in a full C++ environment, so that all GNU Radio
functionality is accessible through either a C++ or a Python project. The move
to all C++ allows more traditional workspace development of waveforms,
applications, and embedded systems.

3.4.1 The Universal Software Radio Peripheral

A software-only SDR does little actual radio communications without a means
to get to and from the radio frequency (RF) domain. A device is required
to convert between the analog, RF domain and the digital, software world.
These devices are referred to as either air interfaces or RF front-ends. A
parallel project with the GNU Radio to provide an air interface is the Universal
Software Radio Peripheral (USRP) [17]. The USRP is a board that does
basic intermediate frequency (IF) processing of up- and downconversion,
decimation and interpolation, and filtering. Along with the USRP board are

1. For anyone concerned with learning more about how businesses can use and benefit from
open source software, see work by Bruce Perens, http://opensource.org, and the Free Software
Foundation at http://www.fsf.org, among others.

Overview and Basics of Software Defined Radios 41

a set of daughterboards to perform the final analog up- and downconversion,
filtering, and amplification. The USRP provides the air interface to convert
between the digital baseband processed in the SDR and the analog, RF
domain.

The USRP provides analog to digital sampling with a 12-bit, 64 Msps
ADC and digital to analog conversion with a 14-bit, 128 Msps DAC. It can
hold two transmitter and two receiver daughterboards at a time. It is controlled
and data is transmitted and received over a USB 2.0 interface.

While the USRP and GNU Radio are parallel development projects, they
do not necessarily depend on one another as other SDR platforms use the
USRP (e.g., [18, 19]) and other RF front ends can use GNU Radio as the
signal processing system.

3.4.2 The USRP Version 2

An updated version USRP was recently released, the USRPv2. This design
offers a number of improvements to the first generation USRP. First, it uses
higher-resolution and faster ADCs and DACs at 14-bits, 100 Msps and 16-
bits, 400 Msps, respectively. It only handles one transmitter and one receiver
at a time, unlike the USRPv1, but the USRPv2 is equipped with a high-
speed serial connector to tie two USRPv2s together for multiboard processing.
The USRPv2 includes a more capable FPGA, the Xilinx Spartan 3, than the
USRPv1, which uses an Altera Cyclone. The USRPv2 also stores the FPGA
image on an SD Card instead of writing it from the host computer when first
run as the USRPv1 does. With the SD Card and a MIPs processor image
programmed on the Vertex IV, the USRPv2 is capable of complete stand-
alone operation. One of the most significant changes between the USRPv1
and USRPv2 is the use of a gigabit Ethernet (GigE) link instead of USB to
transfer data. With full-duplex GigE, the USRPv2 can simultaneously transmit
and receive 25 MHz bandwidth signals at complex baseband.

Throughout this book, the real differences between the USRPv1 and
USRPv2 are unimportant. In the cognitive radio concept, these systems play
the same role. We will generically refer to these two systems as the USRP
since we will not need to further differentiate their capabilities.

3.4.3 Flow Graphs

The role of GNU Radio ends between the pulse shape filter and the frequency
upconversion block in Figure 3.2. Minimal code runs on the USRP; its respon-
sibilities only cover the final stages of filtering, interpolation/decimation, and
up-/downconversion. GNU Radio handles the rest of the signal processing to

42 Artificial Intelligence in Wireless Communications

fall in line with the general principle of GNU Radio: flexible, easy to program,
and available software for anyone to build SDR waveforms. Therefore, the
responsibilities of the USRP only include those parts of the waveform that
are, to a great extent, required for all waveforms. Along with this, the USRP
also follows open source rules, so all of the code is published and available
and anyone is allowed to modify it to perform more processing in the USRP
if they so desire.

The flow graph design of the GNU Radio allows for abstraction and
visualization. Once instantiated, a signal processing block becomes an object,
or node, in the graph. From a graph theory perspective, these graphs are
simple, flat graphs with no loops that have at least one source and one
sink. Information starts from the source and flows sequentially though the
remaining blocks in the graph until it terminates at a sink. Types of sources
and sinks include vectors to input or output raw data, files to read to and
write from a disk, UDP Ethernet ports to read and write from a network card,
generalized signal source blocks for creating sinusoidal signals or noiselike
signals, and the USRP to transmit and receive data over this device. A flow
graph may include many paths and many sources and sinks so long as there
are no loops and there is a connection to each input and output port. Figure
3.3 shows a simple flow graph that reads a signal from a file, filters it, mixes
it with a sinusoidal tone, and simultaneously outputs it to a USRP and stores
it to another file.

Figure 3.3 Simple GNU Radio flow graph that mixes a filtered signal with a sinusoid,
output to a file, and transmitted through the USRP.

Overview and Basics of Software Defined Radios 43

We introduce the flow graph concept with this simple application to
provide an understanding of how flow graphs can look as well as how to
read them. We are using the Python terminology. The blocks in these figures
include the name of the GNU Radio block. Most of these are from thegr
Python module with others coming from the USRP interface module,usrp.
Any blocks from theblks2module are hierarchical blocks of other GNU Radio
blocks that are also distributed with GNU Radio. The arguments in parenthesis
are the arguments that are passed to the module in the code. The outer name
in bold represents a name given to the block.

For this particular graph, we provide in Figure 3.4 the source code that
would go along with this graph to realize Figure 3.3. The only new concept
to keep in mind in the code is that thegr.top_block()is the GNU Radio flow
graph object representation.

def main():
set up the parameters
interp = 64
taps = gr.firdes.low_pass(1.0, 1.0, 0.2, 0.1)

define the blocks
sig_in = gr.sig_source_c(usrp.dac_freq()/interp, 1000,

gr.GR_SIN_WAVE, 1, 0)
file_in = gr.file_source(gr.sizeof_gr_complex,

“input.dat”)
fir_flt = gr.fir_filter_ccf(1, taps)
mix = gr.multiply_cc()
usrp_out = usrp.sink_c(0, interp)
file_out = gr.file_sink(gr.sizeof_gr_complex,

“output.dat”)

build the flow graph
tb = gr.top_block()
tb.connect(file_in, (mix,0)) # file to 1st mixer port
tb.connect(sig_in, fir_flt)
tb.connect(fir_flt, (mix,1)) # signal to 2nd mixer port
tb.connect(mix, usrp_out)
tb.connect(mix, file_out)
tb.run() # start the flow graph

Figure 3.4 Python source code for the simple GNU Radio flow graph of Figure 3.3.

The graph reads a complex waveform from a file “input.dat” and first
filters it. The filter is defined such that the complex envelope of the signal
is between the normalized frequencies of±0.5 (the Nyquist zone) with

44 Artificial Intelligence in Wireless Communications

a sampling rate of 1. The low-pass filter is designed with respect to the
normalized frequency with a bandwidth of 0.2 and a transition width of 0.1.
The filtered signal is mixed with a1-kHz complex sinusoid of±1 V and0 V
DC offset. The mixed signal is then stored in a file “output.dat” and passed to
a USRP sink to transmit over the air. The USRP takes the parameterinterp to
set the interpolation rate required to match the 128-Msps DAC. Not shown are
some of the other commands required to set up the USRP properly to transmit
on a particular frequency.

Another property of the flow graph blocks is that developers can build
hierarchical blocks that encompass many lower-level blocks. This capability
enhances the levels of abstraction in the software. For example, the current
GNU Radio distribution includes a differential binary phase shift keying
(DBPSK) modulator as a hierarchical block of blocks that perform tasks like
symbol mapping, differential encoding, and root raised cosine (RRC) pulse
shaping.

3.4.4 Parallel Programming in GNU Radio

Another advance in GNU Radio is to take advantage of the multicore and other
parallel processing systems that have become the mainstream in processors.
The original flow graph scheduler in GNU Radio was a single-thread per flow
graph. Blocks in the flow graph were flattened into a one-dimension graph
from sources to sinks and each block was sequentially run.

GNU Radio blocks operate on chunks of data to where large blocks are
passed around in memory. This is important to reduce memory and bus access
overhead. Under this condition, it is easy to see how multiple blocks could
run simultaneously in a flow graph. While one block is processing its current
chunk of data, the previous block in the graph can be processing the next
chunk of data.

A multithreaded scheduler is now available in GNU Radio, currently
implemented as a thread-per-block model, where each block runs in its own
thread as its name might suggest. When the processing resources are available,
each thread is loaded into its own processor core. In tests, Blossom [20]
shows a near-linear improvement in the speed of processing. He also points
out in this paper the need to balance the load among the threads. There
is overhead in context-switching if running multiple threads on a processor
as well as passing data along a bus between processors. Each block must
then process enough data to overcome this overhead. Threads should also
take about the same amount of time to process their chunks of data so
that they are not waiting on other blocks in the system to finish. This is
not currently considered in the thread-per-block model because each block

Overview and Basics of Software Defined Radios 45

may have different computational requirements. Still, we seea significant
improvement in processing capabilities of GNU Radio because of this change.
It is also leading to the next concept of multithreaded scheduling to group and
schedule blocks among threads that do better load balancing.

The improvements that we are seeing from the multithreaded models of
GNU Radio indicate a positive trend for SDR. As the processors become more
parallel, as is the obvious trend from companies like Intel, IBM, and AMD,
SDR becomes more powerful. As Blossom’s numbers suggest, for each extra
core in a processor, we get an almost equal improvement in speed.

3.4.5 Flow Graph for Simulation and Experimentation

One of the benefits of a GPP-based SDR is the easy transition between testing
and operation. In this section, we describe the flow graph for the transmitter
and receiver paths of the SDR used in the experiments of Chapter 8. The
design and implementation is such that the endpoints of either chain may
connect to any source for the receiver or sink for the transmitter. As such,
we have a system where we can run the transmitter into a channel model and
then directly into the receiver chain. With this setup, we can test the properties
of the system in a known environment. It is then trivial to replace the channel
with a USRP sink or source so the transmitter sends the same signals over the
air to be received by another USRP running the receiver flow graph.

The simulation design is shown in the following figures. Figure 3.5
gives the big picture of the simulation and is made up of many GNU
Radio blocks as well as some hierarchical blocks, represented as shaded
blocks. The simulation generates a signal usingtxpath. The bandwidth of the
overall simulation is set in the next two resampling blocks. The process of
interpolating adds samples to a digital signal, which increases the sampling
rate by the interpolation factor. This process has the effect of increasing
the bandwidth of the overall system. Thetx_resampleblock performs both
interpolation and decimation to allow fractional changes in the symbol rate
and first sets the bandwidth of the signal based on the waveform parameter,
and interp sets the overall bandwidth of the system, providing a “spectrum”
for the simulated transceiver and interferers to share and interact within. The
tx_mixblock upconverts the transmitted signal to some frequency set by the
numerically controlled oscillator (NCO)tx_ncowithin the system bandwidth.
The upconverted signal goes through a channel model described in Figure
3.6 with added interference signals at some bandwidth and center frequency
of their own. The signal is then passed to the receiver chain. The receiver
first downconverts the signal from the center frequency back to baseband,
goes through a channel filter that resamples in reverse oftx_resampleand

46 Artificial Intelligence in Wireless Communications

Figure 3.5 Radio simulation model. White boxes indicate low-level blocks while
shaded blocks indicate hierarchical blocks.

interp. After filtering and resampling, the resulting signal is the transmitted
signal plus noise plus any interference that exists within the signal bandwidth.
The received signal then goes intorxpath where it is demodulated. Out of
the channel filter,noise_pwrcalculates the noise power of the channel. The
block rss calculates the received signal strength. Both of these calculations
are described below, and together, they are used to calculate the SNR. Finally,
the system calculates the BER by taking in the transmitted bits and compares
them to the bits received after passing through the channel and demodulator.
The first one thousand bits of the input are dropped to ignore any transients in
the system.

The channel model of Figure 3.6 adds Gaussian white noise at a given
noise voltage calculated from the simulation’s noise floor, and a frequency
offset used to represent frequency differences between the transmitter and
receiver. The path loss is simply modeled as a multiplier with a constant value
calculated externally that represents the distance, given a particular path loss
model. The channel model is easily extended to include multipath by using
a FIR filter with a given set of taps. All of the values that the channel model
uses are passed externally to allow representation of different mathematical
models.

Figure 3.7 shows the flow graph used to create interference signals. A
signal is modulated with any digital modulator from the GNU Radio blocks,
given a specific amplitude for a comparative power, interpolated to give it a

Overview and Basics of Software Defined Radios 47

Figure 3.6 Flow graph of simulated channel model with pathloss power loss, additive
noise, and frequency offset.

Figure 3.7 Flow graph of simulated interferer.

specific bandwidth, and mixed with a normalized frequency offset to place it
properly in the simulation’s spectrum.

The final hierarchical blocks are the transmit and receive paths. They
are not shown in figures here due to their simplicity. All they do is wrap a
modulator or demodulator into a block that has accessor functions that read
and write data from a higher layer while the modulators, hierarchical blocks
themselves, are part of the standard distribution of GNU Radio.

3.4.6 Available Knobs and Meters

The knobs of Table 3.1 are available to the simulation.
The meters are calculated as follows. The system estimates the noise

power during dead-time on the channel. If the received signal strength is less
than some specified threshold, the system assumes there are no transmitting
radios and can therefore calculate the noise power in the channel. The noise
power is the variance of the samples calculated using Knuth’s online (that is, it
can be calculated on streaming data) algorithm [21]. The listing (in Python) of
the algorithm is provided here. Of course, the variance calculation collapses

48 Artificial Intelligence in Wireless Communications

Table 3.1
Knobs and Meters Available to the GNU Radio Simulation

Knob Name Knob Settings

Modulation (D)BPSK, (D)QPSK, (D)8PSK, GMSK
Transmit power 0 – 20 (dBm)
Symbol rate 0.125, 0.25, 0.5, 1 (normalized sps)
Shaping filter roll-off 0.1 – 1.0, steps of 0.01
Normalized frequency -1.0 – 1.0, steps of 0.01
Frame size 100 – 1500, steps of 1

Meters
Received signal strength (dBm)
Noise power (dBm)
Bit error rate
Packet error rate
Path loss
Signal-to-noise ratio

to the average magnitude squared calculation when the mean of the signal is
0.

def variance(data):
count = 0
mean = 0
sum = 0
for x in data:

count += 1
delta = x - mean
mean = mean + delta/count
sum += delta * (x - mean)

variance = sum/(count - 1)

In the GNU Radio block for calculating the variance, the number of
items available for processing is a variable passed to the function. The loop is
calculated over all of the available items, then the variance is calculated before
the block exits.

The received signal strength is first calculated by taking the average
magnitude squared of the samples when the transmitter is known to be
running. However, this estimation is biased by the noise power, especially at
low SNRs, so the final signal strength estimation is shown in (3.1), which, by
subtracting the noise power, provides a good estimation of the signal strength.

Overview and Basics of Software Defined Radios 49

P = 10 log10

(

1

K

K−1
∑

i=0

|xi|2 − n

)

dBm (3.1)

Here thexis are the time samples in millivolts andn is the estimated
noise power in milliwatts. The GNU Radio block that implements the average
magnitude squared simply calculates the norm of each complex signal and
uses a single-pole infinite impulse response (IIR) filter to average the results.

Path loss and the energy per bit to noise ratio (Eb/N0) are easy to
estimate since the radios know the transmitted power and received power, the
difference is therefore the path loss, and the radio has already estimated both
the received power and noise power. Both of these values are then converted
into the energy per bit (Eb) and noise density (N0) to more accurately reflect
the modulation behavior. The simulation calculatesEb from the signal power
by dividing by the bit rate,Rb = kRs where k is the number of bits per
symbol andRs is the symbol rate. The calculation of the noise energy comes
from dividing the received power by the receiver bandwidth. In this case,
the simulation is all in the digital domain, so the noise power reflects the
amount of power in the symbol sampling interval, which is represented by the
number of samples per symbol. The noise energy then comes from calculating
N0 = N/sps, the noise power divided by the number of samples per symbol.

In our simulation, the BER calculation is a more complicated meter.
Figure 3.5 shows a BER calculation block (gr_ber_calc) with an input
from the transmit path and one from the receive path. The BER is not
simply a comparison of the transmitted and received bits as a one-to-one
comparison because of the delay introduced by the blocks in the flow graph.
The received bits are therefore delayed some amount from the transmitted
bits. Furthermore, we observed that the delay is different for different types
of modulations, changes with the symbol rate, and, for some types of
modulations, the delay is not consistent between runs (GMSK, for instance,
would have a delay of 7 or 8 samples during any given run). Consequently, the
BER calculation block calculates and compensates for the delay. To do this, it
waits to see a particular start code from both the transmitter and receiver and
calculates the delay between corresponding samples. To avoid the problem of
losing the start code in the noise, the start code packet is always transmitted
with a much higher SNR (near infinite in the simulation by setting the noise
voltage to 0).

The BER estimation works well in the simulation, though the over-the-
air procedure has not been developed. For performing the analysis over the
air, more synchronization is required between the transmitter and receiver
and a procedure is required to know the actual transmitted bits for proper

50 Artificial Intelligence in Wireless Communications

comparison, which is usually done using a pseudorandom sequence generator
with known seeds. The transmitted bits could be known at the beginning, but
synchronization is required if a packet is lost. The bits could be calculated
using a seed passed in the packet, which could be corrupted itself, or a
secondary transmit path, such as over Ethernet, could be used with guaranteed
fidelity, although this still requires synchronization. When a packet is lost, it
is due to either corruption in the access code or the header, and the BER
calculation needs to account for the lost bits without assuming all the bits in
the packet were lost.

There are many ways to solve the problem of over-the-air BER testing,
and many systems implement BER tests, but the problem has not been
solved in GNU Radio. Because we can get the performance analysis in the
simulation, though, we do not solve this problem here and rely on packet
errors as a performance measure during our over-the-air experiments. The
packet error rate is an easy calculation because the packet numbers are
included with the packets. The PER is calculated by knowing the number
of packets transmitted from the packet number (or by being told) as well as
the number of good packets received, which is determined by a 32-bit cyclic
redundancy check (CRC).

Finally, the interference power is measured using a simple energy
detector. The receiver opens up its bandwidth to sample the entire band of
interest, and, knowing the noise power from above, finds the frequencies
where the signals exceed a certain threshold (e.g., 5 or 10 dB) above the noise
floor and where the signals fall below the threshold. These frequencies are
stored along with the average power between them to build an interference
“map” of the channel. The cognitive radio can then use the map to understand
the interference potential in a given bandwidth. Chapter 2 discussed the use
of these meters in the cognitive engine and presented the XML format used to
represent the information.

3.5 Conclusions

This chapter provides both a basic review of software radio technology and
introduces the SDR system used later in the experiments. The GNU Radio
platform solves a number of problems in working with SDR. First, it provides
an affordable platform (free software plus inexpensive hardware) that is open
and therefore transparent to analysis as well as upgrades.

One of the authors, Rondeau, wrote large portions of the digital
communications capabilities in the current GNU Radio distribution. These
were developed because of the need to perform the experiments for this work

Overview and Basics of Software Defined Radios 51

but which also led to contributions to the SDR community. He is still actively
involved in GNU Radio development.

From a research and scientific point of view, the publicly available
revision logs of the software and the open software platform enable the use of
the scientific method for SDR and CR experiments. Anyone can use the same
software platform to test or compare results.

With the available GNU Radio platform and a description of the knobs
and meters, the next chapter introduces the concept of waveform optimization
that uses the information from the meters to make decisions on how to tune
the knobs.

References

[1] J. H. Reed,Software Radio: A Modern Approach to Radio Engineering, Upper Saddle
River, NJ: Prentice Hall, 2002.

[2] W. Tuttlebee,Software Defined Radio: Enabling Technologies, New York: John Wiley &
Sons, 2002.

[3] B. Le, T. W. Rondeau, J. H. Reed, and C. W. Bostian, “Analog-to-Digital Converters: A
Review of the Past, Present, and Future,”IEEE Sig. Proc. Mag., Vol. 22, No. 6, pp. 69 –
77, Nov. 2005.

[4] M. Dillinger and R. Becher, “Decentralized Software Distribution for SDR Terminals,”
IEEE Trans. Wireless Communications, Vol. 9, pp. 20 – 25, 2002.

[5] J. Kumagai, “Radio Revolutionaries,”IEEE Spectrum, Vol. 44, No. 1, pp. 28 – 32, Jan.
2007.

[6] f. harris,Multirate Signal Processing for Communication Systems. Upper Saddle River,
NJ: Prentice Hall, 2004.

[7] General Purpose Graphical Processing Units (GPGPU), [URL: http://www.gpgpu.org/],
2009.

[8] Open Computing Language (OpenCL), [URL: http://www.khronos.org/opencl/), 2009.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Landscape
of Parallel Computing Research: A View from Berkeley,” Technical Report UCB/EECS-
2006-183, Berkeley, Dec. 2006.

[10] IBM CELL Research, [URL: http://www.research.ibm.com/cell/], 2007.

[11] Free Software Foundation. GNU Radio, [URL: http://gnuradio.org/trac], 2009.

[12] T. W. Rondeau, M. Ettus, and R. W. McGwier, “Open Source Transparency for OFDM
Experimentation,”Software Defined Radio Forum Technical Conference, 2008.

[13] J. P. Costas, “Synchronous communications,”Proceedings of the IRE, Vol. 44, pp. 1713
– 1718, 1956.

52 Artificial Intelligence in Wireless Communications

[14] J. Feigin, “Practical Costas Loop Design: Designing a Simple and Inexpensive BPSK
Costas Loop Carrier Recovery Circuit,”RF Signal Processing, pp. 20 – 36, 2002.

[15] K. Mueller and M. Müller, “Timing Recovery in Digital Synchronous Data Receivers,”
IEEE Trans. Communications, Vol. 24, No. 5, pp. 516 – 531, 1976.

[16] G. R. Danesfahani and T.G. Jeans, “Optimisation of Modified Mueller and Muller
Algorithm,” Electronics Letters, Vol. 31, No. 13, pp. 1032 – 1033, 1995.

[17] Ettus Research, LLC, Universal Software Radio Peripheral, [URL: http://ettus.com],
2009.

[18] P. MacKenzie,SOftware and Reconfigurability for Software Radio Systems, Ph.D. diss.,
Trinity College Dublin, Ireland, 2004.

[19] M. Robert, S. Sayed, C. Aguayo, R. Menon, K. Channak, C. V. Valk, C. Neely, T. Tsou,
J. Mandeville, and J. H. Reed, “OSSIE: Open Source SCA for Researchers,”Software
Defined Radio Forum Technical Conference, 2004.

[20] E. Blossom, “gcell - An SPE Scheduler and Asynchronous RPC Mechanism for the Cell
Broadband Engine,”Software Defined Radio Forum Technical Conference, 2008.

[21] D. E. Knuth,The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
Vol. 3, Boston: Addison-Wesley, 1998.

4
Optimization of Radio Resources

As shown in the previous chapter, a cognitive radio uses AI to adapt and
optimize the performance of a radio platform, specifically an SDR. In this
chapter, we explain the concepts of radio resource optimization with a
particular interest in understanding the physical layer in terms of a set of
objective functions. This discussion establishes a way of thinking about
how to optimize certain objectives. Although this chapter includes only a
subset of the total possible objectives along with some basic approximations,
the development should provide the fundamentals that will enable further
extension and enhancement as more information and capabilities arise.

4.1 Objective Space

As in any problem, we first have to define the vocabulary. In optimization
problems, this vocabulary is the objective space, which is the set of all
possible solutions to a problem, often over a multidimensional set of objective
functions. The cognitive radio objective space describes the radio resources
that determine radio behavior.

A radio consumes resources while communicating, thereby depriving
other radios access to those same resources. Spectrum is the key commu-
nications resource. Economically speaking, spectrum is a reusable resource
because after one radio is doneconsumingthe spectrum, it is still available
for other radios to use. In fact, radios can share spectrum in space, time,
transmit power, and other methods that allow signals to coexist on the same
frequencies. Spectrum sharing and reuse is accomplished through numerous
techniques such as spatial distribution as in cellular infrastructures or beam-
forming antennas [1]. Standard practices like time division multiple access
(TDMA) and frequency division multiple access (FDMA) allow sharing

53

54 Artificial Intelligence in Wireless Communications

and reuse in time and frequency domains, respectively. DSA technology is
developing to provide intelligent schemes that use spectrum during times
when its primary occupants are silent [2]. Concepts such as an ultra-
wideband underlay and interference temperature are all methods that manage
transmit power to allow coexistence with other radio systems [3, 4]. Finally,
transmitting orthogonal signals like direct sequence spread spectrum (DSSS)
reduce interference between signals occupying same spectrum at the same
time. The task is then to properly use the resources to provide appropriate
sharing among all radios while maintaining the proper level of QoS.

Each user has a different and subjective perspective on quality of service
based on the radio’s performance. A user may require high data rates, low
latency, or long battery life depending on the situation for which he or she is
using the radio service. Video conferencing requires high data rates and low
latency, while voice calls require low latency but have significantly relaxed
requirements for average throughput. On the other hand, checking stock prices
or even email has low requirements for speed. Long journeys without access
to a power source would increase a preference for low power consumption
and longer up-time.

Each node in a network can look at resource allocation as an optimiza-
tion problem with two potential goals. First, it can attempt to optimize its
own ability to communicate by maximizing its use of resources; this would be
called agreedyapproach. The other way is to look at resource utilization from
a needs perspective; that is, resources are sought only to support the needs
of the service. Using more resources is wasteful while using less reduces the
quality of service. Resource allocation on either side of what is required is
inefficient. Of course, there is a third way of looking at resource allocation,
and this is to look at it from a global perspective where the utilization of
resources by all nodes is taken into account [5]. While there is significant
benefit to this approach, the argument we present here comes down to the
personal perspectives on the quality of service offered, which is therefore to
see how well the radios use the resources to provide the QoS desired by the
user. By maintaining the balance between the use of resources to provide the
QoS as well as avoiding overuse of resources, a cognitive radio provides users
with proper service while minimizing resource consumption and so allowing
others their share of the resources.

Another way to look at this is to consider the objective analysis of
resources. If a service requires high data rates, low bit error rates, and low
latency yet keeps an eye on the power consumed by the radio while using a
particular waveform, the radio has the potential to balance these requirements
and design a waveform that properly meets all of the objectives. High transmit
power and high-order modulation and coding schemes may provide high

Optimization of Radio Resources 55

throughput, but the power to transmit the signal and the power to receive the
signal make the waveform inefficient. The waveform has not met the power
consumption objective. On the other hand, another modulation, coding, and
frequency could provide a slightly lower data rate but with much better power
performance. Because of the uneven trade-off, the second waveform wins out
as a better use of resources while still achieving the required QoS.

Unfortunately, simple BER or SINR calculations do not tell the entire
picture of the waveform and the QoS. Bit error rate in a voice system does
not necessarily relate to the quality of service if a poor vocoder (voice
coding/decoding) is used or the propagation path has high burst errors. Many
factors impact the resulting QoS of wireless communications systems, and so
joint optimization and analysis are required.

From this discussion, it follows that the optimization of radio resource
allocation is a multiobjective problem: the analysis of multiple objectives
on the decision-making process (also know as a many-objective problem).
The next section discusses the concept of multiobjective optimization and the
objectives used in the optimization of a radio’s PHY layer.

4.2 Multiobjective Optimization: Objective Functions

Multiobjective optimization has a long history in mathematics, operations
research, and economics. A relatively old book by Hwang and Syeed [6]
provides a comprehensive mathematical introduction to the study of multiob-
jective optimization. We introduced this concept for wireless communications
in [7] and reproduce and extend that discussion here. Zitzler [8] gives an
overview of multiobjective problems and presents the basic formula for
defining a multiobjective decision making (MODM) problem as shown in
(4.1).

min/max ȳ = f(x̄) = [f1(x̄), ..., fn(x̄)]

subject to:̄x = (x1, x2, ..., xm) ∈ X

ȳ = (y1, y2, ..., yn) ∈ Y

(4.1)

This equation definesn dimensions in the search space where each
objective functionfn(x̄) evaluates thenth objective. The set̄x defines the
set of input parameters that the algorithm has control over, andȳ is the set
of objectives computed by the objective functions. Both of these may be
constrained to some space,X andY , depending on real-world considerations
like available radio resources (ȳ) or radio capabilities (̄x). The solutions to
multiobjective problems lie on thePareto front, which is the set of input

56 Artificial Intelligence in Wireless Communications

parameters,̄x, that defines the nondominated solutions,ȳ, in any dimension.
A key factor in multiobjective problems is that many, if not all, objectives
compete for dominance. For example, it is impossible to both minimize BER
and minimize transmit power. Multiobjective optimizations often consist of
such trade-offs in goals when finding the best solutions available [8, 9]. In
the above example, the cognitive radio has a trade-off space where it wants to
maximize the throughput but must minimize the power consumption. Each of
the extremes lies on the Pareto front as does a set of solutions that offers
compromises between the extremes. These are more likely the solutions
a cognitive radio is interested in as it maximizes the QoS and minimizes
resource consumption.

The following sections describe the different objectives currently
identified and defined. For each objective, we list the required knobs, meters,
and other objective functions required to analyze the function. When an
objective depends on another objective, the knobs of meters used by the
dependent objective are not listed. As an example, all BER calculations
depend on the signal-to-noise ratio where the signal power is a function of the
transmitter power (a knob) and path loss (a meter). The system noise floor is a
meter and the noise power in the channel depends on the channel bandwidth,
which is another objective function. Since the cognitive engine can change
the bandwidth by adjusting the filters and the symbol rate, neither of these are
listed as direct dependencies of the BER objective because they are already
linked due to the bandwidth as an objective dependency.

Except when otherwise noted, we took most of these functions straight
out of a standard communications text such as Proakis or Couch [10, 11]. As
we pursue this discussion, we will be talking about the specific capabilities
and limitations of the VT-CWT cognitive engine we have built and not general
limitations of cognitive engines.

4.2.1 Bit Error Rate (BER)

Dependencies

Knobs: transmitter power, modulation type

Meters: noise power, channel type, path loss

Objectives: bandwidth

Definitions
γ = energy per bit to noise energy ration (Eb/N0)
PT = transmit power (effective isotropic radiated power (EIRP)) (dBm)
L = estimated path loss (dB)

Optimization of Radio Resources 57

B = bandwidth calculated as in Section 4.2.2 (Hz)
M = number of symbols in the modulation’s alphabet
Rs = symbol rate (sps)
N0 = noise floor (J)

Bit error rate (BER) is an important objective for all digital communica-
tions’ needs. It provides a baseline for the amount of information transferred,
and so understanding it in light of the design of a waveform under certain
channel conditions is therefore necessary. Unfortunately, BER calculations
depend heavily on the type of channel and type of modulation, and so the
cognitive engine must know the formula for each modulation type the radio
is capable of using and the channel types it is likely to see during operation.
In this section, we present a number of bit error rate formulas that have been
programmed into the cognitive engine.

To predict the BER of a waveform under a given set of conditions, the
cognitive engine requires knowledge of certain environmental conditions. All
BER calculations depend fundamentally on the signal-to-noise ratio (SNR) at
the receiver. When calculating the BER, however, the cognitive engine does
so knowing the transmitter power as a knob that it can set. The cognitive
engine therefore needs an estimate of the noise power at the receiver and
received power due to path loss. Furthermore, since the noise power changes
with the channel bandwidth, the cognitive radio must estimate the noise floor
for use in the calculation of the noise power given the bandwidth. With
this knowledge, the cognitive engine, knowing the transmitted power, the
path loss, and the noise floor, can estimate the received power and noise
power for the BER calculation. The cognitive engine will also require an
understanding of the type of channel. For the purposes of this work, we
focus on additive white Gaussian noise (AWGN) channels, though we provide
formulas to calculate BER in Rayleigh, Ricean, and Nakagami-m fading
channels as well in Appendix B. This decision to use AWGN channels was
made largely because we have do not have a sensor available in the cognitive
engine that can determine the channel type, though there are methods of
doing this as well as using channel impulse responses for the estimation
of BER [12]. AWGN channels also provide more mathematically simple
channels to perform simulations and calculations, and so it provides us with
an understanding of the optimization behavior in a well-known channel.

Another missing part of these BER calculations is the effect of an
interferer. It is not a simple matter of using SINR instead of SNR in the
BER calculations since the BER equations depend on the noise power having
a Gaussian distribution while interference power does not. The inclusion of
interference power is complicated and depends on the types of signals in use

58 Artificial Intelligence in Wireless Communications

(except in such cases as CDMA [13]). Currently, the cognitive engine does
not have the capabilities to make this kind of distinction in its optimization
process; however, significant work has gone into developing signal and
modulation classification schemes since [14] up to [15], and the addition of
this information could lead to a better understanding of the BER due to SINR.

As a quick side note, while the normal representations of BER
formulas tend to use the Q-function, all of the equations listed here use the
complementary error function (erfc). We use this because of a few simple
approximations oferfc from [16, 17]. To review:

Q(x) =
1

2
erfc

(

x√
2

)

=
1√
2π

∫ ∞

x
exp

(

−t2/2
)

dt (4.2)

Forx ≥ 3:

erfc(x) =
exp

(

−x2
)

x
√

π

(

1 − 1

2x2
+

(1)(3)

22x4
− (1)(3)(5)

23x6
+ ...

)

(4.3)

Forx < 3:

erfc(x) = 1 − 2√
π

∞
∑

n=0

(−1)nx2n+1

n!(2n + 1)
(4.4)

Each of these equations is easily coded into a simple algorithm to iterate
over a finite number of terms in the series. A very close approximation can be
achieved with 10 terms for (4.3) and for 40 terms in (4.4). Figure 4.1 shows
the exact plot of theerfc function compared to the estimate for0 ≤ x ≤ 5
along with the percent error. There is a small spike in the estimation atx = 3
of 0.01% due to a discontinuity at the point where one estimation ends and the
other picks up. This can be adjusted by changing where the formulas hand off
and by increasing the number of terms in the series for (4.4). Decker addresses
the problem of using his approximation for values smaller than three in his
paper [16]. So although (4.4) is capable of representing the complementary
error function for increasingly large values ofx, the number of terms in the
series must grow as well. Equation (4.3) represents theerfc for large values
of x in a simpler series formula for a more efficient calculation.

We bring up this discussion to point out considerations that have to go
into the definition of the objective functions. Accuracy in the modeling is only
one consideration while issues of computation time can impact the overall
effectiveness of the objective in the optimization process.

The signal power is calculated from the waveform’s transmit power
and the estimated path loss in the channel. The noise power in the channel

Optimization of Radio Resources 59

0 1 2 3 4 5
x

�120�100�80
�60�40�200

e
rf
c
(x

)

estimate
actual

(a) Actual versus estimated

0 1 2 3 4 5
x

0.000

0.002

0.004

0.006

0.008

0.010

%
 E

rr
o
r

(b) Percent error

Figure 4.1 Comparison of the exact erfc function to the estimation.

is calculated from the bandwidth of the waveform and the noise floor. The
BER formulas are presented usingEb/N0, or the ratio of the energy per bit to
the noise power spectral density, as the standard representation of the signal
quality. If S is the signal power, then the energy per symbol isS/Rs, since
the symbol rate is the inverse of the symbol time. The energy per bit is the
energy per symbol divided by the number of bits per symbol,log2(M). The
waveform sets the transmitted signal power, so the received signal strength is
approximated by (4.5), wherePT is the transmitted power andL is the path
loss.

S = PT − L (dBm) (4.5)

The noise power spectral density is the noise per Hz, calculated in (4.6),
wherekB is Boltzmann’s constant (1.38 × 10−23 J/K) andT is the system
noise temperature (K). The noise power in the channel is the noise power
spectral density multiplied by the channel bandwidth,B.

N0 = kBT (J)

N = 10 log10(BN0) + 30 (dBm)
(4.6)

The Eb/N0 is a measurement independent of the signal bandwidth as
given in (4.7), whereS − N is the SNR.

Eb/N0 = γ = 10 log10

(

B

Rs log2(M)

)

+ (S − N) (dB) (4.7)

60 Artificial Intelligence in Wireless Communications

Table 4.1
GMSK BER Correction Factor for (4.8)

BT Correction
factor (α)

0.1 0.25
0. 2 0.60
0.3 0.77
0.4 0.90
0.5 0.95
0.6 0.97
0.7 0.98
0.8 0.99

Each of the equations below provides the formula for BER calculation
of a particular modulation given an AWGN channel.

GMSK (noncoherent demodulator):

Pe =
1

2
exp (−αγ) (4.8)

Whereα is an adjustment factor to the energy based on the bandwidth-
time product (BT) factor of the Gaussian filter [18]. Table 4.1 provides
estimates ofα over some values of BT based on the work of Murota and
Hirade [19].

BPSK:

Pe =
1

2
erfc (

√
γ) (4.9)

M -PSK (M > 2):

Pe =
1

log2 (M)
erfc

(

sin
(π

M

)

√

log2 M
√

γ
)

(4.10)

DBPSK:

Pe =
1

2
exp (−γ) (4.11)

Optimization of Radio Resources 61

DQPSK:

Pe = QM (a, b) − 1

2
I0 (ab) exp

(

−a2 + b2

2

)

a =

√

√

√

√2γ

(

1 −
√

1

2

)

b =

√

√

√

√2γ

(

1 +

√

1

2

)

(4.12)

WhereQM (a, b) is the Marcum Q-function andI0 (ab) is the modified
Bessel function of the first kind and order zero [10].

Unfortunately, there is no formula for the performance of D8PSK. In the
objective analysis of this modulation, we assume it will perform like 8PSK
with a 2-dB loss in the SNR.

4.2.2 Bandwidth (Hz)

Dependencies

Knobs: modulation type, symbol rate, pulse shape filter

Meters: none

Objectives: none

Definitions
k = number of bits per symbol
Rs = symbol rate (sps)
r = property of the pulse shape filter (roll-off factor in RRC or

bandwidth-time product in a Gaussian filter)

Bandwidth is an objective that is also used in many other objective
calculations. It appears in the bit error rate, interference power, spectral
efficiency, and throughput. It is a direct measurement of how much spectrum
is occupied by the radios. This objective offers a good indication of the
spectral resources occupied and therefore measures the trade-offs we have
been discussing.

In calculating the bandwidth, instead of using the raised cosine (RC)
Nyquist pulse shaping, an RRC filter in both the transmitter and receiver
provides a more practical implementation. Over the air, the pulse is shaped
by a single RRC filter while the second RRC filter in the receiver shapes

62 Artificial Intelligence in Wireless Communications

the received signal as though it was passed through a single raised cosine
filter to reduce the intersymbol interference (ISI). Many narrowband digital
modulations use RC pulses, including theM -PSK waveforms used in this
work. For these, the approximate null-to-null bandwidth is calculated in
(4.13). In this equation, the roll-off factor of the RRC filter is defined asr.

B =
Rs

2
K (1 + r) (Hz)

whereK is the number of frequency dimensions

K = 1 for M -PSK andM -QAM signals

K = M for M -FSK

(4.13)

With Gaussian-shaped filters, specifically in GMSK,r represents the
BT product defined for the 3-dB cutoff frequency of the Gaussian filter.
Admittedly, taking this as a formula for the bandwidth is not a fair
comparison to the null-to-null formula used for the RRC filters. Unfortunately,
though, there is no good closed-form solution to make the same bandwidth
comparison. Since the cognitive engine is designed for flexibility in the
objective functions, it is trivial to fix this later with a new, more accurate
objective function.

B = rRs (Hz) (4.14)

4.2.3 Spectral Efficiency (bits/Hz)

Dependencies

Knobs: modulation type, symbol rate

Meters: none

Objectives: bandwidth

Definitions
k = number of bits per symbol
Rs = symbol rate (sps)
B = bandwidth calculated as in Section 4.2.2 (Hz)

Spectral efficiency represents the amount of information transferred in a
given channel and is measured in bits per second per Hertz (bps/Hz). Although
this concept is directly related to both bandwidth and throughput, we develop
it as a separate objective in order to represent the quality of service needs more

Optimization of Radio Resources 63

thoroughly. When choosing to measure spectral efficiency, it offers another
dimension to determine how suited the waveform is to a particular need when
judged by both bandwidth occupancy and data rates. Minimizing bandwidth
would push the optimization to use a small symbol rate and a conservative
bandwidth modulation like GMSK, while maximizing throughput would push
for high symbol rates and high-order modulations. Spectral efficiency helps
shape the decision space by biasing the solution towards a symbol rate and
modulation type that provides high bandwidth efficiency and produces better
data rates for given spectrum availability.

η =
Rsk

B
(bps/Hz) (4.15)

4.2.4 Interference

Dependencies

Knobs: frequency

Meters: interference map

Objectives: bandwidth

Definitions
fc = center frequency of waveform (Hz)
I(f) = interference spectral power density at frequencyf from

interference map (mW/Hz)
B = bandwidth calculated as in Section 4.2.2 (Hz)

The interference power is calculated over a given bandwidth in (4.16).
From a practical standpoint, the interference spectral power density,I(f), will
probably be measured over a set bandwidth by the receiver, anyway. So (4.16)
would be reduced to a summation of the interference power over an observed
bandwidth, such as during a spectrum sweep period of the cognitive radio.

Ipwr = 10 log10

(

1

B

∫ fc+B/2

fc−B/2
I(f)df

)

(dBm) (4.16)

The calculation of interference power is different than SINR from an
objective perspective: SINR helps the cognitive engine decide if it is good for
the waveform to transmit on this frequency. The interference objective looks
at the use of the spectrum from the external perspective to see how much
overlap exists between competing signals for the same spectrum. Focusing on

64 Artificial Intelligence in Wireless Communications

this objective biases the cognitive engine away from using a waveform that
conflicts with another user for the sake of the resources rather than for the
capabilities of the waveform.

Looking at interference as a secondary user, instead of using this as
an objective function, the cognitive engine could use this concept as a
constraint on the objective space. A map of known primary user signals [20]
would represent frequencies that are absolutely off limits for transmission.
Therefore, the cognitive engine would not simply try to avoid interference-
prone spectrum, but it would be forced not to use the spectrum.

4.2.5 Signal to Interference Plus Noise Ratio (SINR)

Dependencies

Knobs: transmit power

Meters: noise power, path loss

Objectives: interference, bandwidth

Definitions
PT = EIRP (dBm)
L = estimated path loss (dB)
N = noise power as calculated in (4.6) (dBm)
I = interference power as calculated in Section 4.2.4 (dBm)

The signal to interference plus noise ratio (SINR) can inform the
cognitive radio about how the presence of interferers can affect the signal
reception. Equation (4.6) provides the noise power and (4.16) provides the
interference power in the bandwidth of the signal. The received power is then
calculated using the estimated path loss from the meters and the transmitter
power of the new waveform as in (4.5). The SINR calculation is shown in
(4.17) where the noise power and interference power are summed in the linear
domain (mW).

i = 10
I

10 (mW)

n = 10
N

10 (mW)

SINR = (PT − L) − 10 log10(i + n) (dBm)

(4.17)

Optimization of Radio Resources 65

4.2.6 Throughput

Dependencies

Knobs: modulation type, symbol rate, number of bits per packet

Meters: none

Objectives: bit error rate

Definitions
l = number of bits per packet (bits)
Pe = bit error rate as defined in Section 4.2.1
Rb = bit rate (bps)
Rs = symbol rate (sps)
k = number of bits per symbol

Throughput is a measure of the amount of good information received.
This definition distinguishes throughput from data rate in that data rate is
simply a measure of the rate at which data arrives with no consideration for
transmission errors. There are many papers available to describe throughput
estimations for networks that include retransmission of bad packets. We
will circumvent the complexities of that kind of analysis by assuming no
retransmissions and furthermore no coding, so a single bit error leads to a
packet error. These assumptions are made because the SDR platform used in
our experiments does not yet support these capabilities. Although this models
the behavior of the given SDR system, the error rate will be much larger than
it would be in a system with proper channel coding and protocols. Finally,
we assume uniform distribution of bit errors. Once again, it is clear that this
formulation does not model all environments and networks properly and could
benefit from adding more comprehensive and advanced objective functions.

The probability of a packet error, or the packet error rate, is shown in
(4.18).

Pp = 1 − (1 − Pe)
l (4.18)

For each correctly received packet,l bits are received over a time period
of l/Rb whereRb = kRs. On average, then, for a packet error rate ofPp, the
bit rate is modified by the probability of receiving a good packet,1 − Pp.

Rth = Rb(1 − Pp) = Rb(1 − Pe)
l (bps) (4.19)

This objective directly relies on the BER, so using these two objectives
together doubly weights minimizing the bit error rate. While this might be

66 Artificial Intelligence in Wireless Communications

a desirable result for some situations, our initial tests on the performance
show that the optimization pressure exerted by this objective increases the
use of higher-order modulations. This effect helps trade off the solution space
between low BER modulations and high data rate modulations. We prefer
to keep the objectives as separate as possible in order to more easily adjust
selection pressure depending on QoS requirements. In the implementation, we
currently use a simplified version of the throughput calculation that only relies
on the raw data rate. This objective can be paired with the BER objective in
different ratios to provide a proper balance. Equation (4.20) shows the simple
throughput objective.

Rth = kRs = Rb (bps) (4.20)

4.2.7 Power

Dependencies

Knobs: Transmit power

Meters: none

Objectives: none

Definitions
PT = transmit power (dBm)

There are two ways to look at power as a resource. The first way is
to think about power in terms of how the radio transmitter uses the external
power in the spectrum. In this manner of speaking, power is a shared resource
by all radio nodes, so radios should strive to reduce their transmission
power. This objective balances efforts to reduce BER or maximize SINR.
The transmitted power used here refers to the power of the signal sent to
the antenna. In all of the calculations here, though, we have assumed EIRP
such as when calculating the received power for the BER equations. In these
calculations, we assume a 0-dB gain antenna, so the two are the same. The
assumption is based on the lack of the antenna as a knob or even a parameter
in the current analysis. In a more developed system that either has a static
antenna gain or a smart antenna capable of doing beamforming, the antenna
gain would be used here to add to the transmit power as well as in the BER
equations to calculate the EIRP.

Optimization of Radio Resources 67

4.2.8 Computational Complexity

Dependencies

Knobs: modulation type, symbol rate

Meters: none

Objectives: none

Definitions
k = number of bits per symbol
Rs = symbol rate (sps)

The second way to analyze power is to measure it in terms of power
consumption by a radio. Each waveform consumes a certain amount of power
that depends on the processes required to transmit and receive information
correctly. For example, noncoherent reception requires less processing power
than a coherent receiver, which performs the frequency and phase correction,
and faster symbol rates require faster processing speed, and therefore more
power. The total power consumed includes all aspects of the transmitter and
receiver of a waveform, including the transmitter power. However, the last
objective in Section 4.2.7 takes care of that in its own way so this second
objective does not need to account for it.

As we deal with SDR technology, power consumption maps almost
directly to the computational complexity of an algorithm. The mapping
between these is not straightforward, especially given the low-power states
and techniques available in most processors and hardware. Furthermore,
different processors and implementations of the same waveform may con-
sume different amounts of power. Unfortunately, a generalized solution or
straightforward mathematical equation to understand or model the power
consumption does not exist.

To solve this problem, we are forced to analyze the power consumption
in terms of strict computational complexity of the known SDR modes. That
is, we break each piece of a waveform down to its components, figure out
the computational resources required to run these components, and then put
together a lookup table for a given waveform’s power requirements. Luckily,
the task is simpler than trying to measure all possible waveforms since the
great majority of the differences exist within the modulator and demodulator.
These discrete values are easily calculated and used in a database for use
by the optimizer. The computational analysis for the GNU Radio modulators
used here is presented in Appendix C.

68 Artificial Intelligence in Wireless Communications

The other aspect of computational power is mainly due to the sampling
rate required. In this case, the symbol rate directly defines the sampling rate
and therefore the computational power required for a waveform.

All other aspects of the waveform involved in this work do not lead to
an increase in computational power, though other concepts such as channel
coding, source coding, interleaving, or spreading will certainly affect this
objective.

4.3 Multiobjective Optimization: A Different
Perspective

The previous sections described the objective functions we focus on in
this work. When reviewing these, there is overlap as well as interactions
among certain objectives. When any one objective is optimized, it affects the
performance of some other objectives, either positively or negatively. We find
it constructive to graphically represent these interactions to understand the
complexity of the multiobjective environment. In Figure 4.2, we list each
objective as a node and two types of edges between nodes. Solid edges
with arrows define a direct relationship between two objectives, where one
objective depends on the other objective being pointed to. The dashed edges
with no directivity indicate some indirect dependence through one or more
knobs. For example, BER, bandwidth, spectral efficiency, throughput, and
computational complexity all depend on the type of modulation used, so
changing the modulation affects all of these objectives in some way.

4.4 Multiobjective Analysis

Equation (4.1) provides the basic formula to describe a multiobjective
optimization problem, and the preceding sections describe a set of possible
objectives when optimizing the PHY layer of a radio. What remains is to
understand how the cognitive engine can use these to analyze the behavior
of different waveforms and select the best one. The method of performing
this analysis is a large factor in the success of a multiobjective optimization
problem.

4.4.1 Utility Functions

The most straightforward method of selection is to build a single utility
function that combines the objectives into one number. The algorithm can then
easily rank the solutions and select the solution that maximizes (or minimizes)
the utility function. Utility functions are a core research area in economics and

Optimization of Radio Resources 69

Figure 4.2 Dependency map of objective functions. Solid lines represent direct
objective dependency and dashed lines represent indirect dependency
through one or more knobs.

operations research. Our intent here is to provide a few possible and popular
methods of utility function design and a brief analysis of their properties.

The most basic utility function is the weighted-sum approach, shown in
(4.21) and using the definitions from (4.1). In this equation,U is an overall
metric of performance. The weights,wi, applied to each function,fi, are a
weighting of importance, or preference, of the objective.

U =

N
∑

i=1

wifi(x̄) (4.21)

We have dealt with the concept of the weighted-sum and problems
of normalization in [21]. While popular in engineering problems, it has
many drawbacks. One of the most significant problems is that this form of
utility assumes additivity between each objective, where each objective is
independent of the others and can be simply summed together. As discussed
throughout and shown in Figure 4.2, the objective functions developed for
waveform optimization are not independent. The economic literature on
utility functions spends a significant amount of time on this concept and the
development of utility functions with respect to the relationship of goods in

70 Artificial Intelligence in Wireless Communications

the analysis. Chung [22] provides a good overview of many of these different
functions, which we summarize here.

A development slightly beyond the weighted sum utility function is the
linear-logarithmic, or Cobb-Douglas, function in (4.22), whereU is the utility,
qi is the value of quantity or objectivei, andβi is an adjustment coefficient
for quantityi.

ln U =
n
∑

i=1

βi ln qi (4.22)

The linear-logarithmic utility function, like the weighted-sum, assumes
additivity but is slightly more useful because it shapes the results using the
logarithmic function. One important element of the weighted-sum is that the
linear relationships often find optima at the extreme edges. The logarithmic
function provides convexity to the optimization curve that helps avoid this
problem.

In the linear-logarithmic function,βi is equivalent to the weightswi in
(4.21). The change of notation here is done for consistency with the literature.
The weights are important because, as we have discussed, different users
and applications have preferences in the quality of service provided by the
communications system. This concept leads to the use of consumer preference
in economics, where the preferences indicate an indifference curve. The
indifference curves represents a trade-off in the amount of any one objective
such that the consumer is indifferent to which point is selected. Different users
and applications have different requirements, and will therefore be represented
by different indifference curves in the objective space. Objectives in the
waveform analysis can show both substitutive and complementary affects. For
example, an application may be willing to substitute bit errors for higher data
rates, but at some point the BER can only go so high before requiring coding,
or retransmission, or else the application can no longer handle the errors. At
this point, BER becomes complementary to throughput because no data rate
can make up for the high numbers of bit errors.

Another well-known function is the constant-elasticity-of-substitution
(CES) function of (4.23).

U =

(

n
∑

i=1

βiq
−ρ
i

)−1/ρ

(4.23)

Here ρ = (1 − σ)/σ and σ is the elasticity between items, which
indicates how much one item can be substituted for another (an elasticity of
1 indicates perfect substitution). This function does not assume the inputs

Optimization of Radio Resources 71

are independent and provides more flexibility to the input values. Because
of the dependencies between objectives in the waveform optimization, the
CES function suggests a better fit to the representation of utility, which
would require an analysis of the elasticity value to use. One potential
problem is that this function, as its name says, uses a constant value
of the elasticity for all objectives. If one value fits the problem domain,
then this is not a problem. However, a more appropriate representation of
utility might allow for different values of elasticity between objectives. This
suggestion is problematic because then each elasticity value needs to be
known and understood, and the value suggests a heavy dependence on domain
knowledge, though perhaps this could be learned by the cognitive radio.

Again, we only introduce these functions to show a sample of the
functions provided in economic research, but we cannot properly do justice
to it here. Much more study is required to relate these two fields and find the
most appropriate representation to use in optimization routines of waveforms.
Specifically, we need to determine how to develop or derive the coefficients.

4.4.2 Population-Based Analysis

Another method of evaluating performance in a multiobjective problem space
is using population-based analysis and Pareto-ranking. We show in Chapter 5
how this concept lends itself nicely to genetic algorithm optimization. Fonseca
and Fleming [9] have done a lot of work in this area as well as many other
researchers using genetic algorithms for multiobjective analysis.

The Pareto-ranking analysis takes a set, or population, of possible
solutions to a multiobjective problem and looks to see which members are
nondominated; that is, which members of the population outperform others
in all dimensions. We provide a more mathematical definition to this concept
in Chapter 5. In Pareto-ranking, each potential solution is ranked relative to
other solutions. In a search or optimization algorithm, the idea is to push for
better and better solutions until they lie on the optimal Pareto front. This set of
solutions represents a trade-off space among all objectives. The final step of
the algorithm is to select the solution that best represents the desired trade-off,
which is done through some subjective or weighted analysis process to find
the proper trade-off space. Park et al. produced recent results on the use of
Pareto ranking genetic algorithms for optimization of 3G systems [23].

While multiobjective problem solvers have often used Pareto-ranking,
Purshouse and Fleming [24] suggested that this form of analysis works well
for a small number of objective functions (two to three) but not as well for
larger numbers of objectives, (what they call a “many-objective” problem).
Hughes [25] later tested this hypothesis with an experiment to compare

72 Artificial Intelligence in Wireless Communications

different methods of solving multiobjective problems with various numbers
of objectives using evolutionary algorithms.

The other two methods for multiobjective analysis suggested by Hughes
include multiple single objective Pareto sampling (MSOPS) and repeated
single objective (RSO). The MSOPS approach first calculates all of the
objectives for each member of the population, and then builds a matrix where
the columns represent the objectives, and the rows represent each of the
individual’s rank for each objective. The individuals’ scores are ranked in
each objective, giving the highest ranking individual a score of 1, and then
counted up over all the members in the population (i.e., the worst performing
member is given a rank of the population size). The population members are
then assigned a rank according to the number of objectives in which each
excels.

The RSO approach evolves a population multiple times using a single,
different objective each time. The dominant members from each run are kept
for use in the final analysis of the Pareto set.

Hughes’ results confirmed his hypothesis that the MSOPS and RSO
approaches outperform the Pareto ranking approach. His results also show
that the MSOPS approach outperforms the RSO approach. While presenting
the evidence, he indicates that this is only proof for the limited problem
set he used, and, without mathematical proof, each problem might require
a different method. Because each of these methods listed here is applicable
to use with a genetic algorithm, the basic formulation developed in the next
chapter for the application of a genetic algorithm for waveform adaptation
holds. Consequently, it will be interesting in future work to develop and
compare different methods of objective analysis.

The remaining issue of performing population analysis is the selection
of the best solution from the optimized Pareto front that best represents the
desired quality of service. One way to do this would be to utilize one of
the utility functions that combines multiple objectives into a single objective
to build a ranking scheme, although this concept faces the same challenge
of representation and combination of dissimilar but dependent objectives as
discussed previously.

Another populations-based method of selection is calledPareto algebra
introduced by Geilen et al. [26]. Pareto algebra assumes a set of possible
nondominated choices that have a preference value related to some applica-
tion. A good example from their paper is the decision for buying a broadcast
program depends on the purpose of the television; whether it is for television
viewing, video, or gaming. They then develop an algebra to select the TV
that, based on certain properties, best satisfies the family’s preference. One
of the biggest drawbacks to this technique is the need for a large amount of

Optimization of Radio Resources 73

domain knowledge. The impacts and relationships to the objective space must
be known a priori to develop the algebra. This technique could be used in the
waveform optimization problem by understanding preference relationships
between objectives such as throughput or error rates. However, our intent is to
provide a generic platform for the analysis of the interactions and behaviors
that have different relationships based on the user preference and situation.
Pareto algebra would become more useful to a cognitive engine if it could be
generalized and the relationship developed automatically.

There are many concepts of multiobjective ranking and analysis from
many different problem domains. We have discussed issues of modeling and
analyzing multiple objective problems. We still see a lot to be learned from
many of these techniques and benefits from them in the application to the
waveform optimization. We use this discussion in the development of the
genetic algorithm optimization routine, although the research is ongoing to
fully solve this problem. The cognitive engine we discuss will provide the
platform by which this problem can be addressed and more fully understood.

4.5 Conclusion

In this chapter, we discussed the concept of multiobjective optimization, both
from the theoretical perspectives and regarding the use of this type of analysis
to optimize waveforms for a cognitive radio. We only presented a subset of
potential objectives we could ask the cognitive radio to meet. New objective
analysis can enhance the behavior of the cognitive engine by providing more
information from which to make its decisions. Work in this field is already
developing useful objective functions. A good example of this kind of work
is Marshall [27] who analyzes intermodulation as a metric for deciding free
spectrum to use for communicating.

While discussing the possible objectives and defining the mathematical
basis for the multiobjective analysis, we point out where improvements in
the mathematics may lead to better solutions as they better represent the
problem space. This leads to a bigger question of mathematical modeling and
uncertainty in cognitive radio systems: how much information is required to
make a good decision? Likewise, how much gain comes from more complex
analysis? These are interesting research questions beyond the scope of this
book, which aim at providing the basic method of analysis and methodology
required to perform full waveform optimization in a cognitive radio.

The next chapter deals with the use of genetic algorithms to solve
the multiobjective problem. In it, we provide a mathematical definition and
analysis of the Pareto-front and Pareto-ranking. We also provide the means by

74 Artificial Intelligence in Wireless Communications

which the current implementation of the genetic algorithm handles waveform
optimization.

References

[1] T. Rappaport,Wireless Communications: Principles and Practices, Upper Saddle River,
NJ: Prentice Hall, 2001.

[2] M. McHenry, E. Livsics, T. Nguyen, and N. Majumdar, “XG Dynamic Spectrum Access
Field Test Results,”IEEE Comm. Mag., Vol. 45, No. 6, pp. 51 – 57, Jun. 2007.

[3] S. Haykin, “Cognitive Dynamic Systems,”IEEE Proc. Acoustics, Speech and Signal
Processing, Vol. 4, Apr. 2007, pp. IV–1369 – IV–1372.

[4] T. C. Clancy, “Achievable Capacity Under the Interference Temperature Model,”IEEE
Proc. INFOCOM, May 2007, pp. 794 – 802.

[5] J. Neel, R. M. Buehrer, B. H. Reed, and R. P. Gilles, “Game Theoretic Analysis of a
Network of Cognitive Radios,”Midwest Symposium on Circuits and Systems, Vol. 3,
2002, pp. III–409 – III–412.

[6] C. Hwang and A. Syeed,Multiple Objective Decision Making – Methods and
Applications, New York: Springer-Verlag, 1979.

[7] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian, “Cognitive Radios with Genetic
Algorithms: Intelligent Control of Software Defined Radios,”Software Defined Radio
Forum Technical Conference, 2004, pp. C–3 – C–8.

[8] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms – A Comparative
Case Study and the Strength Pareto Approach,”IEEE Trans. Evolutionary Computation,
Vol. 3, pp. 257 – 271, 1999.

[9] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion, and Generalization,”Proc. Int. Conf. Genetic Algorithms, 1993,
pp. 416 – 423.

[10] J. G. Proakis,Digital Communications, 4th ed., New York: McGraw Hill, 2000.

[11] L. W. Couch,Digital and Analog Communications Systems, 7 ed., Upper Saddle River,
NJ: Prentice Hall, 2007.

[12] T. M. Gallagher, “Characterization and Evaluation of Non-Line-of-Sight Paths for Fixed
Broadband Wireless Communications,” Ph.D. diss., Virginia Tech, 2004.

[13] R. M. Buehrer, “Equal BER Performance in Linear Successive Interference Cancellation
for CDMA Systems,”IEEE Trans. Communications, Vol. 49, No. 7, pp. 1250 – 1258,
Jul. 2001.

[14] F. Jondral, “Automatic Classification of High Frequency Signals,”Signal Processing,
Vol. 9, pp. 177 – 190, 1985.

[15] B. Le, T. W. Rondeau, D. Maldonado, D. Scaperoth, and C. W. Bostian,
“Signal Recognition for Cognitive Radios,”Software Defined Radio Forum Technical
Conference, 2006.

Optimization of Radio Resources 75

[16] D. L. Decker, “Computer Evaluation of the Complementary Error Function,”American
Journal of Physics, Vol. 43, No. 9, pp. 833 – 834, 1975.

[17] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, New York: Dover, 1972.

[18] S. Elnoubi, S. A. Chahine, and H. Abdallah, “BER Performance of GMSK in Nakagami
Fading Channels,”Proc. Radio Science Conference, Mar. 2004, pp. C13 – 1–8.

[19] K. Murota and K. Hirade, “GMSK Modulation for Digital Mobile Radio Telephony,”
IEEE Trans. Communications, Vol. 29, No. 7, pp. 1044 – 1050, 1981.

[20] J. M. Chapin and W. H. Lehr, “Time-Limited Leases in Radio Systems,”IEEE Comm.
Mag., Vol. 45, No. 6, pp. 76 – 82, Jun. 2007.

[21] B. Fette, Ed.,Cognitive Radio Technology, New York: Elsevier, 2006.

[22] J. W. Chung,Utility and Production Functions, Cambridge, MA: Blackwell, 1994.

[23] S. K. Park, Y. Shin, and W. C. Lee, “Goal-Pareto Based NSGA for Optimal
Reconfiguration of Cognitive Radio Systems,”IEEE Proc. Cognitive Radio Oriented
Wireless Networks and Communications, Aug. 2007.

[24] R. Purshouse and P. Fleming, “Evolutionary Many-Objective Optimisation: An
Exploratory Analysis,”IEEE Congress on Evolutionary Computing, Vol. 3, 2003, pp.
2066 – 2073.

[25] E. J. Hughes, “Evolutionary Many-Objective Optimisation: Many Once or One Many?”
IEEE Congress on Evolutionary Computation, Vol. 1, Sep. 2005, pp. 222 – 227.

[26] M. Geilen, T. Basten, B. Theelen, and R. Otten, “An Algebra of Pareto Points,”
Fundamenta Informaticae, Vol. 78, No. 1, pp. 35 – 74, 2007.

[27] P. F. Marshall, “Dynamic Spectrum Management of Front End Linearity and Dynamic
Range,”IEEE Sym. New Frontiers in Dynamic Spectrum Access Networks (DySPAN),
2008.

5
Genetic Algorithms for Radio
Optimization

In Chapter 4, we presented waveform optimization as a multiobjective
problem. While genetic and evolutionary algorithms are not the only
means of solving multiobjective problems, they have continuously proven
themselves to excel in this respect [1]. The application of genetic algorithms
to multiobjective problems has been the focus of a large part of the
research literature, as evident in the proceedings of Genetic and Evolutionary
Computation Conference (GECCO) [2]. We use genetic algorithms because of
their robust search and optimization capabilities as well as their flexibility in
representing the search space and search parameters. Without reproducing the
entire body of knowledge on the subject, which we leave to the classic text of
Goldberg [3] or the proceedings of GECCO, we start this chapter with a brief
introduction to genetic algorithm implementation with a small well-known
example. We then present the methods used in the use of genetic algorithms
on waveform optimization. Much of this chapter also appears in some of our
other published work in [4, 5].

5.1 A Brief Review

In their most simplistic form, genetic algorithms (GA) are single-objective
search and optimization algorithms. Common to all GAs is the chromosome
definition that determines how the data is represented, the genetic operations
of crossover and mutation, the selection mechanism for choosing the
chromosomes that will survive from generation to generation, and the
evaluation function used to determine the fitness of a chromosome. All of
these operations are described in [3].

77

78 Artificial Intelligence in Wireless Communications

A genetic algorithm encodes a set of input parameters that represent
possible solutions into a chromosome. The evaluation stage calculates a
ranking metric of chromosome fitness for each individual, which then
determines their survival to the next generation. Optimization progresses
through finding genes that provide higher fitness for the chromosome in which
it is found. The fitness calculation is often done through some absolute metric
such as cost, weight, or value by which the algorithm can rank the success
of an individual. Selection is the technique by which more fit individuals
are chosen to survive and reproduce for the next generation while less fit
chromosomes are killed off. An algorithm terminates when it reaches a desired
level of fitness in the population, a single member exceeds a desired fitness,
the fitness plateaus for a certain number of generations, or through a simple
criteria based on a maximum number of generations. The algorithm then takes
the most fit individual of the last generation as the solution.

To understand each of these concepts more clearly, we describe a genetic
algorithm that solves the knapsack problem.

5.2 Simple Example: The Knapsack Problem

To explain the operation of a simple GA, we examine the knapsack problem
[6], which is a classic NP-complete problem [7] and also called the subset-
sum problem (SSP). The knapsack problem takes a set of items, each with a
weight and profit, and tries to fit as many of these items into the knapsack to
maximize the profit while not exceeding the maximum weight the knapsack
can hold. Mathematically, the knapsack problem is represented by (5.1) where
the goal is to maximize the profit,P , of items in the knapsack. The problem
statement includesK as the maximum weight the knapsack can hold andNs

as the number of items in the set,S. Items in the knapsack have a weight
vector, w̄, a profit vector,p̄, and a the vector̄x is used to show whether an
item is present or not in the knapsack. The valueswi and pi represent the
weight and profit of itemi, and the knapsack item vectorxi is a 1 if the item
is included in the knapsack and a 0 if not.

P = max
N
∑

i=1

xipi

subject to:
N
∑

i=1

xiwi ≤ K

(5.1)

Chromosome: The problem consists of choosing the right set of items to
place in the knapsack, so the chromosome represents the vectorx and consists

Genetic Algorithms for Radio Optimization 79

of 1s and 0s, as shown in Figure 5.1, where a 1 indicates that the item is present
in the knapsack and 0 indicates that the item is absent.

Figure 5.1 Chromosome representation of knapsack item vector.

Selection: Parents are selected based on their fitness in the population,
usually with some randomness to allow less fit individuals a chance of
survival. The theory is based on Holland’s original work on the subject [8]
whereschematadefine discrete sections of chromosomes. An overall unfit
chromosome may still include one or two highly fit schemata, so preserving
some of these and allowing them to create offspring gives those schemata
the chance to survive and combine with other good schemata to form a
much more fit chromosome in the next generation. Fit parents carrying their
genes to the next generation provideexploitationof current good genes while
allowing unfit members and random schemata into the generational mix
providesexploration of the search space. These two concepts help define
the search capabilities. Good exploitation will help converge quickly to a
solution, but the solution may be in a local optimum. Exploration using more
random genes helps search wider and farther in the search space, but this
can slow convergence. Balancing out how selection takes place as well as
properties such as the number of parents to kill during a generation affects
the performance of the algorithm but are likewise dependent on the problem
space. De Jong [9] analyzed five selection methods in his doctoral dissertation
to provide more understanding of this affect.

For the knapsack problem, we use the standard roulette wheel selection
technique. Goldberg [3], again, is the source for this, though we will say a
few words here to explain the basics. In the roulette wheel selection, the
fitness values of all chromosomes are normalized such that the sum of the
fitnesses of the population is 1.0. We then imagine putting the fitness values
on a roulette wheel in no particular order. The selection method calculates a
uniformly random number from 0 to 1. Summing the values clockwise from
the top of the wheel, the point where the random number falls corresponds
to the chromosome selected. Figure 5.2 illustrates the technique where six
individuals have fitness values of 0.15, 0.30, 0.20, 0.25, 0.07, and 0.03. A
random value of 0.61 is created as the ranking metric, which lies in the
individual with fitness 0.20 as this wheel is shown. The chromosome selected
from the roulette wheel is biased towards individuals with large fitness values,
but the randomness allows the possibility that any individual can be selected.

80 Artificial Intelligence in Wireless Communications

Figure 5.2 Example of roulette wheel selection in a genetic algorithm. Values are
counted from the top and added counterclockwise. R = 0.61 falls on the
item between accumulated values at 0.45 and 0.65.

Crossover: Crossover is performed on two parents to form two new
offspring. The GA compares a randomly selected value against a crossover
probability that is a property of the GA. If the random number is less than
the crossover probability, crossover is performed; otherwise, the offspring are
identical to the parents. If crossover occurs, one or more crossover points are
generated, which determines the position in the chromosomes where parents
exchange genes. Typically, crossover probability is around 0.90 to 0.95,
making for high probability of performing crossover. We normally like having
a higher crossover probability to keep genes mixing through the population.
As we discuss later, we can always choose not to replace all parents with
children, which is equivalent to children being exact duplicates of parents.
The probability of crossover provides us with another degree of freedom when
designing the GA. The number of crossover points used is low and usually

Genetic Algorithms for Radio Optimization 81

1. Too many crossover points will have too high a probability ofsplitting
the schemata while 1 or 2 points will allow the exchange of genes while
preserving long sequences of genes.

Figure 5.3 illustrates the crossover operation of a simple eight-item
knapsack problem with two crossover points. The genes after the first
crossover point and before the second crossover point are exchanged between
parents to form the new offspring.

Figure 5.3 Parent chromosomes crossover at points 2 and 6 to create offspring
chromosomes.

Mutation: After the offspring are generated from selection and crossover,
the offspring chromosomes may be mutated. Like crossover, there is a
mutation probability. If a randomly selected real number between 0 and 1
is less than the mutation probability, mutation is performed on the offspring;
otherwise, no mutation occurs. Mutation is performed by randomly selecting
a gene in the offspring’s chromosome and generating a new value based on
some probability density function (often a uniform or Gaussian distribution).
In the knapsack problem, a gene may be reset to either a 1 or 0 at random.
Other techniques simply invert the gene. The probability of mutation is usually
set very low, less than 0.10.

Evaluate: Evaluation is probably the most important piece of the GA
aside from the initial chromosome definition. Choice of the fitness evaluation
is vital to convergence on a highly fit solution. In this knapsack problem, the
fitness definition is given by (5.1) where the total profit of the solution is

82 Artificial Intelligence in Wireless Communications

the fitness. The constraint condition tests if the weight of theselected items
exceed the maximum knapsack weight. If this occurs, there are a few choices
in how the algorithm responds. The algorithm can simply set the chromosome
fitness to 0 as a penalty, greatly reducing its chances of reproducing, and
thereby removing it from the gene pool. This method has the drawback that the
genetic material is completely removed from the population and reduces the
overall pool of potential solutions, reduces selection pressure for better genes,
and hurts the performance. Another method is to mutate genes in the illegal
chromosome until the chromosome meets the weight requirements. In this
case, it is best to simply set a gene to 0 instead of random mutation because
the goal is to reduce the weight. This keeps genes in the population as potential
parents.

Results: Single-objective optimization cases lend themselves to easy
performance analysis. The results are often illustrated by a graph like in Figure
5.4 to see how the fitness of the population evolves over the generations. This
figure plots the best, worst, and average fitness for each generation.

The results of the GA are shown in Figure 5.4 using a crossover
probability of 0.95, a mutation probability of 0.1, and one crossover
point. There are 20 members of the population where 15 members are
replaced by offspring each generation. The algorithm self-terminated after
5,000 generations. The 100-item knapsack is created by using a uniformly
distributed random number between 0 and 1 for both the profit and weight
vectors. The maximum weight the knapsack can hold is the sum of the weights
of the knapsack items multiplied by another uniform random number between
0 and 1 such that the maximum weight of the knapsack is always less than or
equal to the weight of all of the items. Figure 5.4 shows the performance of the
best chromosome for three different knapsack problems. Since each knapsack
problem has different values for each item and different maximum weights,
the curves should be different. The trends, though, are the same with a steep
initial rise and asymptotic response towards the optimal value.

Figures 5.5 shows varying results with parameters of the GA with the
same knapsack problem. These four tests show differences in performance
by changing the population size and the mutation rate. It shows that they all
eventually converge to about the same point but at different speeds. Different
parameters affect the convergence behavior. In this case, a population size
of 20 members with a 20% mutation rate converges fastest, while the larger
population and smaller mutation rate converges slowest. This trend suggests
that this problem is best solved through random mutations and keeping the
population diversity at a minimum.

These figures show a typical trend for GA optimization. The specific
values shown in here, however, are specific to the parameters of the GA

Genetic Algorithms for Radio Optimization 83

0 1000 2000 3000 4000 5000
Generation

0.0

0.1

0.2

0.3

0.4

0.5
F
it

n
e
s
s
 (

p
ro

fi
t)

Figure 5.4 Performance graph of three knapsack problems. Each curve represents
the best chromosome in each generation for the three different problems.

and the size and values of the knapsack problem. The first generation, which
was randomly generated, had poor performance but the best member quickly
climbed during the first few dozen generations. A “knee” occurs in the early
generations and ends around generation 1,000 where the upwards climb slows
down. Over the next couple of thousand generations, the fitness of the best
member levels off and does not gain much. Though progress slows down, the
fitness still climbs every few generations. At the end, the algorithm is still
climbing slowly, and it is likely that the best solution from this generation is
not the optimal solution to the problem, although it is likely very close.

In fact, the last point is significant in GA theory. Holland [8] proved
that a GA will always converge on the optimal solution; however, it can never
guarantee convergence within a certain time limit. Of course, for NP-complete
problems, the optimal solution is unknowable through anything other than
a full search. Similarly, the optimal solution is not necessarily the goal of
real-world optimization problems, which may be interested more in quickly
optimized solutions that approach the optimal solution.

The idea of suboptimal (but approaching optimal) solutions is true for
the waveform optimization problem where the cognitive engine must produce
a waveform under real-time constraints. The cognitive engine needsbetter

84 Artificial Intelligence in Wireless Communications

0 1000 2000 3000 4000 5000
Generation

0.0

0.1

0.2

0.3

0.4

0.5
F
it

n
e
s
s
 (

p
ro

fi
t)

Pop. Size: 20 Rep. Size: 15 Xover: 95 Mut.: 10.txt
Pop. Size: 20 Rep. Size: 15 Xover: 95 Mut.: 20.txt
Pop. Size: 40 Rep. Size: 35 Xover: 95 Mut.: 10.txt
Pop. Size: 40 Rep. Size: 35 Xover: 95 Mut.: 20.txt

Figure 5.5 Performance graph for the same knapsack problem with different GA
parameters.

responses as opposed to abest response for the immediate future. Genetic
algorithms quickly improve their performance in the first few generations as
seen in the performance with the knapsack problem. By generation 1,000,
the algorithm has already produced a useful solution. If time and resources
permit, the genetic algorithm can search for increasingly better solutions
until the answer is required. Techniques like case-based decision theory and
distributed computing can further improve performance. We discuss these in
later chapters.

5.3 Multiobjective GA

Chapter 4 developed radio optimization as a multiobjective problem and
provided a few objectives to use for the optimization. As discussed in
Section 4.4, population-based methods are popular for solving multiobjective
problems such as the Pareto ranking approach. Population-based analysis
lends itself easily to genetic algorithm solvers, and indeed, GAs are well
suited to multidimensional optimization due to the parallel evaluation in many

Genetic Algorithms for Radio Optimization 85

dimensions. Genetic algorithms also allow easy implementation of constraints
about the problem [10, 11].

To review the argument in Chapter 4, in effective wireless communica-
tions, the waveform properties affect the radio’s behavior in many dimensions
such as BER, bandwidth, power consumption, and throughput rates. Each of
these dimensions has some relationship to the QoS, and these relationships
change in their relative importance depending on the application being used.
For example, large file transfers suggest a need for low BER and high
data rate, but a video conference has more demands on delay than BER.
Since these goals often compete with each other, as in minimizing BER and
minimizing power at the same time, waveform optimization requires joint
optimization of many objectives. Genetic algorithms are a powerful approach
to autonomously adapting waveforms, a multiobjective genetic algorithm
(MOGA).

Different selection and evaluation methods have been proposed for
MOGAs [12, 13]. Many methods try to combine the evaluations along the
different dimensions into a single metric [14]; this method breaks down in
cases where the values of the dimensions can differ greatly in magnitude (BER
of 10−6 versus data rate of106), and normalizing each dimension requires
a large amount of domain knowledge, which might be difficult to obtain
[10] or may change over time. Other methods involve competition between
population members and incrementing the fitness value of the winner for each
objective dominated by the winning member [12]. Horn [15] extends this idea
by pairing off two opposing individuals against a larger pool of chromosomes
from the population. Each member of the pair competes with each member of
the pool. The individual who wins the most competitions against the pool is
deemed better fit and survives to the next generation.

We need to introduce a few definitions for the performance analysis
before continuing. The general analysis comes down to finding the non-
dominated solutions in the solution space, known as the Pareto front. These
solutions are nondominated when optimization in any objective negatively
impacts at least one other objective. That is, a change in a solution cannot
simultaneously improve all dimensions at the same time. The Pareto-ranking
approach uses the concepts of inferiority and superiority. These definitions
assume a minimization problem whereu < v meansu is more fit thanv. We
make this clarification because of possible confusion with the terms inferior
and superior or when performing a maximization problem. Summarizing from
[16]:

Inferiority : ū is said to be inferior tōv iff v̄ is partially less than̄u :
∀i = 1, ..., n, vi ≤ ui ∧ ∃i = 1, ..., n : vi < u

86 Artificial Intelligence in Wireless Communications

That is, if any of then objectives ofv is less than any objective ofu, thenu is
inferior tov.

Superiority : ū is superior tōv iff v̄ is inferior toū.

Noninferiority : ū andv̄ are noninferior to one another if̄v is neither
inferior nor superior tōu.

Pareto ranking then ranks each member of the population by the
number of individuals to which the given member is superior. After some
number of generations, the algorithm must return a specific solution, but
the population is ranked in terms of Pareto dominance where, ideally, the
population represents points along the optimal Pareto front. In this case, if
each is Pareto optimal, each population member will be superior to none,
and therefore each population will have a ranking of 0. In the end, then,
the algorithm needs some method of selecting the member from the final
population. We discuss this as we build up the particular implementation of
the MOGA for waveform optimization in the next section.

5.4 Wireless System Genetic Algorithm

The wireless system genetic algorithm (WSGA) is a MOGA designed to
optimize a waveform by modeling the physical radio system as a biological
organism and optimizing its performance through genetic and evolutionary
processes. In the WSGA, radio behavior is interpreted as a set of PHY-
layer parameters represented as traits or genes of a chromosome. Other
general radio functional parameters (such as antenna configuration, voice
coding, encryption, equalization, retransmission requests, and spreading
technique/code) are also identified as possible chromosome genes for future
growth as SDR platforms develop to support each of these traits. Expansion
of PHY-layer parameters is a horizontal growth while the MOGA method can
also extend vertically to higher layers of the protocol stack such as the MAC
or network. Extension to the higher layers will require proper understanding
of the objective function analysis of these layers, the genetic representation of
the adjustable parameters, and the available communications platform capable
of reconfiguration in the layers.

The WSGA makes use of the concepts developed in the last few
chapters. The currently available knobs and meters for the simulation
environment are given in Table 3.1 and later for the over-the-air experiments
in Table 8.22, and the objective functions are given in Section 4.2. The
WSGA uses a Pareto ranking selection method similar to [16], but with

Genetic Algorithms for Radio Optimization 87

a few adjustments. First, the WSGA awards points for every objective an
individual wins. By doing this, the algorithm has a bit more granularity
in how it ranks individuals, especially when two objectives are directly
competing, such as BER and power. With these two objectives, the only way to
improve or dominate another solution is through a change in the modulation
since power and BER are direct trade-offs, so inferiority does not properly
allow these objectives to be compared. Second, the WSGA ranks members
by the number of members the individual dominates in each objective to
make a maximization problem (whereas Fonseca and Fleming [16] rank
the individuals by how many members dominate them and thus perform a
minimization problem).

Crossover and mutation in the WSGA are simple implementations of
these mechanisms. The WSGA uses one crossover point chosen as a uniform
random number with a static probability of crossover occurring. The crossover
probability is an input parameter to the algorithm as is the number of crossover
points, though this is usually kept at 1. Mutation is also a single-point
operation chosen from a uniform random number with a static probability of
mutation occurring. Future enhancements to the WSGA can include adaptive
adjustment of crossover and mutation probabilities as well as the population
size during the optimization process for higher convergence efficiency and
accuracy.

The use of constraints to a multiobjective problem as shown in (4.1)
gives the WSGA the opportunity to incorporate regulatory and physical
restrictions during chromosome evolution. If a trait determined by the
chromosome exceeds the limits of the radio’s capabilities, like finding a
center frequency outside the tunable range of the radio, or violates policy by
transmitting too much power in a band, then the WSGA applies penalties to
the chromosome. A common penalty method for disallowed chromosomes
is to set the fitness of the chromosome to zero [17], basically nullifying its
chance to survive to the next generation. We found that this reduces selection
of good genes that might exist in otherwise disallowed parents. To avoid
losing the genetic material, we force random mutations on the gene until it no
longer violates the policy, thus preserving large portions of the chromosome
structure as well as introducing legal genes into the population. A more
focused mutation could also be implemented where mutations occur on the
specific genes that cause the chromosome to violate policy, thus not wasting
time performing mutations on otherwise acceptable genetic features.

A final implementation problem involves optimization as a network. The
WSGA provides a waveform optimized to a single radio node. For the new
waveform to be of any use, all other nodes on the network must also use the
new waveform. The concept of waveform distribution, issues of optimizing

88 Artificial Intelligence in Wireless Communications

for a number of nodes, and discussion about distributing the processing
throughout the network are discussed in Chapter 7.

5.4.1 Details of Chromosome Structure

The WSGA’s chromosome structure differs from most traditional GAs
because of the variable number of bits used to represent any gene. Most GAs
use a single data type or number of bits per gene, but to better represent
various radio capabilities, the WSGA uses a flexible representation. For
example, a radio might be capable of thousands of center frequencies over
multiple gigahertz but only has a few modulations from which to choose. The
chromosome can therefore give a large number of bits to the frequency gene
and a small number to both the modulation and the transmit power genes, as
shown in Figure 5.6. A key result of this structure is that it makes the GA
independent of what radio it is optimizing.

Figure 5.6 Representation of the WSGA’s chromosome with variable bit representa-
tions of genes.

The variable bit representation is a result of the SDR platform definition
file [18]. The platform definition file includes an XML file that looks very
similar to the XML listing in Section 2.3.5 to represent the waveform bounds,
as well as a DTD file to represent the basic waveform structure. Instead of
providing an explicit value for each knob, though, the definition XML file
provides the range of values each knob may have. The definition file can be
thought of as representing the possible genes in the chromosome while the
waveform XML file represents the specific gene. As an example, Figure 5.7
is the representation of the frequency range from a definition file for a radio
capable of transmitting from 400 to 500 MHz in steps of 1 kHz and from 2.3
to 2.5 GHz in steps of 100 kHz. It also says that the radio can transmit in
the 400 MHz range from 0 to 100 dBm in steps of 0.1 dBm and at 2.3 GHz
from 0 to 20 dBm in steps of 0.1 dBm. This XML example shows how both
continuous values as well as discrete jumps in values can be represented. The
full XML listing is located in Appendix D.

Genetic Algorithms for Radio Optimization 89

...
<Tx>

<PHY>
<rf >

<tx_freq >
<min unit=“kHz” >400000 < \min >
<max unit=“kHz” >500000 < \max>
<step unit=“kHz” >1< \step >

< \tx_freq >
<tx_power >

<min unit=“dBm” >0< \min >
<max unit=“dBm” >100< \max>
<step unit=“dBm” >0.1 < \step >

< \tx_power >
< \rf >
<rf >

<tx_freq >
<min unit=“kHz” >2300000 < \min >
<max unit=“kHz” >2500000 < \max>
<step unit=“kHz” >100< \step >

< \tx_freq >
<tx_power >

<min unit=“dBm” >0< \min >
<max unit=“dBm” >20< \max>
<step unit=“dBm” >0.1 < \step >

< \tx_power >
< \rf >

...

Figure 5.7 Waveform representation in XML.

The XML file provides the bounds and step size, and therefore the
number of bits required to represent any possible genetic value for the knob
in the chromosome. The DTD file provides the minimum representation of
the waveform to structure the chromosome and understand how to parse the
XML file. A brief slice of the DTD file is shown in Figure 5.8 while the the
full listing is in Appendix D. The WSGA uses the DTD representation to know
what genes are available and builds each gene from the XML file above. The
logic to accomplish this first parses the XML and DTD files into trees that
can be walked. The algorithm removes and elements that contain #PCDATA,
which indicates that the element contains data (and is therefore a min, max, or
step element). The algorithm then walks the DTD tree looking for leaf nodes
on the tree, which are now the elements that describe the tree after the min,
max, and step elements are removed. Each of the leaf nodes are names of
genes. Each gene has the minimum and maximum value it can contain as well
as a step value between the two endpoints. The range represented is easily
calculated as(max − min)/step and a⌈log2()⌉ of this value provides the

90 Artificial Intelligence in Wireless Communications

<!ELEMENT waveform (Tx,Rx) >
<!ATTLIST waveform type #CDATA “analog/digital” >
<!ELEMENT Tx (PHY,LINK) >
<!ELEMENT PHY (rf,mod) >
<!ELEMENT rf (tx_freq+,tx_power+) >
<!ELEMENT tx_freq (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_power (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
...

Figure 5.8 DTD of waveform representation.

minimum number of bits required to represent the possible values of the gene.
Likewise, this information is used in reverse to decrypt the genetic code; the
bits representing the gene are an index ofstep number of steps above themin
value. As long as the result is less thanmax, the gene representation is valid.

When more than one node of the same name exists, an index is used to
address the gene. Multiple nodes of this sort are used when continuous ranges
do not exist in a radio, such as support for different frequency bands. The
number of nodes is indexed into a set of bits and the rest of the gene is made
up of the minimum number of bits required to represent the maximum range
of any of the nodes. The index position then identifies which range should be
used to decrypt the gene.

This method to build chromosomes allows easy representation of a
radio’s capabilities in XML. The genetic algorithm behaves exactly the same
regardless of the radio attached as long as the description is valid in the
XML file. The XML and DTD are powerful tools to represent the radio
that effectively allow the genetic algorithm to design itself around the radio
system, making it truly platform-independent.

5.4.2 Objective Function Definition

XML and DTD files provide the mechanism for generic representation
of radio platform capabilities. The next part of the cognitive engine GA
implementation is the definition of the objective functions. As discussed
in the previous chapter, there are many different objective functions and
different implementations of the functions. We presented a few of the
objective functions thus far developed as well as a couple of different ways

Genetic Algorithms for Radio Optimization 91

of looking at the functions. The objective functions, like theradio platform,
are likely to improve mathematically and representationally over time. It
is important, then, that the cognitive engine can be easily adapted to new
objective functions.

Again, DTD and XML play their role in this problem along with the
use of shared object libraries. The GA is fed the objective functions in the
form of an XML file that describes what functions the library holds. The
library is compiled as a shared object library that allows dynamic, run-time
linking. The GA can then link to the library, pull out the required objectives,
and close the library as required. Then, when new objectives are introduced or
better mathematical representations are found for the existing objectives, the
library can be recompiled separately from the rest of the cognitive engine and
uploaded to the cognitive radios for the next optimization process. The XML
file that the GA receives contains the list of functions available, so during
evaluation, the objective functions are referenced by name in the library. The
library processes the objective and returns a solution. The important aspect of
this is in the function prototype. Each function representation is in the form:

float< function_name >(radio_hw_def *knobs, radio_meters *meters)

Theradio_hw_defdata structure is a class that contains the information
to map the chromosome representation to the radio platform capabilities. The
structure is built from the XML and DTD files that define the chromosome as
discussed previously. Theradio_metersis a simple data structure that holds
the results of the objective function calculations. Each function returns a real
number as part of its result. The WSGA solves a maximization problem, and
to allow the generic, dynamic representation of fitness values, this value is a
representation of the performance of the objective function as a maximization
metric. Simply put, when an objective function should be maximized (e.g.,
throughput, SINR), the returned fitness is the objective itself. When the
objective should be minimized (e.g., BER, power), the returned fitness is
the inverse of the objective. These fitness values are then stored ascredits
to represent an individuals fitness. The ranking and selection is based off
the values of the credits, which, again, are designed to be compared in a
maximization problem. Meanwhile, each member holds a copy of itsmeters
data structure used in the post analysis of the algorithm’s performance.

5.4.3 Optimal Individual Selection

Pareto ranking only goes so far to provide a population of optimal/near-
optimal and nondominated individuals. However, from this point, the algo-
rithm needs to return a single, final individual as the solution to the

92 Artificial Intelligence in Wireless Communications

optimization problem. The Pareto front offers a range of solutions that
represent different QoS values. We repeat here an example from [4] with BER
and power optimization. Figure 5.9 shows a solution space for bit error rate
and power. The optimization goals are to produce a waveform with low BER
and low transmit power. Figure 5.9 shows five solutions, labeledA throughE,
resulting from the availability of three different modulations, BPSK, 8PSK,
and QAM16, under SNR conditions of0 to 12 dB. With the two objectives
listed, solutionsA, B, andC fall on the Pareto front because any improvement
in BER would cause an increase in transmit power. SolutionsD andE are,
in this case, suboptimal and not on the Pareto front. Any of solutionsA,
B, or C could be selected based on the optimization criteria, but not all
represent certain other properties not specified in the optimization function
definition. For instance, BER and power are objectives, yet the quality of
service would suffer more from a higher BER than a higher transmit power, so
this removes solutionA as a candidate. The choice is more narrow between
solutionsB andC and depends on what property ranks higher; is the extra
1.5 dB power increase worth the decrease in BER from10−5 to 2 × 10−7? If
a third objective such as throughput were added to the optimization problem,
solutions D and E are now contenders since they dominate the BPSK
modulation scheme in this objective. Again, however, selection from this set
is based on quality of service goals by how much importance is given to data
rate, power consumption, and BER.

Figure 5.9 Potential solutions for optimization of BER and power; solutions A, B, and
C lie on the Pareto front.

Genetic Algorithms for Radio Optimization 93

As discussed in Section 4.4, there are many different methods for
developing an optimization function that provides a ranking method, and
therefore the ability in the algorithm to select one individual solution. For the
experiments we wish to present, we first normalize the credit values returned
from the fitness functions. The normalization is done by keeping track of the
maximum value any objective receives throughout the generations. We then
use the weights of the objective functions as preference factors in a simple
linear-logarithmic utility function of (5.2).

f =

NO
∑

i=1

wi ln

(

ci

λi

)

(5.2)

This equation calculates the fitness of an individual overNO objectives
where each objective has a credit score,ci, a preference weight,wi, and a
normalization factor,λi. The individual in the population with the maximum
fitness,f , is selected as the solution of the algorithm for implementation on
the radio.

This sets up the design of the cognitive engine’s WSGA. Chapter 8
provides examples of of this in operation, after the rest of the cognitive engine
design is discussed.

5.5 Conclusions

With the multiobjective waveform optimization problem as well as the
range of possible knobs and meters available on a radio platform, the
genetic algorithm is a solution to both effective optimization and generic
representation to make it an excellent choice to use for cognitive radio
work. In this chapter, we presented the basics of what makes the GA such
a powerful search and optimization tool as well as explained how it was
developed for the cognitive radio problems. The particular aspects of the
GA implementation include the generic representation and definition of
the chromosomes to allow it to operate on different systems, the equally
flexible definition and implementation of the objective functions, and the
methodology behind performing the GA operations and making selections.
As we discussed, advances remain to be made in the evaluation functions
as the relationships are better understood and developed. In Chapter 8, we
show both the successful implementation of the WSGA as well as discuss the
symptoms of the performance that some of the advancements could correct.
Before presenting the operational cognitive engine or WSGA, the next couple
of chapters finish the necessary theory and design work required for the full
cognitive engine.

94 Artificial Intelligence in Wireless Communications

References

[1] E. J. Hughes, “Evolutionary Many-Objective Optimisation: Many Once or One Many?”
IEEE Congress on Evolutionary Computation, Vol. 1, Sep. 2005, pp. 222 – 227.

[2] M. Keijzer, M. Cattolico, D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V. Butz,
C. Coello, D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby,
H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan, and D. Thierens, Eds.,
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
Seattle, Washington: ACM SIGEVO, Jul. 2006.

[3] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning,
Reading, MA: Addison-Wesley, 1989.

[4] B. Fette, Ed.,Cognitive Radio Technology, New York: Elsevier, 2006.

[5] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian, “Cognitive Radios with Genetic
Algorithms: Intelligent Control of Software Defined Radios,”Software Defined Radio
Forum Technical Conference, 2004, pp. C–3 – C–8.

[6] R. Spillman, “Solving Large Knapsack Problems with a Genetic Algorithm,”IEEE Proc.
Systems, Man and Cybernetics, 1995, pp. 632 – 637.

[7] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of
NP-Completeness, New York: W. H. Freeman & Company, 1979.

[8] J. Holland,Adaptation in Natural and Artificial Systems, Boston: MIT Press, 1975.

[9] K. A. De Jong, “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,”
Ph.D. diss., Univ. of Michigan, 1975.

[10] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms - A Comparative
Case Study and the Strength Pareto Approach,”IEEE Trans. Evolutionary Computation,
Vol. 3, pp. 257 – 271, 1999.

[11] T. Hiroyasu, M. Miki, and S. Watanabe, “Distributed Genetic Algorithms with a New
Sharing Approach in Multiobjective Optimization Problems,”IEEE Proc. Congress on
Evolutionary Computation, Vol. 1, Jul. 1999, pp. 69 – 76.

[12] J. D. Schaffer, “Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms,” Proc. Int. Conf. Genetic Algorithms, 1985, pp. 93 – 100.

[13] P. Fleming, “Designing Control Systems with Multiple Objectives,”IEE Colloquium
Advances in Control Technology, 1999, pp. 4/1 – 4/4.

[14] C. Hwang and A. Syeed,Multiple Objective Decision Making - Methods and
Applications, New York: Springer-Verlag, 1979.

[15] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm for
Multiobjective Optimization,”IEEE Proc. Conf. on Evolutionary Computation, IEEE
World Congress on Computational Intelligence, Vol. 1, 1994, pp. 82 – 87.

[16] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion, and Generalization,”Proc. Int. Conf. Genetic Algorithms, 1993,
pp. 416 – 423.

Genetic Algorithms for Radio Optimization 95

[17] ——, “Multiobjective Optimization and Multiple Constraint Handling with Evolutionary
Algorithms - Part I: A Unified Formulation,”IEEE Trans. Systems, Man, and
Cybernetics, Vol. 28, pp. 26 – 37, 1998.

[18] D. Scaperoth, B. Le, T. W. Rondeau, D. Maldonado, C. W. Bostian, and S. Harrison,
“Cognitive Radio Platform Development for Interoperability,”MILCOM, Oct. 2006, pp.
1 – 6.

6
Decision Making with Case-Based
Learning

Decision making is a complex part of the cognitive radio design. A cognitive
radio uses environmental and behavioral information about radio performance
or user requirements to make decisions on how to adapt. Decisions can include
what parameters to adapt, if adaptation is required, or even the method by
which to adapt. Our goal in this chapter is to introduce one particular use of
decision making in cognitive radios: augmenting optimization through past
knowledge. Given changes in the environment, the decision-making system
uses past knowledge to aid the genetic algorithm optimization process by
providing goals and by seeding the population to best reach the desired goals.
The basics of this concept were first published in [1].

Goldberg introduces the concept of knowledge-based techniques in his
book [2]. Here, he cites the use of knowledge in how people solve problems:
humans do not develop everything from first principles over and over again.
Instead, previous knowledge influences and augments current decisions. The
discussion tends towards the use of previous solutions to enhance the next
routine, but this is not Goldberg’s use of the the technique. Instead, he
discusses how understanding the problem domain can lead to tailoring the
algorithm to help it solve the problem. His techniques involve the use of
crossover operations that are specifically tailored to a particular problem.
He gives an example of using a crossover operation that preserves legal
solutions when solving the traveling salesman problem. Another powerful
approach is to use a hybrid system of a genetic algorithm along with another
algorithm that does local optimization. In this approach, the genetic algorithm
(GA) converges on an area where a solution is likely to exist. Instead of
spending generations to lock into the highest point in the search area, a local

97

98 Artificial Intelligence in Wireless Communications

optimization routine takes over to finish the job. This conceptworks because
local optimizers generally have well-understood, tractable performance, and
they lock on optimum points in a local search space quickly. The GA performs
the global search and the local optimizer finishes it off.

Ramsey and Grefenstette provided an initial analysis of case-based
learning for genetic algorithm population initialization [3]. Their aim was
to develop a system that would enable what they callanytime learningin
changing problem spaces. This goal is similar to the online learning of the
cognitive engine. Recently, Newman [4] showed how using previous solutions
can improve the performance of waveform optimization. In this chapter, we
add to this research through the discussion and implementation of case-based
decision theory to illustrate the use of knowledge in solving problems with
genetic algorithms. We provide an example of this technique and discuss many
advances case-based systems offer. The use of the technique in the cognitive
engine is part of the experiments of Chapter 8.

6.1 Case-Based Decision Theory

Our use of decision-making theory is largely derived from the case-based
decision theory (CBDT) work of Gilboa and Schmeidler [5]. CBDT uses past
knowledge to make decisions about future actions. Case-based decision theory
is closely related to CBR [6], and to avoid arguing semantics between the
two techniques, we will generically refer to these techniques as case-based
learning.

Formally, case-based learning defines a set of problemsq ∈ P , a set of
actionsa ∈ A, and a set of resultsr ∈ R. A case,c, is a tuple of a problem,
an action, and a result such thatc ∈ C whereC = P × A × R. Furthermore,
memory,M , is formally defined as a set of casesc currently known such that
M ⊆ C.

The cognitive radio uses sensors to observe when the environment or
user’s needs change. This new information is modeled as a new problem,p
to be solved by the cognitive radio. The sensors could indicate a change in
the interference environment, a new propagation channel, or a change in the
application of the radio requiring different QoS needs. The cognitive engine
must then determine the action,a, with which to respond. The case-based
system analyzes the new problem against past cases in memory to determine
the similarities between the new problem and past problems as well as the
utility of the past actions. Utility refers to how successful an action was
at responding to the problem. The action defined by the current cognitive
engine is the waveform to use in the current situation. As the cognitive engine
processes and learns, it populates the knowledge base with more cases that

Decision Making with Case-Based Learning 99

better reflect the environment to help make better choices. This technique is
similar to an expert system, but one that learns autonomously.

A similarity function defines how similar two cases are and is repre-
sented by (6.1). The similarity function is any function that provides some
measure of how close two problems are to each other where 0 represents no
similarity and 1 represents a perfect match.

s : P × P → [0, 1] (6.1)

The utility analysis of the past cases is represented in (6.2), which is any
function that produces some real-valued result measuring the utility of the
action.

u : R → ℜ (6.2)

Case analysis comes down to which case is both most similar to the new
problem as well as how successful the action was in the past. The decision
maker then uses a final decision function to decide which case to use. The
simplest implementation is a similarity-weighted decision function as shown
in (6.3). A particular problem may be very similar to previous problems in
the case base, but the solution to the previous problem might have performed
poorly in the past. In this situation, a less similar but better performing case is
selected instead.

U(a) = s(p, q)u(r) where (q, a, r) ∈ M (6.3)

This equation is only one function used to make the decision. The
challenge of this technique is to create effective similarity, utility, and decision
functions that best represent the types of information received through the
sensors. We develop this concept further throughout this chapter.

6.2 Cognitive Engine Architecture with CBDT

The cognitive engine uses case-based decision theory to augment the
optimization process. Instead of relying on pure optimization alone, the
case base helps prime and direct the optimization with learned experience.
Likewise, instead of basing all decisions on past actions from the case base,
the optimization process allows online learning to build knowledge. The
case base and optimization routines work together to enable learning and
adaptation in the cognitive engine.

The case base holds past cases, actions, and results of the actions. In the
cognitive radio, the case represents some model of the environment, such as a

100 Artificial Intelligence in Wireless Communications

sequence of meter readings or an interference map. The action for a given case
is in the form of the waveform created to meet the case’s needs. The results,
then, are a measurement of how well the action performed.

To develop the performance measurements, the cognitive engine uses the
predicted results of the optimization process and analyzes how closely those
results match to the actual performance of the radio. The optimization process
develops the waveform based on a set of mathematical models in the form
of objective functions. The results of the objective functions are calculated
performance measures of the waveform. When the waveform is then used in
the environment, the resulting performance may differ from the calculated
performance. This difference relates to the utility of the waveform.

Figure 6.1 presents the block diagram of the described system. An
incoming problem is matched against the cases through a similarity function
while the case results are compared to the radio performance to develop the
utility of the case. The decision function is an equation like (6.3) that uses
similarity and utility to properly select the case most representative of the new
problem. The results are then passed to the optimization process along with
the new problem. Both the waveform solution and the objective functions’
results are fed back along with the problem model to the case base to be stored
as a new case.

Figure 6.1 Case-based decision theory implementation with optimization process.

This figure and the discussion about the use of case-based decision
theory do not focus on any particular optimization process and should be
considered a generic method for learning and optimization. In our cognitive
engine work, the particular form of the optimization process is a genetic
algorithm.

Decision Making with Case-Based Learning 101

6.2.1 Memory and Forgetfulness

The case base holdsM cases, and therefore must have a system to delete, or
forget, cases no longer used. Given a full case base, when the cognitive engine
observes a new case, either the new case is not remembered or it must replace
a current case. We list here a few forgetfulness functions.

Temporal forgetfulness:In this method, the oldest case is forgotten. This
method is very simple to implement as a first in first out (FIFO) buffer. Each
new case is pushed onto the front of the queue and the oldest case is popped
off.

Maximum distance forgetfulness:If the similarity function defines a
distance between two cases, a linear relationship can determine which case
to forget. Here, a one-dimensional distance determines how similar cases
are where distance is measured asd(xi, xj). Take the constructed example
in Figure 6.2 where thexs represent known cases and theo represents the
new case. First, the most similar case to the new caseo is found to bex3.
Next, the two cases surrounding these two cases is found,x2 and x4. The
goal is to maximize the distance between the surrounding cases to provide
better coverage of the search space. The case that satisfies (6.4) provides the
maximum distance between both casesx2 andx4. Edge cases are easy as they
are just a maximization of the similarity space.

ĉ = min
c∈[o,x3]

{abs (d (x2, c) − d (c, x4))} (6.4)

The new case increases the distance between itself,x2, andx4 over the
old casex3, sox3 is forgotten. The theory behind this approach is to maximize
the possible problem space represented by the case base. After replacingx3

with o, more of the problem space is covered.

Figure 6.2 Maximizing distance between cases.

Maximum utility forgetfulness:This technique replaces the case with the
lowest utility with the new case.

Each of these techniques make assumptions on the problem space such
as temporal properties and radio behavior. If the environment changes quickly,
then forgetting the oldest case might work well as the case base tracks the
changes. If the environment does not change quickly, or if there are certain

102 Artificial Intelligence in Wireless Communications

environmental models that are characteristic of many problems, it is useful
to keep many of these models around and not drop one simply because it is
old. The ability to properly model similarities and understand utility is also
important to the case base system; perhaps there is an environment where no
waveform will behave successfully, or it is difficult to build one that does. In
this situation, forgetting a case based on low utility might not allow the system
enough time to learn the proper response by starting from a blank slate each
time.

It is also possible to mix these systems where information is stored in
different case bases for different purposes. Rieser discusses this concept in
his dissertation [7]. He uses the concepts of short-term memory and long-
term memory, where each represents a different method of remembering and
forgetting information to take advantage of the different properties each has.

6.3 Cognitive Engine Case-Based Decision Theory
Implementation

Figure 6.1 provides the system diagram for how the case base is used with
the optimization process. Looking back at Figure 2.3, the new case is received
by the cognitive controller through a sensor. The cognitive controller calls the
decision-making process to find information in the knowledge, or case, base
and then sends the information to the optimization routine for processing.
Each of these components can be developed and implemented independently.
We introduce here the concepts behind the components for the cognitive radio.
We then build on this foundation to solve knapsack problems using CBDT.
The ability to move between the knapsack and the cognitive radio illustrates
the problem-independent nature of the cognitive engine.

The sensors and genetic algorithm optimization components in the
cognitive engine have already been discussed. Chapter 2 discussed the format
of the information from the sensors, and Chapters 3, 4, and 5 discussed how
the GA optimizes waveforms. The design of the case base is covered here.

The case base is implemented as a relational database in MySQL.
Structured Query Language (SQL) is both well-known and well-supported,
and the MySQL implementation has proven performance, stability, and
design. Integration of a MySQL databases is possible in almost any
contemporary programming language, and it reduces the design time of
building a new database or case base structure. Another key aspect of the
MySQL database is that these database servers are easily accessed over a
distributed network, making it easy to share knowledge between cognitive
radios.

Decision Making with Case-Based Learning 103

The case base is structured as a single database with multiple tables.
Each sensor is assigned a main table where each row represents a case.
The columns of this table aretimestamp, problem, solution, and result.
The problem column references another table that describes the problem.
Similarly, the result column references a table to describe the result’s
properties. The final piece of the case definition is in thesolution, which is
a text field in the main table.

The references to the problem and result tables are done in order to
maximize the flexibility when defining the information representation. Each
sensor contains data that will require special representation in the database
to maximize the ability of the case base to perform the similarity functions.
Likewise, the results from the optimization process may change, and, again,
the flexibility in the representation is important for the system to adequately
grow. Figure 6.3 shows the database structure.

Figure 6.3 SQL database design for the cognitive engine.

The structure of each of the tables is conveyed through a DTD file. As all
the information is passed via XML formatting, the DTD represents how the
information is presented and therefore stored in the problem and results tables.
When the cognitive controller associates with a sensor or the optimization
routine, the component passes a DTD representation of the data format, which
is used to build the table structure. The XML and DTD formats and uses are
described more thoroughly in Chapter 8 and the file formats are shown in
Appendix D.

In the current implementation, the cognitive engine associates with
three sensors to collect the meters, PSD, and objectives. The wireless
system genetic algorithm does the optimization. The PSD sensor provides an
interference map that the GA uses in analyzing its objectives, and the case-
based decision maker uses the meters sensor in its utility calculation. The
objectives are passed through a sensor to define which objectives to use and
their associated weights that define the problem space. The results stored in
the case base are retrieved from the genetic algorithm optimizer as shown

104 Artificial Intelligence in Wireless Communications

in Figure 6.1. The results are the theoretical, or mathematically calculated,
values of the objectives such as bit error rate, SINR, and throughput. The
meters sensor calculates the objectives of the waveform’s performance.

The utility is a representation of the difference between the calculated
objectives and the actual objectives as shown in (6.5). We use the CES utility
function because of the easy flexibility it offers to defining the relationships
between the quantities used in the utility calculation. Here, there areNO

defined objectives,fi(q) is the calculated value of objectivei for caseq, and
fi(m) is the observed value of objectivei as derived from the meters. The
absolute value is used in this calculation because the waveform is penalized
for both better and worse performance than the estimated values. In other
words, penalties occur for both over- and underoptimization.

u(q) =

(

NO
∑

i=1

(|fi(q) − fi(m)|)−ρ

)−1/ρ

q ∈ P (6.5)

The similarity function determines how similar the problem is to other
cases in the case base. Problems are defined using the set of weights of the
objective functions that determine what level of QoS a user or applications
requires. The cognitive engine is designed to produce a waveform that
improves the quality of service, so the problem space sets the level of QoS
required and the cognitive engine must develop the waveform. Selecting the
case comes down to finding a case that is similar to the QoS problems posed
in the past that have performed well. The similarity function is then the sum
of the differences between the objective weights of the new problem and the
weights of the objectives in each case.

s(q, p) =

0, if wi(p) = wi(q) = 0

wi(q), if wi(p) 6= 0, wi(q) = 0

1 −
∑Nw

i=1
|wi(q)−wi(p)|

wi(p) , else

(6.6)

for q ∈ P

In this equation, there areNw weighted objectives, and each objectivei
in caseq has a weightwi(q), and the new problem statementp has a weight
for each objectivewi(p).

To extend this concept, each sensor could be queried in this manner
to find cases from each domain that represents the problem. In the case of
the energy detector sensor, it might be useful to determine how similar this
interference environment is to past environments to help find white spaces

Decision Making with Case-Based Learning 105

quicker. A potential similarity function for this sensor is a normalized cross
correlation between the old interference maps and the new map.

6.4 Simple CBDT Example

To demonstrate the use of case-based decision theory with a genetic algorithm,
we revisit the knapsack problem used as an illustration in Chapter 5. Before
moving into the use of CBDT on a knapsack problem, Figure 6.4 shows
the average fitness per generation of 100 runs of the GA on the same
knapsack problem. The knapsack problem and GA parameter settings are
identical to those in the discussion in Chapter 5. We average the results of
the best chromosome per generation over 100 runs to provide a characteristic
performance curve for the genetic algorithm.

0 1000 2000 3000 4000 5000
Generation

0.30

0.35

0.40

0.45

0.50

A
v
e
ra

g
e
 F

it
n

e
s
s
 (

p
ro

fi
t)

Figure 6.4 Characteristic performance of the knapsack GA averaged over 100 runs.

To apply CBDT to the knapsack problem, the system requires the
similarity, utility, and decision functions. The similarity function is defined
in (6.7). In this equation, the knapsack problems are modeled by a weight-
adjusted profit value, and before the calculation is performed, the vectors of
weight-adjusted profits of theNs items are sorted in ascending order to make
a fairer comparison. In the following equations, recall that the cases stored in
the case base are identified as caseq while the observed problem isp. Each

106 Artificial Intelligence in Wireless Communications

case has a profit and weight vector where the profit of itemi is pq,i and the
weight of itemi is wq,i.

s(p, q) = 1 −
Ns
∑

i=1

∣

∣

∣

∣

pp,i

wp,i
− pq,i

wq,i

∣

∣

∣

∣

, q ∈ P (6.7)

We tested two utility functions. Utility function 1 in (6.8) is just the profit
of the solution, called theprofit-onlyutility function. Utility function 2 in (6.9)
makes the assumption that the better solutions will also be closer to filling the
knapsack completely, and so the profit is adjusted by the ratio of the weight
of the items in the knapsack to the maximum weight the knapsack can hold.
This equation is called theweight-profitutility function.

u(q) = pm
q , q ∈ P (6.8)

u(q) =
wm

q

Wq
pm

q , q ∈ P (6.9)

In this equation,pm
q is the total profit represented by a solution in the

case base,wm
q is the total weight of the solution, andWq is the maximum

weight of the knapsack for the problem in caseq.
The decision equation is the simple form from (6.3).
The first test is for proof-of-concept, debugging, and stability tests of the

system. In this experiment, we use the same knapsack model and repeatedly
run the GA using individuals initialized by the case base where the case base
is initially empty. The experiment runs the GA for 100 generations each time
and stores the best performing individual in the case base. The maximum
number of cases retrieved from the case base is 10, and the case base can
hold a maximum of 100 cases when the oldest case is dropped for the newest
case. In the first run, with nothing in the case base, no population initialization
takes place. The next run, using the same knapsack problem, looks in the
case base and selects the only model there, initializes one individual in
the population, and again, stores the best performing individual after 100
generations. Each time through, more members are retrieved from the case
base until 10 individuals are stored. At this point, the member with the highest
similarity and utility is selected using the above equations along with its nine
closest neighbors. The system is run 50 times to produce the same number of
generations used to produce Figure 6.4. We averaged the results after 10 trials.
Figure 6.5 compares the performance of the CBDT-GA with the normal GA
over the same number of generations.

The idea here is to make sure the system performs the analysis and
population initialization properly, so we are not expecting to see an overall

Decision Making with Case-Based Learning 107

0 1000 2000 3000 4000 5000
Generation

0.30

0.35

0.40

0.45

0.50
A

v
e
ra

g
e
 F

it
n

e
s
s
 (

p
ro

fi
t)

Average Performance of Simple GA
Average Performance using CBDT-GA

Figure 6.5 Case-based initialized GA compared to the characteristic performance of
the standard GA.

performance improvement from this. Because the experiment used the same
knapsack problem each time, the similarity calculation is always 1. Each
time through the GA, the best performing solution is inserted into the case
base; therefore, the utility increases with every case. The case selected from
the case base is then always the last case run along with previous nine
cases. Effectively, this experiment is the same as running one GA over 5,000
generations and inserting a few random individuals every 100 generations.
This is a form of migration discussed in the GA literature. For smaller
generations, the migration of random individuals into the population affects
the performance by removing other members that had been evolving towards
the global optimum. However, in later generations, when exploitation of the
parents is no longer the driving force of the optimization, the random members
help add a search capability to the population to improve its performance. The
results in Figure 6.5 confirm the theoretical performance by showing a slight
dip in fitness between generations 500 and 2,500, and a slight improvement
overall in the performance during the final generations.

The real experiments to see the performance capabilities of the knapsack
GA come from analyzing the GA against a number of random knapsack
problems. CBDT offers a number of variables to test, so we provide here an

108 Artificial Intelligence in Wireless Communications

experiment to analyze a few of the more relevant issues. We run with the
two utility functions of (6.8) and (6.9). Another variable is the number of
individuals initialized from the database, so the experiment here looks at the
performance of initializing 0 individuals to the maximum number of members
of the population (20 in this case). The final variable under test is the size of
the case base, where we run the experiment for a case base of 100 cases and
500 cases.

The experiments all used the same GA described previously, and each
run consists of 100 generations. For each change in the CBDT variables,
we use the same knapsack models. One hundred knapsack problems are
first created and stored in files. The case-based system is an implementation
of the cognitive engine with a sensor attached that can either create new
knapsack problems or select a predefined knapsack problem. The cognitive
engine is also associated with the optimization process that runs the knapsack
genetic algorithm. A simple Python program controls the sensor and the
cognitive controller while the optimization GA is run as a separate process.
The Python program initializes the knapsack sensor and cognitive controller,
calls M random knapsacks from the sensor, and then runs the optimization
process for each knapsack model, whereM is the size of the case base. The
random knapsack results are inserted into the case base. This randomized
set is used to compare the performance of the CBDT-GA in a random
environment and to not bias the solutions toward known models. After the
case base is randomized, performance statistics are collected by running the
simulation with the 100 predefined knapsack models. This collection is done
for population initialization of 0 individuals to the population size (20).

Because each knapsack is different, it is important to compare perfor-
mance between the same knapsacks. Some knapsack problems are harder
than others, especially those with smaller maximum weights. The analysis is
then to look at the percent improvement over the base case defined for when
no individuals were initialized. We average the improvements over all 100
knapsacks to see how well the performance was on average. The following
figures show the percent improvement and average performance of each of
these experiments.

Figure 6.6 compares the average percent improvement over not using
initialization for the four test cases. On average, whenM is 100 using the
profit-only utility function of (6.8), the improvement is 5.50% and when using
the weight-profit utility function of (6.9), the improvement is 4.67%. When
M is 500 using the profit-only utility function, the improvement is 4.34% and
when using the weight-profit utility function the improvement is 5.94%.

Figure 6.7 shows the performance while using (6.8) with a case base of
100 items. Figure 6.9 shows the performance while using (6.8) with a case

Decision Making with Case-Based Learning 109

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Initial Population Size

�10�50
5

10

15

20

25

30

35
A

v
e
ra

g
e
 P

e
rc

e
n

t
Im

p
ro

v
e
m

e
n

t
profit-only, 100
profit-only, 500
weight-profit, 100
weight-profit, 500

Figure 6.6 Average percent difference in performance of CBDT-GA to no initialization
(error bars indicate 1 standard deviation from the sample mean).

0 10 20 30 40 50 60 70 80 90
Knapsack Model Number

�60�40�20
0

20

40

60

P
e
rc

e
n

t
Im

p
ro

v
e
m

e
n

t

Initialized
PopulationAverage

0
2
4
6
8
10
12
14
16
18

Figure 6.7 Percent difference in performance of CBDT-GA with M=100 and a profit-
only utility function.

base of 500 items. Figure 6.8 shows the performance while using (6.9) with a
case base of 100 items. Figure 6.10 shows the performance while using (6.9)
with a case base of 500 items. In each of the percent improvement figures, the

110 Artificial Intelligence in Wireless Communications

0 10 20 30 40 50 60 70 80 90
Knapsack Model Number

�60�40�20
0

20

40

60

P
e
rc

e
n

t
Im

p
ro

v
e
m

e
n

t
Initialized
PopulationAverage

0
2
4
6
8
10
12
14
16
18

Figure 6.8 Percent difference in performance of CBDT-GA with M=100 and a weight-
profit utility function.

0 10 20 30 40 50 60 70 80 90
Knapsack Model Number

�60�40�20
0

20

40

60

P
e
rc

e
n

t
Im

p
ro

v
e
m

e
n

t

Initialized
PopulationAverage

0
2
4
6
8
10
12
14
16
18

Figure 6.9 Percent difference in performance of CBDT-GA with M=500 and a profit-
only utility function.

lighter circles represent larger initialized populations while the black boxes
represent the base case where no individuals were initialized from the case
base.

These results show some interesting aspects about the CBDT technique.
First, the technique does not show improvement using a larger case base

Decision Making with Case-Based Learning 111

0 10 20 30 40 50 60 70 80 90
Knapsack Model Number

�60�40�20
0

20

40

60

P
e
rc

e
n

t
Im

p
ro

v
e
m

e
n

t

Initialized
PopulationAverage

0
2
4
6
8
10
12
14
16
18

Figure 6.10 Percent difference in performance of CBDT-GA with M=500 and a
weight-profit utility function.

when using the profit-only utility function. When using a larger case base,
we suspect that the larger amount of experience and knowledge represented
in the case base is more likely to include a better representation of the new
problem. This is the situation when using the weight-profit utility function but
not the utility-only function. These results suggest the significance of using
the proper utility calculation when selecting the case from the case base.

To explain this trend farther, we present the optimal (or near-optimal)
results of each of the knapsack models used in this analysis in Appendix E.
Two significant models stand out: model 62, which has an optimal profit of
0.086188, and model 63, which has an optimal profit of 0.095681. These
are both small profits and therefore difficult problems to solve by finding a
small subset of items to fit in the knapsack and produce a large profit. The
results of the case-based initialization show that the average improvement for
model 62 with the profit-only function with 100 cases is 0.42%, with 500
items is -22.04%, the weight-profit function with 100 cases is -2.07% and with
500 cases is 26.82%. The same averages for model 63 are 26.49%, -0.33%,
13.67%, and -12.48%.

These numbers indicate that the selection of cases can have a significant
impact on the results. Specifically, the initialized population will direct the
genetic algorithm by offering good initial solutions. These solutions will
dominate the population, and their genes will dominate during selection and
reproduction. If these genes had a high utility in a previous, similar solution,
they may well exist in a local optimal point in the new problem. The selection

112 Artificial Intelligence in Wireless Communications

pressure exerted on the population drives the solutions into this local optimum
point and not enough mutation or generations occur to break out of this local
optimum before the algorithm finishes. For other problems, the initialized
solutions contain genes that help move towards a better optimum. The fact
that some knapsack models performed better using one utility function than
another suggests that neither utility function is the best representation of the
knapsack utility, although the profit-weight seems to be the better of the two.

The most significant feature of Figure 6.6 is the error bars, which
represent 1 standard deviation from the mean. The standard deviation shows
a significant variability in the success of the case-based initialization. The
previous discussion about models 62 and 63 show why this variation exists;
many problems have various success rates when applying the case-based
procedure. Some problems are more easily solved then others, and the state of
the case base affects how useful the initialization is to solving the problem.
Sometimes, the case-based system shows significant improvement but not
other times. Importantly, though, the average improvement is always positive.

Although not successful for all cases and problems, on average, the
case-based approach does improve the performance of the genetic algorithm.
The population initialization sometimes leads to massive improvements in
the fitness of the solution after only a few generations. Some cases proved
more difficult than others, and the case-based approach sometimes lead to
decreased fitness values. These graphs and the trends established by them
suggest some areas where the case-based system can improve to provide better
overall performance.

A number of advances to this basic system are possible. Some problems
show significant performance improvements by feeding in previous solutions
while others do not. One improvement is the use of performance trends.
For this, the implementation of the case base as a database offers many
advantages. As Figure 6.3 shows, each solution in the case base is linked to a
separate table that holds the fitness information. The case base can then hold
many fitness values for each case and track the performance when the case is
selected to initialize the optimization algorithm. If the fitness does not improve
over a few runs, the decision maker can take steps in the future. When working
with a genetic algorithm, these steps could include increasing the population
size or altering the crossover or mutation rate.

Furthermore, tracking performance could show the decision maker that
performance is not significantly improving during optimization. Given a high
utility, the decision maker can assume the solutions in the case base are
already near their optimal performance. In this case, the decision maker could
opt to skip the optimization process or perform optimization for the new

Decision Making with Case-Based Learning 113

problem but with smaller population sizes, optimization run times, or other
aspects that reduce the computational and time requirements of the algorithm.

Even more flexibility comes from the definition of the similarity and
utility functions. Developing an understanding of the problem might help
the decision maker select a different utility function when faced with a
particular problem. In another potential change, the selection criteria used
when selecting multiple cases from the case base simply found the best case
and selected those around it. A better approach might be to find and use the
N best cases, which will result in a set of solutions more properly tailored to
the new problem.

6.5 Cognitive Radio Example Problem

In Chapter 3, we discussed how many different voice and data standards
that are proliferating around the world for mobile phone use. Among these
are the standard voice waveforms like CDMA and GSM. More exciting are
the data waveforms such as Bluetooth, WiFi, Worldwide Interoperability
for Microwave Acess (WiMAX), Long Term Evolution (LTE), and High
Speed Packet Access (HSPA). Due to customer demand and deployment
plans, wireless carriers do not support all standards, and different carriers
will support better access in different areas. Mobile phones provide many
different protocols including Bluetooth, WiFi, and a few different cellular
standards in different bands. These are generally calledquad-mode phones
andsmart phones. The customers usually pay a premium to buy the phones
and the service plans. Already, our mobile phones switch between roaming
and nonroaming carriers and change between a small subset of possible
protocols. These selections are performed by the radio itself, sometimes with
specific rules provided by the user, such as to save cost by never roaming.

Besides differences in service provided by the carriers, different
standards offer various levels of service quality. Among the big differentiators
are the range of the data rates available and the latency of the network.
WiMAX, for example, has a higher latency than LTE, making LTE more
applicable to voice communications.

We want our radios to be capable of all of these waveforms and modes
of service and to automatically select the service based on some quality
of service metrics. We have so far discussed technical quality of service
measures, such as speed, error rates, and power consumption. Another very
important input to a consumer’s decision-making method is the cost of the
service. This concept has been addressed in many of the papers published in
the IEEE DySPAN symposia, including [8].

114 Artificial Intelligence in Wireless Communications

Table 6.1
Comparison of Mobile Data Service Technology

Technology Throughput Latency Power Cost
CDMA / 1×RTT 144 kbps High Low Med.
CDMA / EV-DO 3.1 Mbps Med. Med. Med.
GSM / GPRS 114 kbps High Low Low
GSM / EDGE 236.8 kbps Med. Low Low
UMTS / HSPA 14.4 Mbps Low Med. Med.
802.11b 11 Mbps Med. Med. Low
802.11g 54 Mbps Med. Med. Low
WiMAX 75 Mbps Med. High High
LTE 2×2 172.8 Mbps Low High High
LTE 4×4 326.4 Mbps Low High High

In our scenario to establish a decision-making model for cognitive
radios, we have to make a few assumptions. First, let us assume that there is a
practical method of micropayments established between all mobile carriers
such that the cognitive radio can purchase service for a small amount of
time. This scenario does not assume or analyze anything related to spectrum
auctions or price bargaining [9]; instead, the service provider offers the
consumer a specific price for using their service over a specified length of
time. We also assume that not all service providers or services are available in
all geographic locations.

Table 6.1 reflects some of the information the cognitive radio can use to
make its decisions for which service is most suitable to an application. The
throughput values listed in the table are the published theoretical maxima for
the technology, although we know that no one subscriber unit could achieve
these values. We list them in this way as a way to allow comparison between
the different waveforms. The latency, power, and cost are listed qualitatively
as low, medium, or high for comparison purposes. Power can depend on the
handset in use, and cost and latency depend greatly on the service provider.

With no previous experience, a radio can use Table 6.1 to make a
decision on what technology to use for a given application’s needs. Here are
some examples: use LTE for streaming live video, WiMAX for emailing a
proposal, or any of the lowest power and cost services to send a grocery list.
However, not all services will offer every technology at a given location, and
different services will exhibit different performance. The differences could be
due to poor network management, heavy user capacity, or geographic effects
on the signal propagation. These facts can not be known in advance from
just the information about the technology. This kind of knowledge must be

Decision Making with Case-Based Learning 115

Figure 6.11 Case representation of the cognitive radio case-based decision maker
for service selection.

taught or learned from experience over time. Experience can show that a
given service is highly time- and location-dependent. Peak traffic times and
poor signal quality can lead to more dropped calls, more blocked calls, and
increased latency in the network.

We can use a case-based decision making engine to solve these
problems. The case base can learn about service utility, such as the probability
of a dropped connection or slow service. The case base would have to
be programmed based on observable network performance. The case base
would update its information for a given network connection, including the
network speed and latency and experience with lost connections. All of this
information would have to be tagged with the given time and location. The
case base would look like Figure 6.11.

Given the knowledge represented in the case base, the decision maker
must be able to use it in order to determine which service to use for its current
application. Using the similarity and utility function analysis we developed,
we must now extend these functions for the given problem.

The similarity is determined by the environment. The environment
consists of the time of day, day of the week, location, and available service
providers. This is another multidimensional problem, so the problem is to
figure out how to combine the information to produce an understanding of the
similarity. Service at the same time of day on a weekday in any given city
might have similar problems due to heavy network use. At other times, usage
patterns can be specific to certain locations, such as the difference between
urban and rural roads.

In our academic exercise here, we have to recognize that this kind
of similarity analysis is very difficult without surveying and modeling the
influences of location and time. To simplify the scenario, we will break the
concepts down to simple measurements of location in the form of longitude
and latitude and time in the form of the time of day and day of the week.
Further investigation could help tie in concepts like location diversity, such
as the difference between rural, suburban, and urban areas. The similarity
function of (6.10) compares the time and location by calculating an error
between the current location,d(p), and the location of the case,q, in the case

116 Artificial Intelligence in Wireless Communications

base,d(q). The time of day is calculated similarly as an error between the
current time,t(p), and time in the case base,t(q). The day of the week is
handled differently in that the similarity is 1 if the day of the week,D(p), is
the same as the day of the week in the case base,D(q). Otherwise, it is 0. A
more complicated model could have a partial similarity that equates to 0.5 if
D andD(q) are both weekdays or both weekends.

s(p, q) = 1 − 1
3

(

|d(p)−d(q)|
d(q) + |t(p)−t(q)|

t(q) + (1 − D∆)
)

D∆ =

{

1 D(p) = D(q)
0 D(p) 6= D(q)

(6.10)

The utility is based on the observables of the network service and is
maximized by higher throughput, lower BER, latency, dropped calls, and
blocked calls. This is related to the multiobjective problem where these
different values cannot be directly compared or combined due to differences
in scale and importance to the situation. On the other hand, this problem is
constrained to known services, so unlike the general cognitive radio system,
we have a known set of parameters and values. While knowledge is being built
up by the case base, the system selects services based on the required QoS, so
it has already primed the decision making with known desired values. We will
ignore the BER and treat the throughput as an indirect measure of this value.
We can use this fact to build the utility measure of future systems. For each
serviceq in the case base, the cognitive radio measures the performance, such
as average throughput,̂R(q), and latency, ˆL(q) during the connection. These
values are directly comparable to the advertised service of the case,Rs(q)
andLS(q) for the throughput and latency, respectively. The radio would also
keep track of the number of dropped calls,CD(q), and blocked calls,CB(q),
to calculate a percentage of each value occurring over the total number of
connections made or attempted,C. The utility function in (6.11) can be built
from the knowledge and assumptions. This function sums the error between
the actual service and the proposed service as well as the percentage of
dropped and blocked calls. The closer to 1, the better the utility of the service.

u(q) = 1 − 1

4

(

|R̂ − Rs(q)|
Rs(q)

+
|L̂ − Ls(q)|

Ls(q)
+

CB

C(q)
+

CD

C(q)

)

(6.11)

An aspect of the case-based approach that should become obvious as
we discussed this example is the ability to use knowledge developed from
other users to augment our own. Our example has discussed the use of past

Decision Making with Case-Based Learning 117

information at different times and different locations. To individually build up
enough information to make good, informed decisions could take a long time.
If, however, other users who have also been developing similar information
can share this, then the aggregate information built among all radios is more
useful. There is of course security issues with this, such as poisoning the case
base.

6.6 Conclusion

In this chapter, we introduced the concept of using feedback in the
optimization process to aid future optimizations. We used the concept of
case-based decision theory as the mechanism for producing the feedback.
When one problem is optimized, the solution is fed back into a case base that
stores the solution, results, and problem. When a new problem is received,
the decision maker looks for similar problems in the case base that exhibit
a high utility. The previous solutions stored in the case base are then fed to
the optimization process. We examined how this technique is applied to the
cognitive engine to build up knowledge and learn from experience.

To demonstrate the concept, we employed the case-based learning
system to the simple knapsack problem. The results showed an overall
performance benefit from the implementation. They also showed that there
are still significant gains to be made by further studying this technique as
well as a number of parameters that can be adjusted. The case base size,
as well as the number of cases used to seed the optimization algorithm,
can be changed for different results. More importantly, the results in this
chapter showed that the definition of the utility function can have a great
impact on the performance. We suggest that the similarity function would also
produce a large performance difference. With the knapsack problem, we only
present one similarity function that made sense for this problem, but for more
complicated problems, different similarity rankings may be possible and so
must be studied.

There are also advances from this concept beyond these algorithm
adjustments. As we discuss at the end of this chapter, this method introduces
other aspects of learning, such as using performance trends to build up
confidence or alter behavior. This concept offers a number of significant
advantages to online optimization processes, especially when strict time limits
must be imposed. Because of this, case-based learning provides significant
potential for use with the cognitive engine where problems require solutions
quickly as situations and environments change.

We will show the results of using case-based learning in the cognitive
engine in Chapter 8. First, however, we discuss a bit more theory and design

118 Artificial Intelligence in Wireless Communications

of the cognitive engine. Chapter 7 covers some important topics of looking
at the cognitive engine within a network of radio nodes. The cognitive
engine develops a waveform that all nodes on the network will then need
to use. The next chapter discusses potential methods for coordinating the
networks and distributing the information among the nodes. We also provide
a brief discussion of the concept of using distributed algorithms to improve
performance and decision making.

References

[1] T. W. Rondeau, B. Le, D. Maldonado, D. Scaperoth, A. B. MacKenzie, and C. W. Bostian,
“Optimization, Learning, and Decision Making in a Cognitive Engine,”Software Defined
Radio Forum Technical Conference, 2006.

[2] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning,
Reading, MA: Addison-Wesley, 1989.

[3] C. L. Ramsey and J. J. Grefenstette, “Case-Based Initialization of Genetic Algorithms,”
Proc. Fifth Int. Conf. Genetic Algorithms, 1993, pp. 84 – 91.

[4] T. R. Newman, R. Rajbanshi, A. M. Wyglinski, J. B. Evans, and G. J. Minden,
“Population Adaptation for Genetic Algorithm-Based Cognitive Radios,”IEEE Proc.
Cognitive Radio Oriented Wireless Networks and Communications, Aug. 2007.

[5] I. Gilboa and D. Schmeidler,A Theory of Case-Based Decisions, Cambridge: Cambridge
University Press, 2001.

[6] J. Kolodner,Case-Based Reasoning, San Mateo, CA: Morgan Kaufmann Pub., 1993.

[7] C. J. Rieser, “Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed
Genetic Algorithms for Secure and Robust Wireless Communications and Networking,”
Ph.D. diss., Virginia Tech, 2004.

[8] S. Ball, A. Ferguson, and T. W. Rondeau, “Consumer Applications of Cognitive Radio
Defined Networks,”IEEE Sym. New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), 2005, pp. 518 – 525.

[9] L. Doyle and T. Forde, “Towards a Fluid Spectrum Market for Exclusive Usage Rights,”
IEEE Sym. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2007, pp.
620 – 632.

7
Cognitive Radio Networking and
Rendezvous

A final challenge to enable the cognitive radio system’s basic functionality is
the ability to transmit the cognitive engine’s information and solutions among
the nodes operating on the network. We have analyzed the cognitive engine
from the internalized view of optimizing a waveform. The next item to address
is the method by which a cognitive radio acts as part of a network.

A cognitive network is more than a network of cognitive radios. It
exhibits distributed intelligence by configuring and adapting individual nodes
to meet a dynamic set of network-level goals. The behavior responds to goals
of the radio users but is not controlled by any individual node in the network.
Within the networks constraints, they configure themselves to best meet their
own users’ needs.

At the time we prepared this book for publication, cognitive networking
was in its infancy. Practical developments consisted largely of a few nodes
controlled by a single cognitive engine or else were limited to DSA
applications in which nodes share a central database. There were lots of
speculative proposals for optimization at the network level, emergent behavior
or swarm theory as models for cognitive networking, and so forth. We debated
omitting this chapter, but we decided to include it as a summary of where the
field stood in late 2008.

The most basic implementation is an autocratic method of cognitive
radio network development. In this method, one radio develops a waveform
and pushes it out to the nodes for them to use. The biggest challenge to
enabling this mechanism is the need to establish communications among all
nodes before the radio can communicate the new waveform. Developing this
theme further, the autocratic method falls short of realizing the full potential

119

120 Artificial Intelligence in Wireless Communications

of a cognitive radio network. When one cognitive radio develops a waveform,
it has developed it to optimize its internal goals for its perceived channel
conditions. The other radios on the network may not share these conditions,
and so one radio’s optimized waveform may not be the same as another
radio’s. We briefly discuss this with respect to the literature of game theory
and cognitive networks that have been working on this issue.

A further enhancement to the cognitive radio design is not only to
distribute the waveform information, but also the use of the network nodes to
enhance the optimization process. Each cognitive radio in a network has the
ability to cooperatively optimize through the use of distributed and parallel
processing. We end this chapter by addressing some of the very basic aspects
of these techniques with respect to enhancing the genetic algorithm.

This chapter addresses cognitive radio networks, and each of the topics
discussed here are full research endeavors on their own. Our aim in this
chapter is to develop the basic system to deliver waveforms across a network
and present the research areas involved and the advances this topic has to offer.

7.1 Waveform Distribution and Rendezvous

The simplest approach to enabling communications among cognitive radio
nodes is through a static control channel. In the first scenario under this model,
the radios in a network are currently in communication with each other. One
or more of the cognitive radios then develops a new waveform that improves
communications. Under this condition, the radio can simply pass the new
waveform to the radio nodes using the current channel. This method is a form
of in-band signalingand can use a different logical control channel over the
same physical channel to send configuration information. This type of control
information is commonly used in home networking systems like IEEE 802.11,
where connection and configuration data use the same frequency channel but
a simpler, more robust modulation scheme.

In another scenario, the radios in the network are not able to com-
municate with each other due to degradation in the channel such as
increased interference or environmental changes. In this case, the radios
would have to use another physical channel known to all radios to reestablish
communications. This is a form ofout-of-band signaling, where the radios
use a separate physical channel to communicate control information. This
concept is commonly used in cellular communications systems. The control
channel is defined to use simple, robust waveforms on which all nodes are
capable of communicating. In the worst case, if the cognitive radio nodes
lose communications, they can revert to the control channel and wait for the
new waveform information and then reestablish communications. The control

Cognitive Radio Networking and Rendezvous 121

channel is also used to begin communications when a node wants to join a
network that might be using any waveform or any frequency. The control
channel allows the new node a way to communicate with the network and
initialize communications. This concept is often referred to asrendezvous:
the method by which a radio hails and enters a network.

Ideas and implementations for rendezvous are receiving a lot of attention
for cognitive radio network coordination and many papers of recent dynamic
spectrum and cognitive radio conferences discuss this. Both the 2005 and
2007 IEEE DySPAN conference proceedings contain a number of such
papers; for example, see [1, 2, 3].

Static control channels, while easily implemented, are problematic
because they are easily jammed and rendered useless. More innovative ideas
involve dynamic control channels, which still require coordination among the
nodes to determine where the control channel is. A few proposals have been
shown that remove the control channel from the rendezvous model and instead
use physical layer descriptors to identify radios and enable rendezvous. Sutton
et al. [4] shows the use of embedded cyclostationary signatures in OFDM-
based systems that can identify a network and coordinate access. Because
the signature is embedded in each OFDM symbol transmitted, the system
does not need to transmit particular frames or switch channels to enable the
network identification and coordination. Horine [5] proposes a technique to
search for clear channels, transmit a beaconing signal, and wait for a response
while other radios scan for the particular beacon. This concept is similar to
Bluetooth’s inquiry and connection states. The beacon is shaped in frequency
to identify the node or network. Unfortunately, since the detection is based on
FFT amplitude, there is no offered explanation of how the approach will work
in multipath or fading channels.

There is significant interest and work progressing in cognitive radio
rendezvous. Because of its simplicity of implementation and the currently
available SDR capabilities, we have implemented the static control model
to enable our experiments with the cognitive engine. The cognitive engine
first tries to contact the other radio nodes on the current channel; if they
do not respond, the radio reverts to a known control channel and waveform
where the other nodes, having likewise lost their connection, will wait. The
new waveform information is then transmitted to the nodes after which they
reconnect using the new settings.

7.2 Cognitive Radio Networks

The static control channel model where waveforms are pushed to the radios is
currently used in the our cognitive engine implementation for lack of a better

122 Artificial Intelligence in Wireless Communications

solution. This method also ignores the possibility that a waveform created by
one radio does not work for another radio. In a heterogeneous network, some
nodes may be incapable of using the particular waveform. Even if all nodes
are capable of using the specified waveform, other aspects of the waveform
may perform badly for certain nodes. A major issue often discussed is the
hidden node problem. A radio that is unseen by the cognitive radio designing
the waveform might be in close proximity to another node on the network.
The new waveform, while good for the designing node, causes interference to
the other nodes.

Research in cognitive networks, such as the work by Thomas et al. [6, 7],
attempts to address this issue by looking at end-to-end performance. From this
perspective, the cognitive network uses objective functions that optimize with
respect to the network performance. In [6], they use a game theory approach to
optimize an ad hoc network with respect to power and channel control. Game
theory has been widely studied for wireless network optimization to look for
optimal states for all nodes, or aNash equilibrium. Neel provides an extensive
discussion and analysis of game theory for cognitive radio [8].

7.3 Distributed AI

Another benefit from looking at the whole network instead of single node
adaptation is the advantage of the available processing power capabilities
of each node. Parallel processing has often been used advantageously in
computer science, and with the move towards multicore processors, it is
likely a subject that will continue to receive attention. Some algorithms have
shown themselves to be easily separable for processing portions on different
processors, and genetic algorithms are among these. Goldberg cites many
methods that take advantage of the populations of a GA in a distributed sense
[9].

A particularly popular technique is to split the population among
different processing elements to create “islands” of populations. Each
population is independently optimized, and the populations of optimized
chromosomes are combined, compared, and a winner is selected. Populations
can also migrate between islands to share genes. Alba provides a background
on parallel genetic algorithms by applying them to find appropriate error-
correcting codes and antenna placement in a radio network [10]; these
applications are particularly interesting in light of our work. Other literature
on this topic looks more closely at the mechanisms at work in the migration
and populations [11] as well as other types of parallelization of GAs [12, 13].

When applying a parallel genetic algorithm to an online learning system
such as a cognitive radio, there are many questions that need to be addressed.

Cognitive Radio Networking and Rendezvous 123

The parallel GAs have some form of migration, or sharing, of population
members to perform the global analysis of the results to find a solution.
The implementation of migration should be designed to consider the required
network overhead. Another issue is that cognitive radio networks are dynamic
where nodes can come and go at random. Most parallel GAs are studied
under the assumption that the network of processing elements was established
for this task. Instead, a parallel GA in a cognitive radio network performs
the parallelization as a secondary process to its normal communications.
The algorithm must be implemented with respect to the dynamics of the
network and robust against the loss of processing nodes. Distributed AI offers
significant potential to improve the global solutions and reduces the time and
power required by any individual node, but these are some of the issues around
which such a distributed system must be implemented.

7.4 Conclusions

While giving few answers, we have discussed some important considerations
in the future development and deployment of cognitive radios in this chapter.
A network of cognitive radios must include methods by which to transfer
waveforms among all nodes as well as take into consideration the needs of
other nodes when designing new waveforms. The networking aspect itself
opens up the potential to use distributed and parallel processing to enhance
cognition in the network. In any case, consideration must be given to the
overhead required on the network to transfer the information related to the
cognitive radio performance and network maintenance.

For the practical purposes of the experiments in the next chapter, the
method used for node control is a simple push method from one node
to the others when it develops a new waveform. Furthermore, a default
waveform provides a fallback channel and modulation for the nodes to use
if communications is lost.

References

[1] J. Perez-Romero, O. Sallent, R. Agusti, and L. Giupponi, “A Novel On-Demand
Cognitive Pilot Channel Enabling Dynamic Spectrum Allocation,”IEEE Proc. DySPAN,
2007, pp. 46 – 54.

[2] C. Cordeiro and K. Challapali, “C-MAC: A Cognitive MAC Protocol for Multi-Channel
Wireless Networks,”IEEE Proc. DySPAN, 2007, pp. 147 – 157.

[3] J. Zhao, H. Zheng, and G. Yang, “Distributed Coordination in Dynamic Spectrum
Allocation Networks,”IEEE Proc. DySPAN, 2005, pp. 259 – 268.

124 Artificial Intelligence in Wireless Communications

[4] P. D. Sutton, K. E. Nolan, and L. E. Doyle, “CyclostationarySignatures for Rendezvous
in OFDM-Based Dynamic Spectrum Access Networks,”IEEE Proc. DySPAN, 2007, pp.
220 – 231.

[5] B. Horine and D. Turgut, “Link Rendezvous Protocol for Cognitive Radio Networks,”
IEEE Proc. DySPAN, 2007, pp. 444 – 447.

[6] R. W. Thomas, R. S. Komali, A. B. MacKenzie, and L. A. DaSilva, “Joint Power and
Channel Minimization in Topology Control: A Cognitive Network Approach,”IEEE
ICC, Jun. 2007, pp. 6538 – 6543.

[7] R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKenzie, “Cognitive
Networks: Adaptation and Learning to Achieve End-to-End Performance Objectives,”
IEEE Communications Magazine, Vol. 44, No. 12, pp. 51 – 57, Dec. 2006.

[8] J. Neel, “Analysis and Design of Cognitive Radio Networks and Distributed Radio
Resource Management Algorithms,” Ph.D. diss., Virginia Tech, 2007.

[9] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning,
Reading, MA: Addison-Wesley, 1989.

[10] E. Alba and J. M. Troya, “A Survey of Parallel Distributed Genetic Algorithms,”
Complexity, Vol. 4, No. 4, pp. 31 – 52, 1999.

[11] W.-Y. Lin, T.-P. Hong, and S.-M. Liu, “On Adapting Migration Parameters for Multi-
Population Genetic Algorithms,”IEEE Proc. Systems, Man and Cybernetics, 2004, pp.
5731 – 5735.

[12] J. P. Cohoon, W. N. Martin, and D. S. Richards, “Punctuated Equilibria: A Parallel
Genetic Algorithm,”Proc. Int. Conf. Genetic Algorithms, 1987, pp. 148 – 154.

[13] L. Chambers,Practical Handbook of Genetic Algorithms: New Frontiers, Boca Raton,
FL: CRC Press, 1995.

8
Example Cognitive Engine

Over the past few chapters, we have been building up the design of our
cognitive engine. We now present an implementation of the cognitive engine
along with examples in both simulation and over-the-air experiments. We
develop the experiments in four parts: a simple use of the genetic algorithm to
design waveforms in the simulation environment, addition of the interferers to
the example, the use of the case-based decision theory feedback mechanism,
and finally the application of the cognitive engine over the air.

One of the major problems we have to address when presenting the
results is the lack of a definitive mechanism to compare results. Unlike the
knapsack problems presented previously where only one metric represents
how successful the optimization was, the results here are multidimensional.
Furthermore, for the complex environments, many potential solutions exist
to produce desired behavior, and the random, nontractable behavior of the
genetic algorithm may yield different waveforms giving the same results. To
work through this, we build up the simulation analysis slowly, introducing
new objectives each time for specific purposes and showing the behavior of
the genetic algorithm by plotting the performance of each objective over the
generations. The trends exhibited in these graphs will indicate the response of
the optimization across the different objectives. As the number of objectives
increases, the distribution of the solutions along the Pareto front becomes
more difficult to see. Therefore, the early trend graphs are designed to show
the success in the optimization method while later results will be measured
more empirically. Finally, all graphs of the same objective functions are
plotted using the same range so each can be compared to the others.

125

126 Artificial Intelligence in Wireless Communications

8.1 Functional System Design

While in the previous chapters, we discussed the theory behind the system
design and explained how the different systems work together, in this section,
we review the full design of the cognitive engine package. Figure 2.3
showed the generic cognitive engine system featuring its major components.
Figure 8.1 shows the specific implementation of the cognitive engine for the
simulations. Note that the verification system has been removed from these
simple experiments. Since we are focusing on the optimization of waveforms,
under the simulation environment, we have no need to add policy decisions.
Later, we will show some experiments done under specific regulatory
constraints and how the cognitive engine responds to these conditions.

Figure 8.1 CWT’s cognitive engine implementation for the simulated experiments.

First, each of the sensor components is instantiated; these include the
meters, the objectives, and the PSD sensors. The meters sensor provides
information about the performance of the radio by “reading the meters.” The
objectives sensor provides information gathered about the QoS requirements
of the user and the application, and it indicates the objectives to use
in the analysis. The PSD sensor provides information about the external
interference environment, or power spectral density of the spectrum. The

Example Cognitive Engine 127

XML representation of the information from all of these metersis provided in
Appendix D.

Next, the optimization component needs to be instantiated. Like the
sensors, this is a state machine process that listens for a connection and a
request to process data from the cognitive controller. When this happens, the
cognitive controller passes a number of items to the optimization process
which is either required for processing or adds information to help in the
optimization. In this case, the optimization routine is the WSGA, which
requires the set of algorithm parameters, the problem definition, and the
chromosome definition. The parameters are the operating parameters such
as the population size, the crossover and mutation rate, and the termination
conditions such as the maximum number of generations. The problem
definition describes the optimization evaluation. For the WSGA, the problem
statement is the set of objective functions to use, such as BER or throughput
(see Chapter 4), and the weight of each objective. Finally, the chromosome
definition describes the radio hardware. The chromosome is a binary vector
that represents the search space; in the WSGA, the search space is the set of
radio knobs. The DTD and XML description of the waveform (see Appendix
D) provide the mechanism to map between the chromosome and the radio
knobs. This process is discussed in more detail in Chapter 5.

Three extra pieces of information can also be sent to the optimization
process. The first are previous solutions used to seed the population from the
case-based decision maker. Also, the radio environment map can be sent to
the optimizer to help it understand the interference environment. This can
then assist with the waveform design like the center frequency and bandwidth
of the signal. The cognitive controller can also send the results of the meters
sensor describing the measured noise power and path loss, which are useful in
determining the parameters such as required transmit power and modulation
type for the current conditions. The optimization process can run without any
of these three pieces of information, but each is meant to help inform and
guide the optimization process for better performance.

The radio framework then needs to be instantiated. The framework, as
described in Chapter 2, provides the translation between the cognitive engine’s
representation of the waveform and the radio platform. In this case, it parses
the XML waveform representation and creates a GNU Radio flow graph.

When instantiated, the cognitive engine associates itself with the
sensors, optimization process, and radio framework that are part of the
cognitive engine. A simple XML file tells the cognitive controller what
systems are present and how to contact them. Each sensor is first contacted
and stored as a component associated by a specific name for the sensor, so
there can be any number of sensors attached at any given time. Only one

128 Artificial Intelligence in Wireless Communications

optimization and radio framework are currently supported at atime. The
cognitive engine can also describe the policy engine interface, if one exists,
and it configures the user interface. Currently, the decision maker and case-
based systems are integrated with the cognitive controller, but these should be
separated to allow different implementations. When this happens, the decision
maker, too, will associate with the cognitive controller in this standard way.

When a component is associated, the cognitive controller requests the
XML and DTD files used by the component to describe its information. These
files are used to build the representation in the case base and store the results of
each component, like the optimization results or the sensor data. It is exchange
of information that necessitates the instantiation of the components before the
controller.

Below, we show a simple Python script that acts as the user interface to
control the cognitive engine. The command structure is simple:

<component>:[name]:<command> [extra parameters]

The componentis one of the major components, such as “sensor” or
“optimizer.” The name is only required for the sensors to describe which
sensor the command is to be passed to, such as “meters” or “objectives.” The
commanddescribes action requested from the component, such as “collect”
to request data from the sensor or “optimize” to tell the optimization process
to run. The final optionalextra parameterscan be additional information to a
component for its processing, such as a frequency range for the PSD sensor to
scan.

The control script performs the actions listed here:

1. Run the radio system;
2. Collect the meters and PSD;
3. Collect the objectives;
4. Search for previous solutions in the case base;
5. Run the optimization process given the problem definition, the

chromosome definition, the GA parameters, the radio environment
map and meters, and the previous solutions;

6. Receive the optimized waveform and simulated results and store these
in the case base;

7. Run the new waveform on the radio in the environment;
8. Collect the new meters and compare the performance.

Example Cognitive Engine 129

8.2 Simple Simulations

The simple simulation environment uses an AWGN channel with a free-
space path loss shown in (8.1) wheren = 2, GT = GR = 0, c is the speed
of light in meters per second,d is the distance between transmitter and
receiver in meters,PT is the transmitted power in dBm, andPR is the received
signal power in dBm. The path loss is implemented by using a frequency of
780 MHz. We chose this frequency because of the significant interest in this
spectrum and the FCC 700 MHz spectrum auction that took place in early
2008. The distance was set for this frequency to provide a path loss of about
-22 dB, or about 1 wavelength.

PR = PT + GT + GR − n10log10

(

4πdf

c

)

(8.1)

The simulation ran 100 kB, or8 × 105, bits through the transmit-receive
chain, which will provide adequate representation of the BER where1 × 10−6

is considered the lowest threshold and most of the simulations were designed
for higher BER than this. The objective function calculation was the simple
lin-log of (5.2).

8.2.1 BER-only

In the following tables, we abbreviate the columns for bit error rate (BER),
signal to interference plus noise ratio (SINR), throughput (Thr.), bandwidth
(BW), spectral efficiency (Spec. Eff.), interference power (Int.), power
consumption (Pwr.), and computational power (Comp.). Table 8.1 shows these
values for the BER-only test. The results of the test are listed in Table 8.2.

Table 8.1
Objectives: BER-Only Test

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

1.00 N/A N/A N/A N/A N/A 0.00 N/A

Figure 8.2 shows the performance of the BER and power objectives
over the generations of the genetic algorithm. These plots show the expected
behavior of the objectives as the BER objective is optimized. The power
objective, while calculated, had a weight of 0, so it did not factor into the
preference of the algorithm. We use the calculation here to show how the two
objectives are traded off under the performance criteria. The BER curve has
a steady negative slope for the best performing individuals while the power
increases as a direct result of minimizing the BER.

130 Artificial Intelligence in Wireless Communications

Table 8.2
Waveform Settings and Results: BER-Only Test

Knob Settings

Modulation BPSK
Tr ansmit power (dBm) 19.08
Symbol rate (sps) 0.250
Pulse shaping RRC, 0.86
Normalized frequency −0.620
Packet size 171

Meters Sim. Result

BER 1.18 × 10
−7

SINR (dB) N/A
Spec. Eff. (bps/Hz) N/A
BW (Hz) N/A
Throughput (bps) N/A
Interference (dBm) N/A
Power (dBm) 19.08
Computation (ticks) N/A

Obs. BER 0

0 50 100 150 200 250 300 350 400
Generation

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

5

10

15

20

25

30

E
IR

P
 (

m
W

)

Max. Envelope
Min. Envelope

(b) Power

Figure 8.2 Performance curves for BER-only test with plots for objectives (a) BER
and (b) power.

The graphs in Figure 8.2 are simple representations of the graphs we
will be discussing in more complicated, multiobjective scenarios. Even in
this simple simulation, the graphs show the random behavior of the genetic
algorithm that makes them difficult to read. The BER plot shows that even
in later generations, some individuals exhibit large BER due to mutations or
bad crossover. As we introduce more objectives into the experiments, different
optimization forces will cause more complex responses by the GA that make

Example Cognitive Engine 131

these curves even more difficult to follow.

8.2.2 BER and Power (1)

For a more interesting example than the results just presented, in this
simulation, we add the power minimization objective to the algorithm and
lower the BER objective weight as represented in Table 8.3. The algorithm
should now produce a waveform that produces a low BER while not driving
the power to the maximum, and indeed, Table 8.4 shows this exact trend. The
BER is higher than in the previous example and the power is reduced.

Table 8.3
Objectives: BER and Power Test (1)

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

0.75 N/A N/A N/A N/A N/A 0.50 N/A

Table 8.4
Waveform Settings and Results BER and Power Test (1)

Knob Settings

Modulation BPSK
Tr ansmit power (dBm) 12.88
Symbol rate (sps) 0.250
Pulse shaping RRC, 0.22
Normalized frequency −0.807
Packet size 101

Meters Sim. Result

BER 3.28 × 10
−2

SINR (dB) N/A
Spec. Eff. (bps/Hz) N/A
BW (Hz) N/A
Throughput (bps) N/A
Interference (dBm) N/A
Power (dBm) 12.88
Computation (ticks) N/A

Obs. BER 0

One of the more telling aspects of this result is the value of the BER
result of the cognitive engine versus the observed result of using the waveform
on the radio. The simulated BER looks a bit large and suggests that the
algorithm did not perform as well as expected; from the objective function

132 Artificial Intelligence in Wireless Communications

settings, the waveform should more heavily weigh minimizing the BER
to minimizing the power. However, Figure 8.3 shows why this happened.
The BER plots never managed to produce a BER value lower than about
1.0×10−2, even when the power approached the maximum of 20 mW. This is
a result often observed when running the algorithm due to the uncertainty of
the meters sensor. The objective for setting the BER, as discussed in Chapter
4, relies on the approximation of the noise floor and the path loss. As the
results of Appendix F show, the estimation of the SNR can be off by a few
decibels, plus or minus. At the power levels the algorithm is dealing with,
a few decibels can greatly affect the simulated performance, and so a bad
estimate can produce results such as these. However, the actual observed
result of using the waveform showed a much better BER than the simulated
performance, indicating that this was actually a good waveform choice that
produced the proper balance of power to BER. Furthermore, this indicates a
robustness under uncertainty in the system performance.

It does not matter in this case that the information received from the
sensor was incorrect; the algorithm found the proper balance. We have
previously discussed the concept of overoptimization. An error in the meter’s
representation could lead to an artificially increased transmit power to the
detriment of other nearby radios as well as its own power consumption.

0 50 100 150 200 250 300 350 400
Generation

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

5

10

15

20

25

30

E
IR

P
 (

m
W

)

Max. Envelope
Min. Envelope

(b) Power

Figure 8.3 Performance curves for BER and power test (1). As (a) BER and (b) power
are competing objectives, the algorithm must balance them.

8.2.3 BER and Power (2)

To study the behavior a bit further, an interesting question to address is
the effect changes in the weights have on the performance of the cognitive
engine. Using Table 8.5, we dropped the BER weight to 0.5 so that the
optimization process has no preference. Of course, only the relative value

Example Cognitive Engine 133

of the weights matter, so this test would work equally well by setting both
weights to 1.0. The results in Table 8.6 show one extreme of what can happen
in this situation. The power is 0.28 dBm, almost the minimum power available
on the system, but the BER value is terribly large. This results from the lack
of preference and improper shaping of the objective space. Without a real
preference relationship established, one extreme or another is likely to take
over. Other runs under these conditions showed very small BER and large
power values. However, we use this example to illustrate the performance of
the GA in Figure 8.4, which shows interesting performance trends.

Table 8.5
Objectives: BER and Power Test (2)

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

0.50 N/A N/A N/A N/A N/A 0.50 N/A

Table 8.6
Waveform Settings and Results: BER and Power Test (2)

Knob Settings

Modulation BPSK
Tr ansmit power (dBm) 0.28
Symbol rate (sps) 0.750
Pulse shaping RRC, 0.22
Normalized frequency −0.647
Packet size 164

Meters Sim. Result

BER 3.41 × 10
−1

SINR (dB) N/A
Spec. Eff. (bps/Hz) N/A
BW (Hz) N/A
Throughput (bps) N/A
Interference (dBm) N/A
Power (dBm) 0.28
Computation (ticks) N/A

Obs. BER 3.995 × 10
−1

Figure 8.4 shows what happens when two objectives are equally traded
off. The curve in the middle generations shows that during the first hundred
generations the algorithm is looking for a small BER and large power value,
but then more highly fit individuals take over the population and push it in the
other direction. Again, because there is no selection pressure influencing the

134 Artificial Intelligence in Wireless Communications

population away from either extreme, both may be equally fit. Weaddressed
this concern briefly in Chapter 4 in discussing different utility functions.
Replacing the linear summation of weights used in these tests to one of the
utility function might show improvement under these conditions.

0 50 100 150 200 250 300 350 400
Generation

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

5

10

15

20

25

30

E
IR

P
 (

m
W

)

Max. Envelope
Min. Envelope

(b) Power

Figure 8.4 Performance curves for BER and power test (2). Like Figure 8.3(b), the
objectives for (a) BER and (b) power are competing. The selection of the
population can lead to trends that maximize one at the expense of the
other before coming to a compromise.

8.2.4 Throughput

This test analyzes the cognitive engine for optimizing throughput. The
test uses the weights from Table 8.7 and produces the results shown in
Table 8.8 and in Figure 8.5. These results are straightforward, illustrating the
performance of the algorithm to produce a waveform with high data rates
and moderately low bit error rate. The balance is achieved through the trade-
off provided by using the BER and throughput objectives. We discussed this
when defining the throughput objective in Chapter 4.

Table 8.7
Objectives: Throughput

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

0.75 N/A 0.50 N/A N/A N/A 0.50 N/A

8.2.5 Waveform Efficiency

The combination of these objectives leads to the results in Table 8.10 where
the waveform provides the desired balance, perhaps with a BER that is slightly

Example Cognitive Engine 135

Table 8.8
Waveform Settings and Results: Throughput

Knob Settings

Modulation 8PSK
Tr ansmit power (dBm) 15.37
Symbol rate (sps) 1.0
Pulse shaping RRC, 0.56
Normalized frequency 0.229
Packet size 1026

Meters Sim. Result

BER 2.78 × 10
−2

SINR (dB) N/A
Spec. Eff. (bps/Hz) N/A
BW (Hz) N/A
Throughput (bps) 3.0
Interference (dBm) N/A
Power (dBm) 15.37
Computation (ticks) 0

Obs. BER 3.965 × 10
−3

Table 8.9
Objectives: Waveform Efficiency

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

0.90 N/A 0.60 0.50 0.30 N/A 0.40 0.90

larger than it should be. The cognitive engine produced a spectrally small
waveform but did not go to an 8PSK modulation to meet the throughput
objective, as this would have negatively affected the BER and computational
performance. However, the throughput plot from Figure 8.6 shows higher
throughput and symbol rates were tried and rejected in the end while the
spectral efficiency continuously improved. The power and BER curves show
the same trend as in the above example where the middle generations
show trends towards lower BER and higher power. The recurrence of this
property indicates a performance trend in the algorithm. We previously
mentioned concepts of population niching, a concept used to maintain an even
distribution of individuals along the Pareto front. The decline of diversity
in later generations suggests the need for niching to provide the population
diversity that will allow a more complete search and a better set of individuals
on the Pareto front from which to select a solution.

136 Artificial Intelligence in Wireless Communications

0 50 100 150 200 250 300 350 400
Generation

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

5

10

15

20

25

30

E
IR

P
 (

m
W

)

Max. Envelope
Min. Envelope

(b) Power

0 50 100 150 200 250 300 350 400
Generation

0

1

2

3

4

T
h

ro
u

g
h

p
u

t
(b

p
s
) Max. Envelope

Min. Envelope

(c) Throughput

Figure 8.5 Performance curves for throughput test. The (c) throughput objective is
more directly dependent on the modulation and can increase with less
pressure from (a) BER as the (b) power increases.

In none of these problems did the cognitive engine find a waveform
that uses differential modulation. This is actually good, because under no
circumstances in the system provided does a differential modulation make
more sense then a nondifferential modulation. The differential modulations
have about a 2-dB loss in the BER performance, and they do not offer
any benefit in throughput or bandwidth. Their use in real communication
systems is derived from the simpler design requirements for the receiver.
However, in the GNU Radio situation, as discussed in Appendix C, the
differential modulators only add blocks to the flow graph and so increase the
complexity of the system. Therefore, given the current radio platform, there
are no situations that will allow a differential modulation an advantage over
a nondifferential form, but it is important to point out that this only holds
true for the radio platform used. Another platform that implements a simpler
differential receiver might show some benefits under certain conditions of low
battery capacity.

Example Cognitive Engine 137

Table 8.10
Waveform Settings and Results: Waveform Efficiency

Knob Settings

Modulation QPSK
Tr ansmit power (dBm) 5.32
Symbol rate (sps) 0.125
Pulse shaping RRC, 0.10
Normalized frequency −0.674
Packet size 1405

Meters Sim. Result

BER 2.01 × 10
−2

SINR (dB) N/A
Spec. eff. (bps/Hz) 3.64
BW (Hz) 0.069
Throughput (bps) 0.25
Interference (dBm) N/A
Power (dBm) 5.32
Computation (ticks) 5367.67

Obs. BER 2.68 × 10
−3

8.3 Interference Environment

In the next few experiments, we use the full simulation design of Figure 3.5
by introducing the interferers. The radio simulation takes a number to seed
the random number generator, thus allowing us to rerun the simulations with
the different waveforms. Each simulation uses a random number of interferers
from 10 to 15, and the amplitude, frequency, and bandwidth of each interferer
is selected at random. These experiments show the ability of the cognitive
engine to model waveforms that both meet QoS requirements as well as avoid
interferers. We have added a couple of situations that we found illustrated
interesting problems in the cognitive engine because of incorrect information
received from the sensors.

The experiments are performed by first running the radio simulation with
a random seed, collecting the PSD and meters sensor data, reading in the
optimization objectives, building a waveform, then rerunning the simulation
using the same random seed to test the performance of the waveform under
the same simulation conditions.

138 Artificial Intelligence in Wireless Communications

0 50 100 150 200 250 300 350 400
Generation

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

5

10

15

20

25

30

E
IR

P
 (

m
W

)

Max. Envelope
Min. Envelope

(b) Power

0 50 100 150 200 250 300 350 400
Generation

0.0

0.2

0.4

0.6

0.8

B
a
n

d
w

id
th

 (
H

z
)

Max. Envelope
Min. Envelope

(c) Bandwidth

0 50 100 150 200 250 300 350 400
Generation

0

2

4

6

8

10

S
p

e
c
tr

a
l
E
ff

ic
ie

n
c
y
 (

b
p

s
/H

z
)

Max. Envelope
Min. Envelope

(d) Spectral Efficiency

0 50 100 150 200 250 300 350 400
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
h

ro
u

g
h

p
u

t
(b

p
s
)

Max. Envelope
Min. Envelope

(e) Throughput

0 50 100 150 200 250 300 350 400
Generation

0

10000

20000

30000

40000

50000

C
o
m

p
u

ta
ti

o
n

 (
C

P
U

 T
ic

k
s
)

Max. Envelope
Min. Envelope

(f) Computational complexity

Figure 8.6 Performance for waveform efficiency test with plots for objectives (a) BER,
(b) power, (c) bandwidth, (d) spectral efficiency, (e) throughput, and (f)
computational complexity. The GA searches through a large number of
solutions with different objectives dominating at different times before
converging to compromised solutions by the final generations.

8.3.1 Interference (1): Simple BER Tests

The first, simplest test under these conditions is to ask the cognitive engine
to build a waveform that avoids the interferers and minimizes the BER as
represented by the objective weights in Table 8.11. Table 8.12 shows that the

Example Cognitive Engine 139

BER objective was met and Figure 8.7 shows the frequency domainof the
simulation to demonstrate that the interferers were avoided properly. In the
frequency plots, we show the signal seen by the receiver as the combination
of the transmitter and interferers and the transmitted signal is shown as the
dotted black line that has been adjusted for path loss. Figure 8.8 shows
that the objectives in this case were easily met. The SINR increased to its
maximum quickly, and the interference power was always very low. This
figure indicates that very good solutions were found early and dominated the
population. The figure also shows two plots of the interference objective. The
plot in Figure 8.8(c) shows the interference using the same axis as all other
interference plots while the plot in Figure 8.8(d) shows the same plot zoomed
in to better show the objectives performance.

Table 8.11
Objectives: Interference Test (1)

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Table 8.12
Waveform Settings and Results: Interference Test (1)

Knob Settings

Modulation BPSK
Tr ansmit power (dBm) 20.00
Symbol rate (sps) 0.750
Pulse shaping RRC, 0.17
Normalized frequency −0.90
Packet size 580

Meters Sim. Result

BER 1.21 × 10
−6

SINR (ratio) 7.12
Spec. Eff. (bps/Hz) 1.71
BW (Hz) 0.439
Throughput (bps) 0.75
Interference (mW) 8.63 × 10

−5

Power (dBm) 20.00
Computation (ticks) 31094.10

Obs. BER 4.5 × 10
−6

140 Artificial Intelligence in Wireless Communications

�1.0 �0.5 0.0 0.5 1.0
Frequency (Hz)

�40

�20

0

20

40
M

a
g

n
it

u
d

e
 (

d
B

m
)

Received Signal
Transmitted Signal (-pathloss)

Figure 8.7 Frequency domain plot of interference test (1) where the cognitive engine
found a solution that avoids the other users.

8.3.2 Interference (2): Sensor Problems

In the next set of experiments, we use a more interesting set of objectives
from Table 8.13 to balance the waveform properties and create waveforms
that are bandwidth efficient but have high throughput, low BER, and avoid the
interferers. In this first test, the cognitive engine used the information retrieved
from the PSD sensor to know where to avoid the interference. As Table 8.14
and Figure 8.9 show, the waveform designed by the cognitive engine had
0 BER and the minimum interference power possible, where1 × 10−12 is
used as the minimum possible value to avoid errors when converting to dBm.
However, the observed BER was much higher, and Figure 8.10 shows that the
waveform was placed directly on top of one of the interfering signals.

A look at the results returned by the PSD sensor shows why the cognitive
engine selected an improper frequency. According to the PSD sensor as seen
in Table 8.15, there are only four bands to avoid. The last signal is shown to
both start and end where the previous signal ended. In this representation, the
interference signal from about 0.55 to 1.0 Hz (normalized frequency) cannot
be detected. The cognitive engine, working with this data, did not understand
the presence of the signal and therefore could not avoid it. It turns out that the
PSD sensor had a small logic error that caused this representation problem,
and it was easily corrected. We show this because we want to illustrate this
problem to indicate the impact of incorrect information on the cognitive
engine; otherwise, under the conditions presented, the waveform optimization
looks correct.

Example Cognitive Engine 141

0 50 100 150 200 250 300 350 400
Generation

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

�1001020
30

40

S
IN

R
 (

ra
ti

o
)

Max. Envelope
Min. Envelope

(b) SINR

0 50 100 150 200 250 300 350 400
Generation

0.0

0.5

1.0

1.5

2.0

In
te

rf
e
re

n
c
e
 (

m
W

) Max. Envelope
Min. Envelope

(c) Interference power

0 50 100 150 200 250 300 350 400
Generation

�0.050.00

0.05

0.10

0.15

0.20

0.25

In
te

rf
e
re

n
c
e
 (

m
W

) Max. Envelope
Min. Envelope

(d) Interference power (zoomed in)

Figure 8.8 Performance curves for interference test (1) showing objective plots for (a)
BER, (b) SINR, and (c) interference power. Plot (d) is a zoomed in plot of
(c) for a closer look at the variations over the generations.

Table 8.13
Objectives: Interference Test (2)

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

1.00 0.75 0.60 0.20 0.00 1.00 0.25 0.00

8.3.3 Interference (3): Correcting for Sensors

While the mistake shown in the last example related to a logic error in the
sensors, other measurements and uncertainties can also have an effect on
the cognitive engine’s performance. The meters designed for use with the
GNU Radio simulation measure the received power and noise power, and,
as Appendix A shows, the measurements are fairly accurate, increasing in
uncertainty as the SNR decreases. These tests were conducted outside of
the presence of interference sources, which significantly skew the results.
The received signal strength of the meters sensor calculates the average
magnitude squared of the received signal through the receiver’s channel filter.

142 Artificial Intelligence in Wireless Communications

Table 8.14
Waveform Settings and Results: Interference Test (2)

Knob Settings

Modulation 8PSK
Tr ansmit power (dBm) 10.02
Symbol rate (sps) 0.750
Pulse shaping RRC, 0.10
Normalized frequency 0.777
Packet size 383

Meters Sim. Result

BER 0

SI NR (ratio) 47109.2
Spec. Eff. (bps/Hz) 5.45
BW (Hz) 0.4125
Throughput (bps) 2.25
Interference (mW) 1 × 10

−12

Power (dBm) 10.02
Computation (ticks) 33430.09

Obs. BER 4.5 × 10
−6

Table 8.15
PSD Sensor Results in Interference Test (2)

Signal Amplitude (dBm) fmin (Hz) fmax (Hz)

1 −12.12 −1 −0.975
2 −11.45 −0.909 −0.705
3 1.28 −0.332001 0.493
4 −23.02 0.493 0.493

When interference is present, the interference signal is added to the received
signal. Because the SNR meter calculation was not designed properly to
measure the SINR, the resulting information is significantly skewed when
interference is received through the channel filter, specifically by raising the
measured signal power and disproportionately affecting the measurements of
the path loss and SNR. This information propagates through to the cognitive
engine and optimization process. When designing waveforms, the cognitive
engine’s estimation of the path loss affects the BER measurement, which will
then affect what power levels provide acceptable BER values. In this case,
because the path loss estimation is significantly decreased due to the increased
measurement of the received power, the BER calculation assumes that lower
transmit power provides lower BER than it should.

Example Cognitive Engine 143

0 50 100 150 200 250 300 350 400
Generation

10-200
10-185
10-170
10-155
10-140
10-125
10-110
10-95
10-80
10-65
10-50
10-35
10-20
10-5

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

1000

2000

3000

4000

5000

S
IN

R
 (

ra
ti

o
)

Max. Envelope
Min. Envelope

(b) SINR

0 50 100 150 200 250 300 350 400
Generation

0.0

0.5

1.0

1.5

2.0

In
te

rf
e
re

n
c
e
 (

m
W

) Max. Envelope
Min. Envelope

(c) Interference power

Figure 8.9 Performance curves for interference test (2) showing objective plots for
(a) BER, (b) SINR, and (c) interference power. The SINR objective plot
(b) shows the mistake where the later generations calculated a very small
SINR at the solution chosen.

We used the parameters in Table 8.16 to run the next test. Table 8.17
shows what happens under these conditions. The cognitive engine found that
a BPSK signal with a 10.72-dBm transmit power will produce a 0 BER (in
other words, a value too small to be represented), which indicates a very
large SNR (see Figure A.1 to confirm this). However, with the use of the
multiobjective search space, different objectives can pressure the solution into
an more acceptable solution. In this case, we use the SINR objective as the
pressuring agent in the optimization. When the SINR objective is not used,
the power is minimized to 0.1 mW. The results in Figure 8.11 show that using
the SINR objective balances the incorrect information that leads to the poor
decision based only on the BER. The resulting waveform achieved the desired
performance of interference avoidance (see Figure 8.12), low BER, and mid-
ranged bandwidth and power.

The problem that the cognitive engine faces is misinformation from
the sensor that measures the received signal strength and noise power. The

144 Artificial Intelligence in Wireless Communications

	1.0 	0.5 0.0 0.5 1.0
Frequency (Hz)

	40

	20

0

20

40
M

a
g

n
it

u
d

e
 (

d
B

m
)

Received Signal
Transmitted Signal (-pathloss)

Figure 8.10 Frequency domain plot of interference test (2). A mistake in the
interference sensor lead the algorithm to incorrectly believe this
spectrum was unoccupied.

Table 8.16
Objectives: Interference Test (3)

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

1.00 0.75 0.00 0.20 0.00 1.00 0.25 0.00

underlying calculations were set up to measure these values accurately
without the presence of an interferer, but when an interferer is present in
the received channel, the signal power calculation incorrectly computes the
received signal power as much higher than it really is. While we find the
behavior and capabilities of the cognitive engine interesting and a valuable
experience to enhance the overall understanding of the radio, we want to
address how this error can be corrected. The other examples and results in this
chapter show that, given proper information about signal and noise power,
the cognitive engine properly optimizes and finds waveforms that fit the
objectives. Therefore, the cognitive engine needs a sensor capable of properly
measuring the signal to interference ratio (SIR) or SINR.

One method of calculating the SINR is through the use of known
symbols such as a sequence of training symbols or a known preamble. The
GNU Radio implementation uses a known access code, or unique word,
that the nodes correlate against to know the start of a packet. This known
access code can also provide the required information to calculate SINR. The
SINR meter probe is given the modulated access code and correlates against

Example Cognitive Engine 145

Table 8.17
Waveform Settings and Results: Interference Test (3)

Knob Settings

Modulation BPSK
Tr ansmit power (dBm) 10.72
Symbol rate (sps) 1.000
Pulse shaping RRC, 0.10
Normalized frequency −0.90
Packet size 855

Meters Sim. Result

BER 0

SI NR (ratio) 22.49
Spec. Eff. (bps/Hz) 1.82
BW (Hz) 0.4125
Throughput (bps) 0.75
Interference (mW) 1.16 × 10

−2

Power (dBm) 10.72
Computation (ticks) 31094.10

Obs. BER 4.61 × 10
−6

the received time domain signal from the channel filter. The output of the
correlation spikes when the transmitted access code is received. The known
access code sequence can then be subtracted from the received signal to leave
any interference signals and the AWGN noise. Before subtracting the known
access code, an autocorrelation is performed on it to determine its maximum
correlation value. The ratio of the autocorrelation value to the peak of the
cross-correlation gives the pathloss assuming the pathloss is constant during
the transmission of the access code. This ratio is used to adjust the amplitude
of the known sequence to properly remove it from the received signal. Taking
the average magnitude squared of this signal yields the interference pulse
noise power. The remaining signal after subtraction can then be subtracted
from the original received signal to leave only the transmitted signal. The
average magnitude squared of this signal is the received signal strength. This
ratio of these two power values is the SINR.

Appendix F provides more detail and the mathematical explanation of
this meter probe as well as simulated results that show the sensor’s proper
behavior. This sensor can then be used as a means of calculating the received
signal power, the interference plus noise power (or just noise power if no
interference is present), and the pathloss, thereby replacing the signal power
and noise power probes used previously in this work.

146 Artificial Intelligence in Wireless Communications

0 50 100 150 200 250 300 350 400
Generation

10-200
10-185
10-170
10-155
10-140
10-125
10-110
10-95
10-80
10-65
10-50
10-35
10-20
10-5

B
it

 E
rr

o
r

R
a
te

Max. Envelope

Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

1001020
30

40

S
IN

R
 (

ra
ti

o
)

Max. Envelope

Min. Envelope

(b) SINR

0 50 100 150 200 250 300 350 400
Generation

0.0

0.2

0.4

0.6

0.8

In
te

rf
e
re

n
c
e
 (

m
W

)

Max. Envelope
Min. Envelope

(c) Interference power

Figure 8.11 Performance curves for interference tests (3) showing objective plots for
(a) BER, (b) SINR, and (c) interference power. The SINR calculations
are unusually high due to the miscalculation of interference power in the
signal power.

8.3.4 Interference (4): Throughput with Low Spectral Footprint

We revisit the second interference experiment that had the goal of providing
a high throughput, low BER, and low spectral footprint while avoiding the
interference but had trouble because of the bad sensor. This experiment uses
the parameters in Table 8.18 and the information provided by the problems
of the last two tests to see how well the cognitive engine really performs for
this task. The resulting waveform attained all of the desired performance, as
shown in Table 8.19, Figure 8.13, and Figure 8.14, with a moderate throughput
and small bandwidth by using a high-order modulation (8PSK) with a small
bandwidth while avoiding the interferers.

Example Cognitive Engine 147

�1.0 �0.5 0.0 0.5 1.0
Frequency (Hz)

�40

�20

0

20

40
M

a
g

n
it

u
d

e
 (

d
B

m
)

Received Signal
Transmitted Signal (-pathloss)

Figure 8.12 Frequency domain plot of interference test (3).

Table 8.18
Objectives: Interference Test (4)

BER SINR Thr. BW Spec. Eff. Int. Pwr. Comp.

1.00 0.75 0.40 0.20 0.00 1.00 0.25 0.00

�1.0 �0.5 0.0 0.5 1.0
Frequency (Hz)

�40

�20

0

20

40

M
a
g

n
it

u
d

e
 (

d
B

m
)

Received Signal
Transmitted Signal (-pathloss)

Figure 8.13 Frequency domain plot of interference test (4). With the correctly
operating sensor, the cognitive engine finds open spectrum in which to
transmit.

148 Artificial Intelligence in Wireless Communications

Table 8.19
Waveform Settings and Results: Interference Test (4)

Knob Settings

Modulation 8PSK
Tr ansmit power (dBm) 16.73
Symbol rate (sps) 0.125
Pulse shaping RRC, 0.10
Normalized frequency 0.275
Packet size 1472

Meters Sim. Result

BER 0

SI NR (ratio) 289153

Spec. Eff. (bps/Hz) 5.45
BW (Hz) 0.0688
Throughput (bps) 0.375
Interference (mW) 1.0 × 10

−12

Power (dBm) 16.73
Computation (ticks) 5571.81

Obs. BER 0

8.4 Case-Based Decision Theory Example

The case-based system has large potential for learning and improving the
performance of the cognitive engine. The case-based system can feed not only
previous solutions, but also adjustments to the optimization parameters like
the GA population size and terminating conditions. Our goal here is to provide
the system for this kind of research to continue. To just get a feel for how the
case-based learning system can be applied, we ran a simple test. This test takes
the problem of the second BER and power optimization. We use a weight of
0.60 for the BER objective this time to balance the two objectives for a better
solution. The results are shown in Figure 8.15 and Table 8.20. The results
show that the waveform is well representative of the problem specifications.
The BER is low (and 0 in the simulation) and the power was higher, but not
at its maximum. Figure 8.15 provides a better clue into the performance of
the case-based system. Unlike the performance plots of Figure 8.4, the initial
population shows better distribution in the search space with initial members
closer to the final results. This population could have easily been terminated
much earlier and achieved a good solution.

Although not a rigorous test of the case-based system, the initial system
works and shows promise for performing learning and future potential. The

Example Cognitive Engine 149

0 50 100 150 200 250 300 350 400
Generation

10-200
10-185
10-170
10-155
10-140
10-125
10-110
10-95
10-80
10-65
10-50
10-35
10-20
10-5

B
it

 E
rr

o
r

R
a
te

Max. Envelope

Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

20

40

60

80

100

S
IN

R
 (

ra
ti

o
)

Max. Envelope

Min. Envelope

(b) SINR

0 50 100 150 200 250 300 350 400
Generation

0.0

0.5

1.0

1.5

2.0

In
te

rf
e
re

n
c
e
 (

m
W

)

Max. Envelope
Min. Envelope

(c) Interference power

Figure 8.14 Performance curves for interference tests (4) showing objective plots for
(a) BER, (b) SINR, and (c) interference power. The (b) SINR and (c)
interference curves show good convergence at low values as they are
working with correct information.

implementation in the cognitive engine will allow for more advanced concepts
and implementations as the research develops.

8.5 Over-the-Air Results

The first over-the-air tests were performed during the IEEE Conference on
Dynamic Spectrum Access Networks (DySPAN) in April of 2007 in Dublin,
Ireland [1]. At the conference, a number of participating companies and
research labs set up and ran their cognitive radio and dynamic spectrum access
equipment using spectrum specifically licensed by Ireland’s Communications
Regulators (COMREG). We set up two of our cognitive radio nodes at the
conference using the GNU Radio SDR platform with USRP RF front ends, a
PSD sensor, and the WSGA optimizer. The implementation of this cognitive
engine is shown in Figure 8.16, which uses a sensor to pull in the PSD

150 Artificial Intelligence in Wireless Communications

Table 8.20
Waveform Settings and Results: CBDT-GA

Knob Settings

Modulation BPSK
Tr ansmit power (dBm) 15.93
Symbol rate (sps) 0.250
Pulse shaping RRC, 0.69
Normalized frequency −0.017
Packet size 275

Meters Sim. Result

BER 1.51 × 10
−4

SINR (ratio) N/A
Spec. Eff. (bps/Hz) N/A
BW (Hz) N/A
Throughput (bps) N/A
Interference (mW) N/A
Power (dBm) 15.93
Computation (ticks) N/A

Obs. BER 0

0 50 100 150 200 250 300 350 400
Generation

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

 E
rr

o
r

R
a
te

Max. Envelope
Min. Envelope

(a) BER

0 50 100 150 200 250 300 350 400
Generation

0

5

10

15

20

25

30

E
IR

P
 (

m
W

)

Max. Envelope
Min. Envelope

(b) Power

Figure 8.15 Performance curves for the case-based application to the second BER
and power test. The (a) BER and (b) power objectives were obtained
about 50 generations into the optimization process. The remaining
generations just balanced the objectives back and forth and provide no
new benefit.

information, the WSGA, and the verification system to ensure regulatory
compliance of the waveforms.

The spectrum regulations are shown in Table 8.21, although we limited
the cognitive radio to use the bands centered at 406.9750 and 408.7750 MHz

Example Cognitive Engine 151

Figure 8.16 The cognitive engine design for online implementation.

to limit the possible range and for a more interesting environment.

Table 8.21
Frequency Allocations at IEEE DySPAN, 2007

Channel Center Freq. (MHz) Max ERP BW (MHz)

1 231.2250 1 W (0 dBW) 1.75
2 233.0250 1 W (0 dBW) 1.75
3 234.8250 1 W (0 dBW) 1.75
4 236.6250 1 W (0 dBW) 1.75
5 238.4250 1 W (0 dBW) 1.75
6 386.8750 1 W (0 dBW) 1.75
7 396.8750 10 W (10 dBW) 1.75
8 406.9750 1 W (0 dBW) 1.75
9 408.7750 10 W (10 dBW) 1.75
10 436.8750 1 W (0 dBW) 1.75
11 2056.000 1 W (0 dBW) 50.0
12 2231.000 1 W (0 dBW) 50.0

Table 8.22 shows the knobs available for the over-the-air experiments.
During the demonstration, of the two cognitive radios, one was the

master that would design a waveform and push it to the other. The master

152 Artificial Intelligence in Wireless Communications

Table 8.22
Knobs Available to the GNU Radio: Over-the-Air Experiments (1)

Knob Name Knob Settings

Modulation DBPSK, DQPSK, GMSK
Tr ansmit power 0 - 20 (dBm)
Symbol rate 125 - 500, steps of 25 (kbps)
Pulse shaping 0.1 - 1.0, steps of 0.01
Center frequency 406.1 × 10

6 - 409.65 × 10
6, steps of 1 (kHz)

Frame size 100 - 1500, steps of 1

radio would first sweep the spectrum, determine if any other radios were
present, and then design a waveform to fit the channel. We attempted to
perform a streaming audio service across the two nodes that would provide
a high throughput, low error connection amidst the other radios operating in
the same frequency. Figure 8.17 shows the results of one of the sensing and
optimization processes that occurred during the conference.

In this figure, the spectrum regulations are shown as the thick black
masks that surround the available spectrum in frequency and power. The figure
shows that during one of the spectrum sweeps an interfering node was present
in the middle of the allocated spectrum. The resulting waveform found a
position in the spectrum that was allowed in both frequency and power and
did not overlap the interfering signal. Furthermore, this signal was a 250-
kbps QPSK waveform that provided adequate quality of service for the audio
application.

To test the latest version of the cognitive engine, we use operating
frequencies between 2.405 to 2.415 GHz with three interfering radios. Two
of the interference nodes are 1-MHz wide QPSK signals generated from
the Centre for Telecommunications Value-Chain Research (CTVR) IRIS
software radio [2] and a third is a 1-MHz wide OFDM signal generated
using the Anritsu MG3700A signal generator. The signals were positioned at
2.4075 GHz (IRIS QPSK 1), 2.410 GHz (IRIS QPSK 2), and 2.4125 GHz
(signal generator OFDM). The cognitive radio node has the waveform
capabilities described in Table 8.23.

When asked to design a waveform using the same objectives as Table
8.18, the cognitive engine produced a 200-kbps QPSK signal with a 12-dBm
transmit power. At this point, the performance of the cognitive engine is well
understood in building signals that can produce high data rates with low
BER. The most interesting performance property of this particular example
is that the PSD sensor accurately modeled the interference environment, and
the cognitive radio optimized around these interferers. Figure 8.18 shows

Example Cognitive Engine 153

Figure 8.17 DySPAN 2007 spectrum measurements of an interferer and the cognitive
radio transmitting in a given spectrum mask.

Table 8.23
Knobs Available to the GNU Radio: Over-the-Air Experiment (2)

Knob Name Knob Settings

Modulation DBPSK, DQPSK, GMSK
Tr ansmit power 0 - 20 (dBm)
Symbol rate 15 - 500, steps of 10 (kbps)
Pulse shaping 0.1 - 1.0, steps of 0.01
Center frequency 2405 × 10

6 - 2415 × 10
6, steps of 1 (kHz)

Frame size 100 - 1500, steps of 1

the spectrum as captured by an Anritsu Signature signal analyzer. The three
interfering signals are seen at 2,4075, 2,410, and 2,4125 MHz and the
cognitive engine’s waveform is located to the left of all three interferers at
2,4057 MHz. The signal on the right edge of the plot around 2,414 MHz was

154 Artificial Intelligence in Wireless Communications

not part of the experiment but a random signal picked up in the unlicensed
band while collecting the data. Figure 8.19 shows the optimization curve for
the interference objective. In the early generations, the interference power
for many of the solutions is very large, but the heavy selection pressure to
minimize the interference allows the cognitive engine to quickly find spectrum
free of interference. Because there was a large amount of open space in the
10 MHz of spectrum used in this example, it was fairly easy for the GA to
converge on a good solution within about 50 generations.

Figure 8.18 Frequency domain plot of over-the-air test (2). The cognitive radio
is transmitting at about 2,406 MHz with three known high-bandwidth
interferers and a fourth unknown interferer at around 2,414 MHz.

0 50 100 150 200 250 300 350 400
Generation

0

100

200

300

400

500

600

In
te

rf
e
re

n
c
e
 (

m
W

) Max. Envelope
Min. Envelope

Figure 8.19 Interference performance curves for the over-the-air experiment (2).

Example Cognitive Engine 155

Unfortunately, it is difficult to capture the real performanceof the system
online except for providing example cases. The important lesson of this
experience is the ability of the cognitive engine to move from the simulation
environment that can be used to more adequately understand the behavior
and operation of the engine to the online system using real radio hardware.
The flexible and extensible cognitive engine has been shown through these
experiments.

8.6 Conclusions

We demonstrated the use of the cognitive engine operating in both a
simulation and a real-world demonstration. The modular component structure
of the cognitive engine enables designers to build new components for
different purposes. In the simulation environment, a simple component
allows the interface between the cognitive engine and the radio simulation
platform. It also connects the PSD and meters sensors that communicate
with the simulation to collect the data and pass it to the cognitive engine.
In the online version, the components were replaced with others that enable
communications with real radio systems. As we discussed in this chapter,
incorrect information can have a significant effect on the cognitive engine’s
performance, such as the logic error in the PSD sensor or the miscalculation of
the SNR in the presence of interferers with the meters sensor. The component
structure makes unit testing of each of these pieces simple in order to work
out bugs, and components are easily replaced when better versions are made
available.

Although it is difficult to show the performance of the cognitive engine,
we worked through some simple examples to understand the general trends of
the optimization process. Early simulations showed how the cognitive engine
optimizes for such objectives as BER and power performance. Later examples
that use many more objectives make the analysis much more difficult in
determining the performance by looking at each individual objective. In
these cases, the multiobjective Pareto front surface is the important measure,
but difficult to illustrate. Instead, we showed some performance results and
waveforms produced under certain objectives. The results first showed that
the cognitive engine can successfully optimize waveforms given performance
requirements. Also, many lessons can be learned from these results and
the performance plots. We discussed some of the issues regarding poor
information received from the sensors and pointed out where some advanced
topics in the genetic algorithm design and optimization would be useful.

The system demonstrated in this chapter is the culmination of the theory
and discussions of the preceding chapters. While much of the theory comes

156 Artificial Intelligence in Wireless Communications

from many different disciplines and applications, the intentof this book was to
discuss the application of these concepts to wireless communications systems.
This chapter provides that necessary bridge to the real implementation of
a cognitive radio as well as demonstrations of it working. The next chapter
wraps up and looks at how this work can be extended in the future.

References

[1] D. C. Sicker, “The Technology of Dynamic Spectrum Access and Its Challenges,”IEEE
Communications Magazine, Vol. 45, No. 6, pp. 48 – 48, 2007.

[2] P. Sutton, L. Doyle, K. E. Nolan, “A Reconfigurable Platform for Cognitive Networks,”
IEEE Proc. Cognitive Radio Oriented Wireless Networks and Communications
(CROWNCOM), Jun. 2006, pp. 1 – 5.

9
Conclusions

In this book, we have discussed and presented different methods for how
artificial intelligence can improve communications. We applied these concepts
to build the enabling technology of cognitive radio, the cognitive engine.
Throughout, we explained what cognitive radio and a cognitive engine are,
as well as the software radio platform used to realize the actions of the
cognitive engine. The most significant developments are the discussion and
theoretical analysis in Chapter 4 of using multiobjective optimization to
perform the cognitive actions. Chapter 5 showed an algorithm suited to
perform the multiobjective analysis and optimization, followed up by an
improved learning system using case-based decision theory in Chapter 6.
We presented a brief but important treatment of using the cognitive engine
as part of a network of cognitive radios and some considerations for what
information can be distributed to all nodes on a network. We then showed the
implementation of the cognitive engine to adapt the GNU Radio system under
certain system conditions.

The intent of this book was to bring together the theory of the cognitive
engine with a working model suitable for operation. The development of
the multiobjective optimization was necessarily limited to the SDR platform
available, but through this, we laid down the fundamentals of developing and
analyzing a cognitive engine. Through the development of the distributed
cognitive engine, we provide a system that can be extended, enhanced, and
made usable for future applications and radio systems. One of the most
significant challenges of our work was building a system that both shows the
operation of the theory but is also usable and reusable in further developments
by using generic, documented interfaces and simple script languages to enable
ease of use.

157

158 Artificial Intelligence in Wireless Communications

Because the intentions of our work were to provide a usable system on
the SDR technology we had available, there are many advances not considered
in the development and analysis. There are a few significant areas that we left
out of the analysis that we wish to address briefly as part of future research.
First, we will discuss the application of the cognitive engine to optimize
multicarrier systems. Second, the significant work done in adaptive systems
has thus far been ignored, but we will discuss how this work can be used
with and by a cognitive radio system. Finally, we address some of the AI and
learning issues that have been brought up throughout this document that can
enhance the future capabilities of the cognitive engine.

9.1 Application to Multicarrier Waveforms

One of the more popular subjects in communications, for physical, MAC, and
network layer researchers, is multicarrier systems. In particular, orthogonal
frequency division multiplexing (OFDM) dominates this discussion, and we
will use it here as an example, although much of this discussion should be
easily extensible to other multicarrier techniques. In OFDM, each symbol
is carried over a number of orthogonal subcarriers. Subcarriers can be used
in different ways. Some subcarriers can be used for pilot tones to help
with equalization at the receiver, while other subcarriers can each transmit
information using a different modulation. Subcarriers can be used or unused
to help shape the spectrum, and each subcarrier’s bandwidth can be altered to
provide different spectral properties and communications capabilities. As an
example, the IEEE 802.16 standard uses OFDM and provides a wide range of
adaptable parameters [1].

OFDM modulation has great potential for cognitive radio systems
through all of the adaptable parameters that the radio can use to change
the behavior and performance. The length of the cyclic prefix balances
the spectral efficiency with the multipath resistance of the signal, and
the bandwidth of each subcarrier changes the data rate while altering the
protection against frequency-selective fading. Equation (9.1) shows how
parameters can be adjusted to affect the data rate of an OFDM waveform
whereB is the symbol bandwidth,L is the number of subcarriers,Ld is the
number of data subcarriers,M is the modulation order, andG is the guard
fraction (ratio of the cyclic prefix length to the total symbol length) [1].
Different modulations can be used per subcarrier to balance the properties
of the modulation against the bit error rate. Channel coding, too, provides
a way of balancing error correcting capabilities with data rate. The setting
of each of these parameters depends on the channel conditions in the same
way as in the narrowband signal analysis we provided earlier. The analysis

Conclusions 159

and implementation of the cognitive engine, however, is easily enhanced to
use multicarrier techniques by adding the sensors required to understand the
channel conditions (e.g., multipath and fading) and the objective functions to
properly model the effects of the parameters.

R =
B

L

Ld log2(M)

1 + G
bps (9.1)

9.2 Strategies, Not Waveforms

The optimization process we developed focused on finding values for the
knobs in order to satisfy certain quality of service objectives. However, the
cognitive engine reacts to changes in the environment and user needs, so the
adaptation is situational and does not act on a packet-by-packet time scale. On
the other hand, researchers in communications have developed sophisticated
and powerful techniques for locally-adaptive schemes; that is, methods
that focus on adaptation of certain properties to enhance communication
performance. Such techniques include adaptive power control, as in traditional
cellular telephony, or adaptive modulation as seen in many standards such
as Universal Mobile Telecommunications System (UMTS), IEEE 802.11,
and IEEE 802.16. The 802.16, or WiMAX, standard has many interesting
possibilities in this area because of the significant number of adaptive
parameters available.

The future cognitive radio should take advantage of all of these
techniques to build the communications system. Instead of trying to find the
best power to the tenth of a dB, the cognitive engine could instead choose an
adaptive power strategy that makes sense for the current conditions. Likewise,
the same can be done for modulation, channel code adaptations, or dynamic
spectrum access technologies. We like to think of the cognitive radio as
developing a strategy to work within an environment and for a particular
service. Instead of designing a waveform, the cognitive engine builds a
strategy.

The objective functions we presented in Chapter 4 were based on the
concept of waveform adaptation, and we showed how each interacts with the
entire system. Building a cognitive engine to work with adaptive strategies
is even more complicated since each adaptive technique would interact with
the overall quality of service of the system. We argue that the premise of
the cognitive engine stays the same as we have developed it here. Instead
of genes representing particular parts of a waveform and objective functions
analyzing each waveform, the genes represent adaptive strategies, and so
the objective functions would need to be developed to properly analyze and

160 Artificial Intelligence in Wireless Communications

model the behavior of the strategy. Furthermore, this type of adaptation places
more responsibilities on the radio platform to support many of these possible
techniques.

9.3 Enhanced Learning Systems

When discussing the individual topics throughout this document, we have
pointed out advances to the theory that others have investigated, such as
advanced techniques for genetic algorithms. We would like to address a
few of these here, now that we have described the entire system. The
areas of particular interest are potential enhancements to the multiobjective
optimization, the genetic algorithm, and the case-based learning system.

The multiobjective optimization work has provided an analysis of the
individual objectives used as well as different methods of aggregating the
objectives to allow comparisons. In this discussion, we briefly pointed to
the lessons learned from the work of economists in modeling and analyzing
utility and production functions. While there are many different methods of
comparing solutions, we only really investigated a couple of them. There is
still a significant amount to be learned from the economics literature, and
much analysis left to understand how to best apply these concepts to the
cognitive engine.

We have tried to avoid including too much domain knowledge when
developing and analyzing the performance; instead, we prefer to make direct
comparisons of performance in each objective. While our attempts have been
for the purpose of increasing generality of the system’s operation, specific
analysis and domain knowledge could enhance solutions. We pointed to some
work done on fuzzy logic cognitive radios [2] as this might be a technique
to allow a trade-off between generality and domain-specific solutions. The
fuzzy system can be programmed to include basic communication system
rules to guide the development of solutions and offer bounds and aggregation
techniques to the objective analysis. Fuzzy rule sets could establish basic
performance metrics, such as maximum BER values acceptable for certain
optimization goals. Using fuzzy logic could enable an aggregation function to
combine objectives into a single metric for performance comparison.

The genetic algorithm literature analyzes many advanced topics [3, 4,
5, 6]. In particular, we pointed out the concept of parallel genetic algorithm
analysis in Chapter 7, but any conference proceedings, book, or journal on
genetic algorithms lists many other advanced techniques. Adaptive parameters
are a popular method of improving performance by changing the crossover or
mutation rates, depending on the trends of the algorithm performance. We
have presented one method of seeding the population using a case base of

Conclusions 161

past solutions. In this discussion of Chapter 6, we also alluded to many other
advances the case-based feedback mechanism could offer, including such
parameter adjustments like population size, mutation rates, and termination
conditions. There are many gains available in the optimization process,
and the techniques mentioned here are just some of the low-hanging fruit
available.

The case-based system offers other performance improvements beyond
its control of the genetic algorithm. We presented many of these in Chapter 6,
but we will reintroduce a few here. The case-based decision theory mechanism
depends greatly on the similarity, utility, and decision-making functions, as
we showed during the results of the knapsack problem. This warrants further
study into these for application to the cognitive engine. There are also many
tunable parameters to study in the case-based design, including the size of
the case base, the number of solutions to pull from the case base, and from
where to find these solutions. Another aspect that we have discussed is the
method of remembering and forgetting solutions in the case base, as well as
potentially using multiple types of case bases to realize concepts like short-
term and long-term memory. There is still a lot research to be done in these
applications.

9.4 Final Thoughts

In “Computing Machinery and Intelligence,” Alan Turing built the founda-
tions of artificial intelligence [7]. In it, he concludes, “we can only see a
short distance ahead, but we can see plenty there that needs to be done,”
a conclusion that any good researcher will reach. While there may be little
ground left to be covered in individual physical layer concepts such as
modulation and coding, we have not yet fully tapped the potential of the
communications system as a whole. The interactions among all aspects of
a waveform and communications system, as well as the behavior of networks,
are rich fields of research that we are only now developing. Our goal here was
to present the methods by which a radio can intelligently analyze and build
systems for its own purpose. As we have pointed out in this chapter, there
remains much to be done to enhance our current communications platforms
to provide easy, ubiquitous communications and access to information.

References

[1] J. G. Andrews, A. Ghosh, and R. Muhamed,Fundamentals of WiMAX: Understanding
Broadband Wireless Networking, Upper Saddle River, NJ: Prentice Hall, 2007.

162 Artificial Intelligence in Wireless Communications

[2] N. Baldo and M. Zorzi, “Fuzzy Logic for Cross-Layer Optimization in Cognitive Radio
Networks,”IEEE CCNC, Jan. 2007, pp. 1128 – 1133.

[3] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning,
Reading, MA: Addison-Wesley, 1989.

[4] L. Chambers,Practical Handbook of Genetic Algorithms: New Frontiers, Boca Raton, FL:
CRC Press, 1995.

[5] M. Srinivas and L. M. Patnaik, “Adaptive Probabilities of Crossover and Mutation in
Genetic Algorithms,”IEEE Transactions on Systems, Man and Cybernetics, Vol. 24, pp.
656 – 666, 1994.

[6] Y. J. Cao and Q. H. Wu, “Convergence Analysis of Adaptive Genetic Algorithms,”IEE
Proc. Genetic Algorithms in Engineering Systems: Innovations and Applications, 1997,
pp. 85 – 89.

[7] A. M. Turing, “Computing Machinery and Intelligence,”Mind, Vol. 59, pp. 433 – 460,
1950.

A
Analysis of GNU Radio Simulation

Chapter 3 introduced the GNU Radio and the modulation schemes available.
The chapter also presented the simulation environment and the method used
to collect the performance meters, which are required by the cognitive engine.
This appendix provides a performance analysis of the simulation environment
we developed by plotting the BER versusEb/N0 curves for the supported
modulations of GMSK, BPSK, QPSK, 8PSK, DBPSK, DQPSK, and D8PSK.
The plots are developed by measuring the simulation performance of the SDR
code used by the cognitive engine as well as the methods used to set the signal
power, propagation and channel conditions (noise power and path loss), and
signal, noise, and BER estimations at the receiver.

A.1 Bit Error Rate Plots

The first order of analysis is to see how well the modulators and demodulators
work under known conditions; in particular, we are looking at how closely
these components match the the theoretical performance in AWGN channels.
Equations (4.8) through (4.12) provide the theoretical BER equations. Figures
A.1 through A.7 show the simulated BER compared to the theoretical curves.
These figures also provide an analysis of how well theEb/N0 calculations
perform by plotting the knownEb/N0 (by setting the noise level and path
loss) against the estimatedEb/N0. The error bars in these figures represent
one standard deviation from the estimated mean over 20 trials.

Unfortunately, there is no available theoretical equation of D8PSK, so
as a crude approximated lower bound, we have used the theoretical curve for
8PSK and assumed that the D8PSK curve would have approximately a 2-dB
worse performance like other differentially coded modulations.

163

164 Artificial Intelligence in Wireless Communications

0 1 2 3 4 5 6 7 8 9 10 11 12
EstimatedEb/N0 (dB)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

B
E
R

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12
Known Eb/N0 (dB)

42024
6

8

10

12

E
st
im

a
te
d
E
b
/
N

0
(d
B
)

Estimated Mean
Std. Dev.

Figure A.1 BER curves and Eb/N0 plots for BPSK.

0 1 2 3 4 5 6 7 8 9 10 11 12
EstimatedEb/N0 (dB)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

B
E
R

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12
Known Eb/N0 (dB)

�20246
8

10

12

E
st
im

a
te
d
E
b
/
N

0
(d
B
)

Estimated Mean
Std. Dev.

Figure A.2 BER curves and Eb/N0 plots for QPSK.

Analysis of GNU Radio Simulation 165

0 1 2 3 4 5 6 7 8 9 10 11 12
EstimatedEb/N0 (dB)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

B
E
R

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12
Known Eb/N0 (dB)

�20246
8

10

12

E
st
im

a
te
d
E
b
/
N

0
(d
B
)

Estimated Mean
Std. Dev.

Figure A.3 BER curves and Eb/N0 plots for 8PSK.

0 1 2 3 4 5 6 7 8 9 10 11 12
EstimatedEb/N0 (dB)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

B
E
R

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12
Known Eb/N0 (dB)

�20246
8

10

12

E
st
im

a
te
d
E
b
/
N

0
(d
B
)

Estimated Mean
Std. Dev.

Figure A.4 BER curves and Eb/N0 plots for DBPSK.

166 Artificial Intelligence in Wireless Communications

0 1 2 3 4 5 6 7 8 9 10 11 12
EstimatedEb/N0 (dB)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

B
E
R

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12
Known Eb/N0 (dB)

�20246
8

10

12

E
st
im

a
te
d
E
b
/
N

0
(d
B
)

Estimated Mean
Std. Dev.

Figure A.5 BER curves and Eb/N0 plots for DQPSK.

0 1 2 3 4 5 6 7 8 9 10 11 12
EstimatedEb/N0 (dB)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

B
E
R

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12
Known Eb/N0 (dB)

�20246
8

10

12

E
st
im

a
te
d
E
b
/
N

0
(d
B
)

Estimated Mean
Std. Dev.

Figure A.6 BER curves and Eb/N0 plots for D8PSK.

Analysis of GNU Radio Simulation 167

0 1 2 3 4 5 6 7 8 9 10 11 12
EstimatedEb/N0 (dB)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

B
E
R

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12
Known Eb/N0 (dB)

�20246
8

10

12

E
st
im

a
te
d
E
b
/
N

0
(d
B
)

Estimated Mean
Std. Dev.

Figure A.7 BER curves and Eb/N0 plots for GMSK.

The BER simulations for BPSK, QPSK, DBPSK, and DQPSK all
matched very well to the theoretical curves. The 8PSK curve matches well
for Eb/N0 above 2 dB. For lowEb/N0 values, it is possible that the
synchronization loops or some other part of the receiver chain failed. The
D8PSK curve looks consistent over the plottedEb/N0, but without a reference
curve, it is difficult to say how well it compares to theory. The plotted curve
in Figure A.6 shows the D8PSK simulated curve is about 2 to 3 dB worse
in performance than the theoretical 8PSK curve, which is about the correct
loss between differential and nondifferential modulations. The GMSK curve
performs like the 8PSK curve where the system has poor performance under
low Eb/N0 conditions, although this behavior lasts up to about 7.5 dB. After
that, the simulated curve is about 1 dB worse than the theoretical curve.

It is not the purpose of this analysis to provide the best performance for
each of these modulation schemes. In this case, we are simply interested in
the known baseline performance for the system under test. The performance
provides an interesting problem for the combined optimization and learning
system. The optimization routine assumes the theoretical performance of the
given waveforms, so the learning system has to understand the difference
between the estimated performance and the actual performance to help the
optimizer to make better, more educated choices.

168 Artificial Intelligence in Wireless Communications

The figures here also show that the signal strength, noise power, and
thereforeEb/N0 estimations behave very well, especially atEb/N0 values
over 4 dB. Looking at the BER curves for, say, DBPSK, the estimation at
Eb/N0 of 1 to 2 dB are off where the estimated average for the known 1.5 dB
SNR is lower than the estimated average for the 1 dBEb/N0 case. Looking
at the standard deviations, at lowEb/N0, the estimatedEb/N0 can be off
by about 1 dB. Estimations ofEb/N0 and other performance metrics at low
Eb/N0 is going to have uncertainty, and ambiguity and uncertainty of data is
a problem which a cognitive radio must tolerate.

B
Additional BER Formulas

Section 4.2.1 provided the basic BER formulas for the modulation types
used in the simulations and experiments in AWGN channels. Here, we
present a few more BER formulas, includingM -QAM in AWGN and other
modulations in fading channels.

M -QAM in AWGN:
In this equation,γb represents the energy per bit.

Pe =

(

2

log2 (M)

)

(√
M − 1√

M

)

erfc

(
√

3 log2 M

2 (M − 1)
γb

)

(B.1)

In fading channels, [1] provides the closed-form solutions for different
modulations. Each formula comes from the basic equation for the probability
of a symbol error in (B.2).

Pe =

∫ ∞

0
PAWGN (x)p(x)dx (B.2)

Wherep(x) is the probability density function (PDF) of the channel.
The closed form solutions toM -PSK andM -QAM modulations are

defined in the following equations whereI(γ̄, g, θ) is specific to the channel;
γ̄ is the average signal to noise ratio,g is a modulation coefficient, andθ is
the variable of integration. These formulas are modified from [1] to a single
channel receiver instead of theL-finger maximal ratio combining (MRC)
receiver.

169

170

BPSK:

Pe =
1

π

∫ π

2

0
I(γ̄, g, θ)dθ

g = 1

(B.3)

M -PSK:

Pe =
1

π

∫
(M−1)π

M

0
I(γ̄, g, θ)dθ

g = sin2
(π

M

)

(B.4)

M -QAM:

Pe =
4

π

(

1 − 1√
M

)
∫ π

2

0
I(γ̄, g, θ)dθ−

4

π

(

1 − 1√
M

)2 ∫ π

4

0
I(γ̄, g, θ)dθ

g =
3

2(M − 1)

(B.5)

Rayleigh channels:

p(γ; γ̄) =
1

γ̄
exp

(

−γ

γ̄

)

(B.6)

I(γ̄, g, θ) =
(

1 +
gγ̄

sin2 θ

)−1

(B.7)

Ricean channels:

p(γ; γ̄, n) =

(

1 + n2
)

e−n2

γ̄
exp

(

−
(

1 + n2
)

γ

γ̄

)

×

I0

(

2n

√

(1 + n2) γ

γ̄

)

wheren2 = Ricean factor

(B.8)

I(γ̄, g, θ) =

(

(

1 + n2
)

sin2 θ

(1 + n2) sin2 θ + gγ̄

)

exp

(

n2gγ̄

(1 + n2) sin2 θ + gγ̄

)

(B.9)

Additional BER Formulas 171

Nakagami-m channels:

p(γ; γ̄,m) =
mmγm−1

γ−mΓ(m)
exp

(

−mγ

γ̄

)

wherem = 1/2 for one-sided Gaussian

wherem = 1 for Rayleigh channel

wherem = ∞ for no fading

Γ(m) is the gamma function

(B.10)

I(γ̄, g, θ) =

(

(

1 + n2
)

sin2 θ

(1 + n2) sin2 θ + gγ̄

)

exp

(

n2gγ̄

(1 + n2) sin2 θ + gγ̄

)

(B.11)

References

[1] M. K. Simon and M. Alouini, “A Unified Approach to the Performance Analysis of
Digital Communication over Generalized Fading Channels,”Proc. IEEE, Vol. 86, No. 9,
pp. 1860 – 1877, Sep. 1998.

C
OProfile and Results of Profiling
GNU Radio

C.1 Introduction to OProfile

OProfile is an open source, GPL tool for measuring software performance
[1]. Built specifically for Linux,OProfile uses the Linux kernel to read the
processor’s hardware counters as a measure of software complexity. It has
low overhead on the system and resides as a separate process to monitor the
performance of the entire system, which means a developer does not have to
add specific hooks to enable profiling as other profilers require. As the website
points out, the profiler monitors all system activity including “hardware and
software interrupt handlers, kernel modules, the kernel, shared libraries, and
applications.” More importantly to application and library developers, the
profiler keeps track of performance per symbol of each process, which means
a developer can analyze the performance of individual functions and routines
within the code. We use this last feature to understand the complexity of each
of the modulators used in the GNU Radio.

C.2 OProfile Results of GNU Radio Modulators

Each block in a GNU Radio flow graph is a class in the GNU Radio library.
Each class has a few callable functions, most important of which is thework
function that performs the core of the signal processing. The interest in the
profiling is discussed in Section 4.2.8 where the optimization process uses
the computational complexity. In the analysis, the only blocks that change
in the GNU Radio flow graph with the waveforms are the blocks that make
up the modulators and demodulators. The rest of the blocks remain the same

173

174 Artificial Intelligence in Wireless Communications

with different parameters; however, the computational performance remains
the same when changing the transmitter power or carrier frequency. The only
other performance difference results in changes in the symbol rate, which has
an overall affect on each block as the sampling rate changes. Therefore, the
performance profiling only looks at the blocks that make up the modulators
and demodulators.

The performance analysis consists of running a GNU Radio simulation
with just the modulator or demodulator and the required sinks and sources to
pass a set number of symbols at the same symbol rate through the flow graph
while runningOProfile. Figure C.1(a) shows the GNU Radio flow graph of the
modulator simulation and Figure C.1(b) shows the same for the demodulators.
The profiler collects the number of ticks of the processor hardware counter
during the set number of symbols to measure how much time each modulator
and demodulator uses. Table C.1 shows an example output of the profiler.

(a) Modulators take in bits and produce complex symbols.

(b) Demodulators take in complex symbols and produce bits.

Figure C.1 Flow graphs for profiling GNU Radio (a) modulators and (b)
demodulators.

Notice that each time a simulation is run, the performance counters
had slight variations despite running with the same code, same number of
symbols, and on the same platform. The system this was run on also runs
other programs along with the profiler and GNU Radio. Furthermore, there
are loops and branches in the software that depend on the value of the data,
which is influenced by the random noise of the channel and will affect the
performance. These issues together with other operating system factors are
the probable causes of any variations among profiling runs. These should be
statistically insignificant, and so each simulation is run ten times and averaged.

OProfile and Results of Profiling GNU Radio 175

BPSK QPSK 8PSK DBPSK DQPSK D8PSK GMSK
Modulation Type

0

5000

10000

15000

20000

25000

C
P

U
 t

ic
k
s

Figure C.2 Performance comparison of the available GNU Radio modulators with
OProfile.

BPSK QPSK 8PSK DBPSK DQPSK D8PSK GMSK
Modulation Type

0

10000

20000

30000

40000

50000

60000

C
P

U
 t

ic
k
s

Figure C.3 Performance comparison of the available GNU Radio demodulators with
OProfile.

Figure C.2 shows the resulting complexity of the modulators and Figure C.3
shows the complexity of the demodulators.

These complexity graphs are plotted with the one standard deviation
error bars, which show that the random performance counter values are indeed
insignificant. For the modulators, GMSK shows the smallest computational
footprint in both modulator and demodulator, and the other modulators and
demodulators shows definite trends related to their implementation. GMSK
is implemented very simply, and the demodulator does not use an AGC
loop. The M -PSK modulations all show increasing complexity withM ,

176 Artificial Intelligence in Wireless Communications

with a slight dip in the complexity of the DQPSK over DBPSK. In the
implementation, the only difference between the differential modulators and
the nondifferential modulators is a single block that performs the differential
mapping, so the differential modulators should be more complex. Between
the different modulators, the only change when increasingM is the block that
maps thelog2(M) bits to complex symbols via a lookup table. Apparently,
the lookup table is slightly more efficient, though hardly significantly, in the
DQPSK case than DBPSK.

The demodulators show more interesting behavior. The demapping is
done by brute-force matching the incoming complex signal to the nearest
point by calculating the minimum Euclidean distance. AsM increases, the
performance also increases as the loop has more points to test. Like the
modulator, the only difference between the differential and nondifferential
cases is the use of a differential phasor block to decode the symbols.
Although there are more efficient receivers that do not rely on the same
complex synchronization loops for differential modulations, the receiver
implementation in GNU Radio does not currently take advantage of them.

Table C.2 shows the same information in table format similar to the
database used in the cognitive engine’s optimization calculation. In this table,
the modulators and demodulators are mixed together to form the overall
complexity of selecting a modulation scheme for a transceiver.

References

[1] “OProfile,” 2007. [Online]. Available:http://oprofile.sourceforge.net/news/

OProfile and Results of Profiling GNU Radio 177

Table C.1
OProfile Results of DBPSK Modulator

Samples % Symbol name
13815 28.5841 .loop1
9895 20.4734 gr_fir_ccf_simd::filter(complex <float >

const *)
7818 16.1760 .loop2
4139 8.5639 gr_interp_fir_filter_ccf::work(int,

vector <void const * , allocator <void
const * >>&, vector <void * >&)

3950 8.1728 gr_chunks_to_symbols_bc::work(int,
vector <void const * , allocator <void
const * >>&, vector <void * >&)

3265 6.7555 .cleanup
2009 4.1568 gr_diff_encoder_bb::work(int,

vector <void const * , allocator <void
const * >>&, vector <void * >&)

1151 2.3815 fcomplex_dotprod_sse
604 1.2497 gr_packed_to_unpacked_bb::general_work

(int, vector <int >&, vector <void
const * , allocator <void const * >>&,
vector <void * >&)

435 0.9000 .plt
380 0.7862 get_bit_be(unsigned char const * ,

unsigned int)
293 0.6062 gr_single_threaded_scheduler::main_loop()
189 0.3911 gr_map_bb::work(int, vector <void

const * , allocator <void const * >>&,
vector <void * >&)

98 0.2028 gr_block_detail::input(unsigned int)
58 0.1200 min_available_space(gr_block_detail * ,

int)
40 0.0828 gr_vector_source_b::work(int,

vector <void const * , allocator <void
const * >>&, vector <void * >&)

29 0.0600 gr_buffer_reader::items_available()
const

21 0.0435 gr_packed_to_unpacked_bb::forecast(int,
vector <int >&)

18 0.0372 gr_buffer::space_available() const
17 0.0352 gr_sync_interpolator::general_work(int,

vector <int >&, vector <void const * ,
allocator <void const * >>&,
vector <void * >&)

12 0.0248 vector <int >::_M_fill_insert(vector <int >::
iterator, unsigned long, int const&)

178 Artificial Intelligence in Wireless Communications

Samples % Symbol name
11 0.0228 gr_buffer::write_pointer()
11 0.0228 gr_sync_block::fixed_rate_ninput

_to_noutput(int)
8 0.0166 gr_block_detail::produce_each(int)
8 0.0166 gr_sync_block::forecast(int,

vector <int >&)
8 0.0166 vector <void * >::_M_fill_insert

(vector <void * >::iterator, unsigned
long, void * const&)

7 0.0145 gr_buffer_reader::read_pointer()
7 0.0145 gr_sync_interpolator::fixed_rate

_noutput _to_ninput(int)
5 0.0103 gr_block_detail::consume_each(int)
5 0.0103 gr_buffer::update_write_pointer(int)
5 0.0103 gr_sync_block::general_work(int,

vector <int >&, vector <void const * ,
allocator <void const * >>&,
vector <void * >&)

5 0.0103 gr_sync_interpolator::forecast(int,
vector <int >&)

3 0.0062 gr_sync_block::fixed_rate_noutput
_to_ninput(int)

3 0.0062 vector <void const * ,
allocator <void const * >>::
_M_fill_insert(__gnu_cxx::__normal
_iterator <void const ** , vector <void
const * , allocator <void const * >>,
unsigned long, void const * const&)

3 0.0062 vector <void * >::erase(vector <void * >::
iterator, vector <void * >::iterator)

1 0.0021 global constructors keyed to
_ZN8gr_prefs9singletonEv

1 0.0021 gr_block:: gr_block()
1 0.0021 gr_buffer_add_reader(boost::

shared_ptr <gr_buffer >, int)
1 0.0021 gr_buffer_reader::update_read_pointer(int)
1 0.0021 gr_prefix()
1 0.0021 void fill <vector <void * >::iterator,

void * > (vector <void * >::iterator,
vector <void * >::iterator, void * const&)

OProfile and Results of Profiling GNU Radio 179

Table C.2
Computational Database for GNU Radio Modulators

ID Modulation Hardware Counter
1 BPSK 29142.8
2 QPSK 46615.0
3 8PSK 69998.0
4 DBPSK 34889.3
5 DQPSK 52996.5
6 D8PSK 76539.3
7 GMSK 12352.8

D
XML and DTD Representation of
the Cognitive Components

This appendix provides template DTD and XML files used to pass information
between the cognitive components. The DTD files are used by the cognitive
engine to teach the cognitive controller the format the data it receives will
look like and therefore how to process and store the data. The DTD files
are transferred from the components to the cognitive controller during the
initialization stage. The waveform file representation is used in the genetic
algorithm to understand how to build the chromosome to properly represent
the system.

D.1 Waveform Representation

gnuradio_lb.dtd

<!ELEMENT waveform (Tx,Rx) >
<!ATTLIST waveform type #CDATA “analog/digital” >
<!ELEMENT Tx (PHY,LINK) >
<!ELEMENT PHY (rf,mod) >
<!ELEMENT rf (tx_freq+,tx_power+) >
<!ELEMENT tx_freq (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_power (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT mod (tx_mod+,tx_rolloff?,tx_bt?,

tx_gray_code?,tx_symbol_rate) >
<!ELEMENT tx_mod (tx_mod_bits,tx_mod_differential) >
<!ATTLIST tx_mod type (psk,msk,qam) “psk” >

181

182 Artificial Intelligence in Wireless Communications

<!ELEMENT tx_mod_bits (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_mod_differential (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_rolloff (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_bt (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_gray_code (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_symbol_rate (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT LINK (frame) >
<!ELEMENT frame (tx_pkt_size,tx_access_code?) >
<!ELEMENT tx_pkt_size (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT tx_access_code (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT Rx (PHY,LINK) >
<!ELEMENT PHY (rf+,mod,frame_correlator) >
<!ELEMENT rf (rx_freq+,rx_gain+) >
<!ELEMENT rx_freq (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT rx_gain (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT mod (rx_mod+,rx_rolloff?,rx_bt?,

rx_gray_code?,rx_symbol_rate) >
<!ELEMENT rx_mod (rx_mod_bits,rx_mod_differential) >
<!ATTLIST rx_mod type (psk,msk,qam) “psk” >
<!ELEMENT rx_mod_bits (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT rx_mod_differential (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>

XML and DTD Representation of the Cognitive Components 183

<!ELEMENT step (#PCDATA)>
<!ELEMENT rx_rolloff (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT rx_bt (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT rx_gray_code (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT rx_symbol_rate (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT frame_correlator (ACthreshold) >
<!ELEMENT ACthreshold (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT LINK (frame) >
<!ELEMENT frame (rx_pkt_size,rx_access_code?) >
<!ELEMENT rx_pkt_size (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT rx_access_code (min,max,step) >
<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT step (#PCDATA)>

gnuradio_lb.xml

<?xml version=“1.0”? >
<!DOCTYPE WAVEFORM SYSTEM “gnuradio_lb.dtd” >
<waveform type=“digital“ >

<Tx>
<PHY>

<rf >
<tx_freq >

<min unit=“kHz” >400000 < \min >
<max unit=“kHz” >500000 < \max>
<step unit=“kHz” >1< \step >

< \tx_freq >
<tx_power >

<min unit=“dBm” >0< \min >
<max unit=“dBm” >100< \max>
<step unit=“dBm” >0.1 < \step >

< \tx_power >
< \rf >
<rf >

<tx_freq >
<min unit=“kHz” >2300000 < \min >

184 Artificial Intelligence in Wireless Communications

<max unit=“kHz” >2500000 < \max>
<step unit=“kHz” >100< \step >

< \tx_freq >
<tx_power >

<min unit=“dBm” >0< \min >
<max unit=“dBm” >20< \max>
<step unit=“dBm” >0.1 < \step >

< \tx_power >
< \rf >
<mod>

<tx_mod type=“PSK” >
<tx_mod_bits >

<min >1< \min >
<max>3< \max>
<step >1< \step >

< \tx_mod_bits >
<tx_mod_differential >

<min >0< \min >
<max>1< \max>
<step >1< \step >

< \tx_mod_differential >
< \tx_mod >
<tx_mod type=“GMSK” >

<tx_mod_bits >
<min >1< \min >
<max>1< \max>
<step >1< \step >

< \tx_mod_bits >
<tx_mod_differential >

<min >0< \min >
<max>0< \max>
<step >0< \step >

< \tx_mod_differential >
< \tx_mod >
<tx_rolloff units=“na” >

<min >0< \min >
<max>1< \max>
<step >0.01 < \step >

< \tx_rolloff >
<tx_bt units=“na” >

<min >0< \min >
<max>1< \max>
<step >0.01 < \step >

< \tx_bt >
<tx_gray_code >

<min >0< \min >
<max>1< \max>
<step >1< \step >

< \tx_gray_code >
<tx_symbol_rate units=“Hz” mult=“1” >

<min >0.1 < \min >
<max>1.0 < \max>
<step >0.125 < \step >

< \tx_symbol_rate >
< \mod>

< \PHY>

XML and DTD Representation of the Cognitive Components 185

<LINK >
<f rame>

<tx_pkt_size units=“bytes” >
<min >1< \min >
<max>1500 < \max>
<step >1< \step >

< \tx_pkt_size >
<tx_access_code >None< \tx_access_code >

< \frame >
< \LINK >

< \Tx>
< \waveform >

D.2 Objectives Sensor

sensor_objectives.dtd
<!ELEMENT sensor (awgn,fer,powerconsumption,

sinr,throughput,
spectralefficiency,
bandwidth,interference,
computationalcomplexity) >

<!ATTLIST sensor name #CDATA #REQUIRED>
<!ELEMENT awgn (#PCDATA)>
<!ATTLIST awgn type (float) “float” >
<!ATTLIST awgn typeref (phy,mac,sys) “phy” >
<!ELEMENT fer (#PCDATA)>
<!ATTLIST fer type (float) “float” >
<!ATTLIST fer typeref (phy,mac,sys) “mac” >
<!ELEMENT sinr (#PCDATA)>
<!ATTLIST sinr type (float) “float” >
<!ATTLIST sinr typeref (phy,mac,sys) “phy” >
<!ELEMENT throughput (#PCDATA)>
<!ATTLIST throughput type (float) “float” >
<!ATTLIST throughput typeref (phy,mac,sys) “phy” >
<!ELEMENT bandwidth (#PCDATA)>
<!ATTLIST bandwidth type (float) “float” >
<!ATTLIST bandwidth typeref (phy,mac,sys) “phy” >
<!ELEMENT spectralefficiency (#PCDATA) >
<!ATTLIST spectralefficiency type (float) “float” >
<!ATTLIST spectralefficiency typeref (phy,mac,sys) “phy” >
<!ELEMENT interference (#PCDATA)>
<!ATTLIST interference type (float) “float” >
<!ATTLIST interference typeref (phy,mac,sys) “phy” >
<!ELEMENT powerconsumption (#PCDATA)>
<!ATTLIST powerconsumption type (float) “float” >
<!ATTLIST powerconsumption typeref (phy,mac,sys) “sys” >
<!ELEMENT computationalcomplexity (#PCDATA) >
<!ATTLIST computationalcomplexity type (float) “float” >
<!ATTLIST computationalcomplexity typeref (phy,mac,sys) “sys” >

sensor_objectives.xml
<?xml version=“1.0”? >

186 Artificial Intelligence in Wireless Communications

<!DOCTYPE sensor SYSTEM “sensor_objectives.dtd” >
<sensor name=“objectives” >

<awgn type=“float” typeref=“phy” >0.0 < \awgn>
<fer type=“float” typeref=“phy” >0.0 < \fer >
<sinr type=“float” typeref=“phy” >0.0 < \sinr >
<throughput type=“float” typeref=“phy” >0.0 < \throughput >
<bandwidth type=“float” typeref=“phy” >0.0 < \bandwidth >
<spectralefficiencytype=“float” typeref=“phy” >0.0

< \spectralefficiency >
<interference type=“float” typeref=“phy” >0.0 < \interference >
<powerconsumption type=“float” typeref=“phy” >0.0

< \powerconsumption >
<computationalcomplexity type=“float” typeref=“phy” >0.0

< \computationalcomplexity >
< \sensor >

D.3 Meters Sensor

sensor_meters.dtd

<!ELEMENT sensor (ber,per,ebno,tx_signal_power,
rx_signal_power,noise_power) >

<!ATTLIST sensor name #CDATA #REQUIRED>
<!ELEMENT ber (#PCDATA)>
<!ATTLIST ber type (float) “float” >
<!ATTLIST ber size #CDATA “1” >
<!ELEMENT per (#PCDATA)>
<!ATTLIST per type (float) “float” >
<!ATTLIST per size #CDATA “1” >
<!ELEMENT ebno (#PCDATA)>
<!ATTLIST ebno type (float) “float” >
<!ATTLIST ebno size #CDATA “1” >
<!ELEMENT tx_signal_power (#PCDATA) >
<!ATTLIST tx_signal_power type (float) “float” >
<!ATTLIST tx_signal_power size #CDATA “1” >
<!ELEMENT rx_signal_power (#PCDATA) >
<!ATTLIST rx_signal_power type (float) “float” >
<!ATTLIST rx_signal_power size #CDATA “1” >
<!ELEMENT noise_power (#PCDATA) >
<!ATTLIST noise_power type (float) “float” >
<!ATTLIST noise_power size #CDATA “1” >

sensor_meters.xml

<?xml version=“1.0”? >
<!DOCTYPE sensor SYSTEM “sensor_meters.dtd” >
<sensor name=“meters” >

<ber type=“float” size=“1” >0< \ber >
<per type=“float” size=“1” >0< \per >
<ebno type=“float” size=“1” units=“dB” >0< \ebno >
<tx_signal_powertype=“float” size=“1” units=“dBm” >0

< \tx_signal_power >
<rx_signal_power type=“float” size=“1” units=“dBm” >0

XML and DTD Representation of the Cognitive Components 187

< \rx_signal_power >
<noise_power type=“float” size=“1” units=“dBm” >0< \noise_power >

< \sensor >

D.4 PSD Sensor

sensor_psd.dtd

<!ELEMENT sensor (noise_floor,signal *) >
<!ATTLIST sensor name #CDATA #REQUIRED>
<!ELEMENT noise_floor (#PCDATA) >
<!ATTLIST noise_floor type (float) “float” >
<!ATTLIST noise_floor size #CDATA “1” >
<!ELEMENT signal (amplitude, fmin, fmax) >
<!ELEMENT amplitude (#PCDATA)>
<!ATTLIST amplitude type (float) “float” >
<!ATTLIST amplitude size #CDATA “1” >
<!ELEMENT fmin (#PCDATA)>
<!ATTLIST fmin type (float) “float” >
<!ATTLIST fmin size #CDATA “1” >
<!ELEMENT fmax (#PCDATA)>
<!ATTLIST fmax type (float) “float” >
<!ATTLIST fmax size #CDATA “1” >

sensor_psd.xml

<?xml version=“1.0”? >
<sensor name=“psd” >

<noise-floor type=“float” size=“1” unit=“dBm” >-85 < \noise-floor >
<signal >

<amplitude type=“float” size=“1” unit=“dBm” >-50 < \amplitude >
<fmin type=“float” size=“1” unit=“Hz” >449e6 < \fmin >
<fmax type=“float” size=“1” unit=“Hz” >451e6 < \fmax >

< \signal >
< \sensor >

D.5 Cognitive Controller Configuration

The cognitive controller configuration script lists the components attached
to the controller as well as certain pieces of information used to interact
with the component. Most of the components are distributed processes that
the controller communicates with over a TCP socket. For each of these, the
source and destination address (either an IP address or the domain name of the
node) are listed along with the source and destination ports. The source port is
generally left as 0 so the socket system can select a free port. The destination
port must match the port number the component is listening to and is arbitrary.

188 Artificial Intelligence in Wireless Communications

Here, the 1024 range is used only as an illustrative example; port numbers 0
through 1023 are assigned for global use by certain protocols.

The radio_nodesections are used to describe attached radios that the
cognitive radio communicates with on the network to transmit waveform
information. The configuration can list any number of these here with their
address and port information. The knowledge base node is currently directly
associated with the cognitive controller, but as a MySQL database, the
access is performed over a TCP socket, too, where the hostname tells the
controller on which host the database is served along with the username and
password credentials to access the database. This is a work in progress as the
authentication information should be more secure.

cognitive_controller.xml

<?xml version=“1.0"? >
<cognitive-controller >

<defaults >
<xmlscripts >../xmlscripts/ < \xmlscripts >
<waveform >default_sim_waveform.xml < \waveform >

< \defaults >
<knowledge-base >

<name>casebase < \name>
<hostname >localhost < \hostname >
<dbsize >10< \dbsize >
<nsolutions >1< \nsolutions >

< \knowledge-base >
<sensor >

<name>psd < \name>
<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<src_port >0< \src_port >
<dst_port >1024 < \dst_port >

< \sensor >
<sensor >

<name>meters < \name>
<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<src_port >0< \src_port >
<dst_port >1025 < \dst_port >

< \sensor >
<sensor >

<name>objectives < \name>
<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<src_port >0< \src_port >
<dst_port >1026 < \dst_port >

< \sensor>
<optimizer >

<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<src_port >0< \src_port >
<dst_port >1027 < \dst_port >

XML and DTD Representation of the Cognitive Components 189

<parameters >parameters_wsga.xml < \parameters >
<sdr_definition >gnuradio.xml < \sdr_definition >

< \optimizer >
<radio >

<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<src_port >0< \src_port >
<dst_port >1028 < \dst_port >
<radio_node >

<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<control_port >1100 < \control_port >

< \radio_node >
< \radio >
<user-interface >

<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<src_port >1029 < \src_port >
<dst_port >0< \dst_port >

< \user-interface >
<policy_engine >

<src_hostname >localhost < \src_hostname >
<dst_hostname >localhost < \dst_hostname >
<src_port >0< \src_port >
<dst_port >1030 < \dst_port >
<db_name>spectrum_mask < \db_name>
<table_name >dyspan2007 < \table_name >
<username >***** < \username >
<password >***** < \password >

< \policy_engine >
< \cognitive-controller >

E
Optimal Solutions of Knapsack
Problems

For the tests of the knapsack problems used with case-based decision theory
work of Chapter 6, we randomly created a set of knapsack problems and
stored these for repeated and comparable use. The results presented in Chapter
6 showed that many of the problems demonstrated significant improvement
using CBDT while others did not perform as well. To further analyze this, we
ran the simple knapsack GA for 50,000 generations to produce the optimal
value (or at least very close to it). In Chapter 5, the knapsack GA showed
asymptotic and therefore convergence behavior after 5,000 generations. We
ran for an extra 10 times that many generations to improve this further. The
results of this process are presented in Table E.1 for each of the 100 models
used. Knowing this bound is useful because it helps understand how difficult
the knapsack problem is to solve. Smaller overall profit values are much more
difficult to solve than larger values. Two interesting models are 62 and 63,
both with small overall profit values. The results of the CBDT are discussed in
Chapter 6 where different methods provided different results; some produced
significant improvement for model 62 but not for 63 while other methods
produced significant improvement for model 63 and not 62. The results in
this table show that these two problems are difficult to solve. When applying
case base feedback, the initial solutions can either help find better solutions
faster, or the initial solutions might bias the population to a local optimum
and hurt the search for the global optimum. See Chapter 6 for more analysis
of what these results mean.

191

192

Table E.1
Near-Optimal Values of Knapsack Models

Model Near-Optimal Profit
model0 0.482983
model1 0.484326
model2 0.350086
model3 0.264022
model4 0.464853
model5 0.297343
model6 0.268765
model7 0.473757
model8 0.390390
model9 0.369584

model10 0.362265
model11 0.137403
model12 0.569386
model13 0.467299
model14 0.307893
model15 0.481234
model16 0.475427
model17 0.438981
model18 0.510267
model19 0.342045
model20 0.492449
model21 0.324600
model22 0.308674
model23 0.079252
model24 0.442939
model25 0.408664
model26 0.443296
model27 0.313626
model28 0.374601
model29 0.425843
model30 0.415269
model31 0.343033
model32 0.393600
model33 0.513806

Optimal Solutions of Knapsack Problems 193

Model Near-Optimal Profit
model34 0.250659
model35 0.463317
model36 0.472347
model37 0.470804
model38 0.470514
model39 0.213563
model40 0.339058
model41 0.227216
model42 0.465122
model43 0.235960
model44 0.393179
model45 0.411411
model46 0.472914
model47 0.205941
model48 0.372415
model49 0.321990
model50 0.222235
model51 0.289213
model52 0.483975
model53 0.473257
model54 0.432361
model55 0.405035
model56 0.479364
model57 0.134768
model58 0.361675
model59 0.143135
model60 0.461016
model61 0.460595
model62 0.086188
model63 0.095681
model64 0.173661
model65 0.505214
model66 0.335363

194

Model Near-Optimal Profit
model67 0.455881
model68 0.509552
model69 0.456414
model70 0.266002
model71 0.444824
model72 0.363761
model73 0.235444
model74 0.426592
model75 0.166180
model76 0.445178
model77 0.116757
model78 0.294269
model79 0.335633
model80 0.123189
model81 0.493576
model82 0.459684
model83 0.163396
model84 0.295574
model85 0.165456
model86 0.236255
model87 0.363123
model88 0.495544
model89 0.408303
model90 0.445354
model91 0.365454
model92 0.416054
model93 0.130179
model94 0.441690
model95 0.359674
model96 0.176658
model97 0.267482
model98 0.443524
model99 0.483214

F
Simulation of an SINR Sensor

F.1 Sensor Design

A transmitted signal,s[k], contains a sequence of known data symbols,sk[k]
such as a training sequence, preamble, or access code. The received signal,
r[k], is shown in (F.1) and includes the transmitted signal, interference signals
in the channel bandwidth, and AWGN noise. Not represented in this equation
is that the transmitted signals (including the interferers’) amplitude is adjusted
by some pathloss of the propagation channel.

r(t) = s[k] +
∑

(i[k]) + n[k] (F.1)

Correlating the received signal with the known data symbols will peak
when the received signal is the known data sequence. The correlation can be
implemented as an FIR filter the length of the known sequence and where
the taps are the values of the known sequence. A similar autocorrelation is
done using the known sequence to get the peak value for use in determining
the pathloss. Equation (F.2) gives the peak value the cross-correlation where
K is the length of the known sequence, and (F.3) gives the peak of the
autocorrelation process.

mx =

K−1
∑

k=0

r[k]sk[k] (F.2)

ma =

K−1
∑

k=0

sk[k]sk[k] (F.3)

The known sequence is then adjusted in amplitude for pathloss by the
ratio mx/ma. The adjustment is based on the assumption that the pathloss

195

196 Artificial Intelligence in Wireless Communications

does not significantly change over the duration of the known sequence, which
is usually a few dozen bits long. The GNU Radio access code is 64 bits long.
Subtracting the adjusted known sequence from the received signal leaves the
interference plus noise (F.4). Subtracting the results of (F.4) from the received
signal leaves just the transmitted signal (F.5). These equations are valid fork
over the length of the known sequence,K, once the cross-correlation detects
a received known sequence.

rn+i[k] = r[k] − mx

ma
sk[k] =

∑

(i[k]) + n[k] (F.4)

rs[k] = r[k] − rn+i[k] (F.5)

The signal power is then the average magnitude squared ofrs (F.6), and
the interference plus noise power is the average magnitude squared ofrn+i

(F.7).

s =
1

K

K−1
∑

k=0

|rs[k]|2 (F.6)

i + n =
1

K

K−1
∑

k=0

|ri+n[k]|2 (F.7)

Equation (F.8) is the estimated SINR.

SINR = 10 log10

(

s

i + n

)

(F.8)

F.2 Simulation

The simulations were done using the MATLAB script provided below. The
script requires the communications toolbox.

The first simulation looks at the SINR estimator without any interfer-
ence, which should simply calculate the SNR. Figure F.1 plots the estimated
results versus the known SNR. Each point is the average of 100 simulations
using a 64-bit random known sequence. The figure shows a high precision
in calculating the SNR. There is a constant offset of about 0.35 dB due to
the use of root-raised cosine pulse shape filtering on previous symbols that
is not subtracted out of the signal and thus adds a bit of extra energy to the
calculation.

The purpose of this sensor is to calculate properly the signal power and
the signal to interference plus noise power in the presence of interference. In

Simulation of an SINR Sensor 197

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Known SINR (dB)

E
st

im
at

ed
 S

IN
R

 (
dB

)

Estimated SINR
Known SINR
Standard Deviation of Estimate

Figure F.1 Estimated SINR with no interference power.

the next simulation, both the signal and noise power are kept the same while
the interference amplitude is adjusted from 0 to 1 V peak-to-peak. The SNR
of the AWGN channel was set to 20 dB and the simulations are averaged 100
times for each interference amplitude setting. Figure F.2 shows the estimates
of the SINR, which starts at 20 dB when the interference is not present and
slopes downward to about 0 dB when the signal power of the interference is
the same as the signal power of the transmitter. Furthermore, Figure F.3 shows
the estimation of the signal power, which remains relatively constant for any
power of interference. The standard deviation shows the estimates are within
about 1 dB from the actual value when the interference power is at its highest.
These simulation results show that this type of sensor will properly provide
the cognitive engine with the required estimates of the signal, interference,
and noise powers.

198 Artificial Intelligence in Wireless Communications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

Interference Power (W)

E
st

im
at

ed
 S

IN
R

 (
dB

)

Estimated SINR
Standard Deviation of Estimate

Figure F.2 Estimated SINR for varying amounts of interference.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10.8

−10.6

−10.4

−10.2

−10

−9.8

−9.6

−9.4

−9.2

−9

−8.8

Interference Power (W)

E
st

im
at

ed
 S

ig
na

l P
ow

er
 (

dB
W

)

Estimated Signal Power
Standard Deviation of Estimate

Figure F.3 Estimated received signal power for varying amounts of interference.

F.3 MATLAB Code

F.3.1 SINR Calculation Function

function [S,I,l] = corr_sir(SNR, iamp)
% Return the signal power (S) and interference plus noise power (I)

Simulation of an SINR Sensor 199

% and estimated pathloss (l) given a specified SNR (in dB) and amplitude
% of an interference signal

Ns = 1000; % size of data
K = 64; % size of known sequence (in bits)
sps = 8; % number of samples per symbol
fd = 1; % symbol rate
fs = sps*fd; % sample rate
rc_alpha = 0.35; % raised cosine filter rolloff factor

% Create training sequence
train = randint(1,K);
train_mod = pskmod(train, 2);
t = rcosflt(train_mod, fd, fs, ‘fir/sqrt’, rc_alpha);

% Create source signal including the training sequence
xs = [randint(1, Ns), train, randint(1, Ns)];
xs_mod = pskmod(xs, 2);
s = rcosflt(xs_mod, fd, fs, ‘fir/sqrt’, rc_alpha);

% Create interference signal
xi = randint(length(xs), 1);
xi_mod = pskmod(xi, 4);
i = iamp*rcosflt(xi_mod, fd, fs, ‘fir/sqrt’, 0.25);

% Received signal is sum of source, interference, and noise
r = awgn(s + i, SNR, ‘measured’);
r = 0.1*r; % crude pathloss

% Autocorrelate training sequence to get max correlation value
autocor = xcorr(t,t);
autocor = autocor(ceil(length(autocor)/2) : length(autocor));
[mauto, indauto] = max(autocor);

% Correlate against known training sequence and find peak
sigcor = xcorr(r, t);
sigcor = sigcor(ceil(length(sigcor)/2) : length(sigcor));
sigcor = abs(sigcor);
[m,ind] = max(sigcor);

% Use crosscorrelation and autocorrelation of training sequence

200 Artificial Intelligence in Wireless Communications

% to adjust the signal for differences in amplitude.
% In this simulation, this should be equal to the pathloss value
ratio = m / mauto;

% Remove training sequence to separate into (i+n) and (s)
a = 4.0; % remove outside edges to compensate for RRC
tadj = ratio * t(a*sps : length(t)-a*sps);
r_t = r(ind + a*sps - 1 : ind + a*sps + length(tadj) - 2);

r_i = r_t - tadj;
r_s = r_t - r_i;

% Calculate average magnitude squared to get signal and I+N power
S = 20*log10(mean(abs(r_s)));
I = 20*log10(mean(abs(r_i)));
l = ratio;

F.3.2 Plotting SINR with No Interference Power

clear
clc
n = 1;
sig = 0;
int = 0;
sinr = 0;
std_sig = 0;
std_int = 0;
std_sinr = 0;
for SNR = 0:1:20

temp_sig = 0;
temp_int = 0;
for i = 1:100

[S, I, l] = corr_sir(SNR, 0);
temp_sig(i) = S;
temp_int(i) = I;

end
sig(n) = mean(temp_sig);
int(n) = mean(temp_int);
sinr(n) = sig(n) - int(n);

Simulation of an SINR Sensor 201

std_sig(n) = std(temp_sig);
std_int(n) = std(temp_int);
std_sinr(n) = std_sig(n) - std_int(n);

n = n+1;
end

SNR = 0:1:20;
fig = figure(1);
plot(SNR, sinr, ‘o-b’, ‘LineWidth’, 2.0, ‘MarkerFace’, ‘b’, ‘MarkerSize’, 10)
hold on
plot(SNR, SNR, ‘-k’, ’LineWidth’, 2.0)
plot(SNR, sinr + std_sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)
plot(SNR, sinr - std_sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)

xlabel(‘Known SINR (dB)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);
ylabel(‘Estimated SINR (dB)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);
set(fig, ‘Position’, [100 100 1000 640])
set(gca, ‘FontSize’, 18);
set(gca, ‘Position’, [0.075 0.1 0.875 0.875])
leg = legend(‘Estimated SINR’, ‘Known SINR’, ‘Standard Deviation of Estimate’);

F.3.3 Plotting SINR with Varying Interference Power

clear
clc
n = 1;
sig = 0;
int = 0;
sinr = 0;
std_sig = 0;
std_int = 0;
std_sinr = 0;
SNR = 20;
for intpwr = 0:0.1:1

temp_sig = 0;
temp_int = 0;
for i = 1:100

[S, I, l] = corr_sir(SNR, intpwr);
temp_sig(i) = S;

202 Artificial Intelligence in Wireless Communications

temp_int(i) = I;
end
sig(n) = mean(temp_sig);
int(n) = mean(temp_int);
sinr(n) = sig(n) - int(n);

std_sig(n) = std(temp_sig);
std_int(n) = std(temp_int);
std_sinr(n) = std_sig(n) - std_int(n);

n = n+1;
end

intpwr = 0.0:0.1:1.0;
fig = figure(1);
plot(intpwr, sinr, ‘o-b’, ‘LineWidth’, 2.0, ‘MarkerFace’, ‘b’, ‘MarkerSize’, 10)
hold on
plot(intpwr, sinr + std_sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)
plot(intpwr, sinr - std_sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)

xlabel(‘Interference Power (W)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);
ylabel(‘Estimated SINR (dB)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);
set(fig, ‘Position’, [100 100 1000 640])
set(gca, ‘FontSize’, 18);
set(gca, ‘Position’, [0.075 0.1 0.875 0.875])
leg = legend(’Estimated SINR’, ‘Standard Deviation of Estimate’);

fig = figure(2);
plot(intpwr, sig, ‘o-b’, ‘LineWidth’, 2.0, ‘MarkerFace’, ‘b’, ‘MarkerSize’, 10)
hold on
plot(intpwr, sig + std_sig, ‘ˆk’, ‘MarkerFace’, ‘k’)
plot(intpwr, sig - std_sig, ‘ˆk’, ‘MarkerFace’, ‘k’)

xlabel(‘Interference Power (W)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);
ylabel(‘Estimated Signal Power (dBW)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);
set(fig, ‘Position’, [100 100 1000 640])
set(gca, ‘FontSize’, 18);
set(gca, ‘Position’, [0.085 0.1 0.875 0.875])
leg = legend(‘Estimated Signal Power’, ‘Standard Deviation of Estimate’);

Acronyms

1xRTT 1 times Radio Transmission Technology

3GPP Third Generation Partnership Project

AI artificial intelligence

API application programming interface

ADC analog to digital converter

ASIC application-specific integrated circuit

AWGN additive white Gaussian noise

BER bit error rate

BT bandwidth-time product

DBPSK differential binary phase shift keying

CBDT case-based decision theory

CBR case-based reasoning

CDMA code division multiple access

CE cognitive engine

CES constant-elasticity-of-substitution

CR cognitive radio

203

204 Artificial Intelligence in Wireless Communications

CRC cyclic redundancy check

CTVR Centre for Telecommunications Value-Chain Research

CWT Center for Wireless Telecommunications

DAC digital to analog converter

DSA dynamic spectrum access

DSP digital signal processors

DSSS direct sequence spread spectrum

DTD document type definition

EDGE Enhanced Data Rates for GSM Evolution

EIRP effective isotropic radiated power

EV-DO Evolution-Data Optimized

FCC Federal Communications Commission

FDMA frequency division multiple access

FEC forward error correction

FER frame error rate

FFT fast Fourier transform

FHSS frequency hopping spread spectrum

FIFO first in first out

FIR finite impulse response

FM frequency modulation

FPGA field programmable gate arrays

FSF Free Software Foundation

GA genetic algorithm

GECCO Genetic and Evolutionary Computation Conference

GPRS General Packet Radio Service

Simulation of an SINR Sensor 205

GigE gigabit Ethernet

GPL general public license

GPP general purpose processors

GPU graphics processing unit

GNU GNU is not Unix

GSM global system for mobile communications

HMM hidden Markov models

HSPA High Speed Packet Access

IF intermediate frequency

IIR infinite impulse response

IRIS Implementing Radio in Software

ISI intersymbol interference

KUAR Kansas University Agile Radio

LTE Long Term Evolution

MAC Medium Access Control

MODM multiobjective decision making

MOGA multiobjective genetic algorithm

MRC maximal ratio combining

MSOPS multiple single objective Pareto sampling

NCO numerically controlled oscillator

OFDM orthogonal frequency division multiplexing

PSCR public safety cognitive radio

PDF probability density function

PHY physical

QA quality assurance

206 Artificial Intelligence in Wireless Communications

QoS quality of service

RF radio frequency

RC raised cosine

RRC root raised cosine

RSO repeated single objective

SCC Standards Coordinating Committee

SDR software defined radio

SIMD single instruction multiple data

SINR signal to interference plus noise ratio

SIR signal to interference ratio

SNR signal-to-noise ratio

SOAP Simple Object Access Protocol

SQL Structured Query Language

SR software radio

SSP subset-sum problem

TDMA time division multiple access

UMTS Universal Mobile Telecommunications System

USRP Universal Software Radio Peripheral

VHDL very high-speed integrated circuit hardware description language

VT Virginia Tech

WiMAX Worldwide Interoperability for Microwave Acess

WRAN wireless regional area networks

WSGA wireless system genetic algorithm

XML eXtensible Markup Language

About the Authors

Thomas W. Rondeau
Thomas W. Rondeau on the research staff of IDA’s Center for

Communications Research in Princeton, New Jersey. He received his B.S.,
graduating summa cum laude, and M.S. in electrical engineering from
Virginia Tech in 2003 and 2006, respectively. He received his Ph.D. degree
in electrical engineering from Virginia Tech in 2007. Upon completion of
his degrees, he worked as a post-doctoral research engineer with the Centre
for Telecommunications Value-Chain Research (CTVR) at Trinity College,
Dublin, Ireland.

Rondeau has published over twenty papers on software defined and
cognitive radios, including a chapter in the text bookCognitive Radio
Technologiesedited by Dr. Bruce Fette and a best paper award at the Software
Defined Radio Forum’s 2004 Technical Conference. Rondeau’s doctoral
dissertation was awarded both the Virginia Tech and Council of Graduate
School’s Distinguished Dissertation Award in mathematics, science, and
engineering for 2007. The basis of this work has also been awarded one of the
first U.S. patents on cognitive radio. He participates in the GNU Radio project
where he has helped develop much of the digital communications capabilities
including narrowband transmitters and receivers as well as an implementation
of orthogonal frequency division multiplexing (OFDM). Rondeau has also had
experience teaching digital communications to senior undergraduate students.

Tom’s research interests include cognitive radio, software defined radio
theory and implementation, artificial intelligence, signal processing, and
software and programming practices. When not pursuing these interests, Tom
can often be found reading and has a particular fascination with science and
computing history and cultural trends.

207

208 Artificial Intelligence in Wireless Communications

Charles W. Bostian
Charles W. Bostian is Alumni Distinguished Professor of Electrical and

Computer Engineering at Virginia Tech, where he has been a faculty member
since 1969. Prior to joining the university, he served as a U.S. Army officer and
worked briefly for Corning Glassworks. He holds B.S. (1963), M.S. (1964),
and Ph.D. (1967) degrees from North Carolina State University. Since 1993,
Bostian has served as the Director of the Virginia Tech Center for Wireless
Telecommunications (CWT). He is also a member ofWireless@Virginia Tech.

In his career at Virginia Tech, Bostian has taught more than 4,000
students, and his teaching has been recognized by a number of awards,
including ten certificates of teaching excellence and the William E. Wine
Award for Excellence in Teaching. He is a four-time winner of the Eta Kappa
Nu Outstanding Teaching Award and an elected member of the Virginia Tech
Academy of Teaching Excellence. Bostian is the coauthor of two widely used
textbooks,Solid State Radio EngineeringandSatellite Communications, now
in its second edition.

Bostian’s primary research interests are in cognitive electronics and
radio system design. Currently, he directs National Science Foundation
(NSF), National Institute of Justice (NIJ) and Defense Advanced Research
Projects Agency (DARPA) projects on cognitive radio. He has served on two
international technology assessment panels sponsored by NSF and NASA,
visiting many communications research centers in Europe and Japan. These
panels produced two widely read reports that significantly influenced the
direction of satellite communications research. One of these was republished
in hard cover by Noyes asSatellite Communications Systems and Technology.
He has authored or coauthored 45 journal and magazine articles and
approximately 100 conference papers and presentations and contributed to
the Wiley Encyclopedia of Electrical and Electronics Engineeringand to
Cognitive Radio Technology(Newnes, 2006).

Elected a Fellow of the IEEE in 1992 for contributions to and leadership
in the understanding of satellite path radio wave propagation, Bostian is a
former chair of the IEEE-USA Engineering R&D Policy Committee and
served as Associate Editor for Propagation ofIEEE Transactions on Antennas
and Propagation. On leave during the 1989 calendar year, he was as an
IEEE Congressional Fellow on the staff of U.S. Representative Don Ritter,
working on legislative issues related to the American electronics industry
and economic competitiveness. He served on the IEEE-USA Congressional
Fellow Committee, helping to select and mentor other congressional fellows.
He is a Fellow of the Radio Club of America.

In his off-duty hours, Bostian is a performing folk musician, playing
hammered dulcimer and string bass with the bandSimple Gifts of the

Simulation of an SINR Sensor 209

Blue Ridge. They have released four CDs, and the Canadian Broadcasting
Corporation and Australian Public Radio have featured their music.

Index

agent, 6, 12, 143
AI, 8, 12, 24–26, 28–30, 53, 123, 158
air interface, 40, 41
antenna, 34, 53, 66, 86, 122
artificial intelligence, 6, 11, 24, 26, 28, 157,

161

Bayesian networks, 26
behavior, 2, 7, 21, 26–28, 37, 57, 65, 68, 73,

85, 86, 119, 125, 129, 130, 132,
144, 155, 158, 160, 161, 167, 191

BER, 3, 28, 46, 49, 50, 55–60, 65, 66, 70,
85, 87, 92, 116, 127, 129–136,
138–140, 142, 143, 148, 155, 160,
163, 167–169

bit error rate, 57, 65, 92, 129

case-based decision theory, 8, 29, 84,
98–100, 105, 117, 125, 157, 161,
191

case-based learning, 98, 117, 148, 160
CBDT, 8, 20, 29, 84, 98–100, 105, 107,

108, 110, 117, 125, 157, 161, 191
CBR, 28, 29, 98
CES, 70, 71, 104
chromosome, 7, 29, 77–82, 85–91, 93, 105,

122, 127, 181
cognitive engine, 3, 6–8, 11–13, 15, 17–21,

23, 25, 29, 50, 56–58, 62–64, 68,
73, 83, 90, 91, 93, 98–104, 108,
117–119, 121, 125–128, 131,
134–138, 140, 142–144, 146, 149,

152, 154, 155, 157–159, 163, 181,
197

cognitive radio, 2–8, 11–14, 20, 21, 23–29,
33–37, 39–41, 50, 53, 54, 56, 57,
64, 73, 91, 93, 97, 98, 102, 114,
116, 119–123, 149, 150, 152,
156–160, 168, 188

complexity, 1, 2, 67, 68, 136, 173, 175, 176
computation, 58
CTVR, 16, 152
CWT, 15

DARPA, 4
demodulator, 47, 163, 174–176
DSA, 4, 5, 54, 119
dynamic spectrum access, 2, 5, 149, 159

efficiency, 62, 63, 87, 129, 135, 158
EIRP, 56, 64, 66
Ethernet, 42
evolutionary algorithm, 77

FCC, 5, 14, 129
FFT, 40, 121
filter, 35, 36, 41–46, 49, 56, 60–62, 195
flow graph, 42–46, 136, 173, 174
FPGA, 35–37, 41
Free Software Foundation, 40
FSF, 39, 40
fuzzy logic, 28, 160

general purpose processors, 38
genetic algorithm, 7, 8, 20, 27–29, 71–74,

77, 78, 84, 90, 93, 97, 98, 102,

211

212 Artificial Intelligence in Wireless Communications

103, 111, 122, 125, 130, 155, 160,
181

GigE, 41
GNU, 16, 21, 22, 34, 37, 39–51, 67, 127,

136, 141, 144, 149, 157, 163, 173,
174, 176, 196

GNU Radio, 16, 21, 22, 37, 39–46, 48–51,
67, 127, 136, 141, 144, 149, 157,
163, 173, 174, 176, 196

GPL, 39, 173
GPP, 35–39
GPU, 38

Haykin, 4

IEEE, 1, 4, 5, 113, 120, 121, 149, 158, 159
intelligence, 24, 119

intelligent, 24, 119
interference, 17, 24, 25, 45, 46, 50, 54, 57,

61, 63, 64, 98, 100, 103–105, 120,
122, 126, 127, 129, 139–143, 145,
146, 152, 154, 195–197

interferer, 17, 24, 25, 45, 46, 50, 54, 57,
61, 63, 64, 98, 100, 103–105, 120,
122, 126, 127, 129, 139–143, 145,
146, 152, 154, 195–197

knapsack, 78, 79, 81–84, 102, 105–108,
111, 112, 117, 125, 161, 191

knobs, 3, 12, 22, 47, 51, 56, 86, 93, 151, 159

LTE, 1, 113, 114

MAC, 2, 86
memory, 7, 44, 98, 102
meters, 3, 6, 47, 50, 51, 56, 64, 86, 93, 103,

104, 126, 127, 129, 132, 137, 141,
155

Mitola, 4, 12, 26
MODM, 55
modulation, 3, 4, 21, 26, 27, 35, 49, 54, 57,

58, 60, 62, 63, 66, 68, 87, 88, 92,
120, 123, 127, 135, 136, 146, 158,
159, 161, 163, 167, 169, 175, 176

modulator, 35, 44, 46, 47, 67, 136, 163,
173–176

MOGA, 85, 86
MSOPS, 72
multiobjective, 2, 6, 7, 55, 56, 68, 71–73,

77, 84, 87, 93, 116, 130, 143, 155,
157, 160

neural network, 26, 27
noise energy, 49, 56
noise power, 46, 47, 49, 50, 56–59, 64, 127,

145, 196, 197
Nyquist, 35, 43, 61

objective, 6, 21, 28, 53–58, 61–73, 84–87,
90–93, 100, 103, 104, 122,
125–127, 129–134, 138–140, 143,
148, 152, 155, 159, 160

OFDM, 121, 152, 158
optimal, 13, 71, 82, 83, 86, 111, 112, 122,

191
optimization, 2, 6–8, 13, 14, 16, 18–20, 25,

28, 29, 51, 53–58, 63, 66, 68–71,
73, 77, 82–87, 91–93, 97–100,
102, 103, 108, 112, 113, 117, 119,
120, 122, 125–128, 130, 132, 137,
140, 142, 148, 152, 154, 155, 157,
159–161, 167, 173, 176

Pareto, 55, 56, 71–73, 84–86, 92, 125, 135,
155

PHY, 2, 6, 8, 21, 34, 53, 55, 68, 121, 161
physical layer, 6, 8, 21, 34, 53, 121, 161
population, 29, 71, 72, 79, 82, 85–87, 91,

93, 97, 98, 106–108, 110–113,
122, 123, 127, 133–135, 148, 160,
161, 191

Python, 21, 40, 43, 108, 128

QoS, 1, 2, 4, 13, 19, 33, 54–56, 62, 66, 70,
92, 98, 104, 113, 126, 137, 152,
159

quality of service, 1, 2, 13, 54, 55, 62, 70,
92, 113, 152, 159

receiver, 3, 13, 35–37, 41, 45, 49, 50, 57, 61,
67, 129, 136, 139, 167, 169, 176

rendezvous, 121
resources, 2, 6, 19, 44, 53–55, 61, 64, 67, 84
RF front end, 41
RSO, 72

SDR, 4, 5, 8, 15, 16, 21, 33–42, 45, 50, 51,
65, 67, 86, 88, 121, 149, 157, 158,
163

sensor, 4, 6, 12, 16–20, 24, 25, 27, 57, 98,
102–105, 108, 126–128, 132, 137,
140, 141, 143–145, 149, 152, 155,
159, 196, 197

Index 213

SIMD, 38
simulation, 37, 45, 49, 57, 86, 108, 125,

126, 129, 137, 139, 141, 155, 163,
167, 169, 174, 196, 197

SINR, 55, 57, 63, 64, 139, 143, 144, 196
software defined radio, 34
spectrum, 2, 5, 13, 14, 19, 53, 54, 61, 63,

73, 114, 121, 129, 149, 150,
152–154, 159, 211

technology, 2, 4, 5, 26, 33, 34, 36–38, 50,
54, 114, 157, 158

throughput, 20, 28, 38, 56, 63, 65, 66, 70,
73, 85, 92, 114, 116, 127, 129,
134–136, 146

trade-off, 1, 2, 56, 61, 70, 71, 134, 160
transceiver, 2, 45

USRP, 37, 39–45, 149

VT, 15

waveform, 1–4, 12, 13, 19–22, 24, 29, 33,
36, 37, 42, 43, 45, 51, 54, 55, 57,
59, 62–64, 67–74, 77, 83, 85–89,
92, 93, 98, 100, 102, 104, 113,
118–123, 125, 127, 131, 132,
134–138, 140, 143, 144, 146, 148,
151–153, 155, 158, 159, 161, 173,
181, 188

WiFi, 1, 3, 4
WiMAX, 1, 113, 114

XML, 16, 17, 21–23, 50, 88–91, 103, 127,
128, 181

	Artificial Intelligence in Wireless Communications
	Contents
	Acknowledgments
	1 Introduction to Cognitive Radio
	1.3 Definition
	1.4 Contributions
	1.5 Contents
	References
	1.1 Brief Concept of Cognitive Radio
	1.2 Very Brief Cognitive Radio History

	2 The Cognitive Engine: Artificial Intelligence for Wireless Communications
	2.1 Cognitive Radio Design
	2.2 Cognitive Engine Design
	2.3 Component Descriptions
	2.3.1 Sensors
	2.3.2 Optimizer
	2.3.3 Decision Maker
	2.3.4 Policy Engine
	2.3.5 Radio Framework
	2.3.6 User Interface
	2.3.7 Cognitive Controller Configuration

	2.4 Artificial Intelligence in Wireless Communications
	2.5 Artificial Intelligence Techniques
	2.5.1 Neural Networks
	2.5.2 Hidden Markov Models (HMM)
	2.5.3 Fuzzy Logic
	2.5.4 Evolutionary Algorithms
	2.5.5 Case-Based Reasoning

	2.6 Conclusions
	References

	3 Overview and Basics of Software Defined Radios
	3.1 Background
	3.2 Benefits of Using SDR
	3.3 Problems Faced by SDR
	3.4 GNU Radio Design
	3.4.1 The Universal Software Radio Peripheral
	3.4.2 The USRP Version 2
	3.4.3 Flow Graphs
	3.4.4 Parallel Programming in GNU Radio
	3.4.5 Flow Graph for Simulation and Experimentation
	3.4.6 Available Knobs and Meters

	3.5 Conclusions
	References

	4 Optimization of Radio Resources
	4.1 Objective Space
	4.1 Objective Space
	4.2 Multiobjective Optimization: Objective Functions
	4.2.1 Bit Error Rate (BER)
	4.2.2 Bandwidth (Hz)

	4.2 Multiobjective Optimization: Objective Functions
	4.2.1 Bit Error Rate (BER)
	4.2.2 Bandwidth (Hz)
	4.2.3 Spectral Efficiency (bits/Hz)
	4.2.4 Interference
	4.2.5 Signal to Interference Plus Noise Ratio (SINR)
	4.2.6 Throughput
	4.2.7 Power
	4.2.8 Computational Complexity

	4.3 Multiobjective Optimization: A Different Perspective
	4.4 Multiobjective Analysis
	4.4.1 Utility Functions
	4.4.2 Population-Based Analysis

	4.5 Conclusion
	References

	5 Genetic Algorithms for Radio Optimization
	5.1 A Brief Review
	5.2 Simple Example: The Knapsack Problem
	5.3 Multiobjective GA
	5.4 Wireless System Genetic Algorithm
	5.4.1 Details of Chromosome Structure
	5.4.2 Objective Function Definition
	5.4.3 Optimal Individual Selection

	5.5 Conclusions
	References

	6 Decision Making with Case-Based Learning
	6.1 Case-Based Decision Theory
	6.2 Cognitive Engine Architecture with CBDT
	6.2.1 Memory and Forgetfulness

	6.3 Cognitive Engine Case-Based Decision Theory Implementation
	6.4 Simple CBDT Example
	6.5 Cognitive Radio Example Problem
	6.6 Conclusion
	References

	7 Cognitive Radio Networking and Rendezvous
	7.1 Waveform Distribution and Rendezvous
	7.2 Cognitive Radio Networks
	7.3 Distributed AI
	7.4 Conclusions
	References

	8 Example Cognitive Engine
	8.1 Functional System Design
	8.2 Simple Simulations
	8.2.1 BER-only
	8.2.2 BER and Power (1)
	8.2.3 BER and Power (2)
	8.2.4 Throughput
	8.2.5 Waveform Efficiency

	8.3 Interference Environment
	8.3.1 Interference (1): Simple BER Tests
	8.3.2 Interference (2): Sensor Problems
	8.3.3 Interference (3): Correcting for Sensors
	8.3.4 Interference (4): Throughput with Low Spectral Footprint

	8.4 Case-Based Decision Theory Example
	8.5 Over-the-Air Results
	8.6 Conclusions
	References

	9 Conclusions
	9.1 Application to Multicarrier Waveforms
	9.2 Strategies, Not Waveforms
	9.3 Enhanced Learning Systems
	9.4 Final Thoughts
	References

	A Analysis of GNU Radio Simulation
	A.1 Bit Error Rate Plots

	B Additional BER Formulas
	References

	C OProfile and Results of ProfilingGNU Radio
	C.1 Introduction to OProfile
	C.2 OProfile Results of GNU Radio Modulators
	References

	D XML and DTD Representation of the Cognitive Components
	D.1 Waveform Representation
	D.2 Objectives Sensor
	D.3 Meters Sensor
	D.4 PSD Sensor
	D.5 Cognitive Controller Configuration

	E Optimal Solutions of Knapsack Problems
	F Simulation of an SINR Sensor
	F.1 Sensor Design
	F.2 Simulation
	F.3 MATLAB Code
	F.3.1 SINR Calculation Function
	F.3.2 Plotting SINR with No Interference Power
	F.3.3 Plotting SINR with Varying Interference Power

	Acronyms
	About the Authors
	Index

