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Chapter 1

A xioms of Pm»babililty

1.2

10.

SAMPLE SPACE AND EVENTS

. For1 <, j <3, by (i, j) we mean that Vann’s card number is i, and Paul’s card number is

j. Clearly, A = {(1,2), (1,3), (2,3)} and B = {(2, 1), (3, 1), (3,2)}.
(a) Since AN B = (J, the events A and B are mutually exclusive.

(b) Noneof (1, 1), (2,2), (3, 3) belongs to AU B. Hence A U B not being the sample space
shows that A and B are not complements of one another.

. S={RRR,RRB,RBR,RBB, BRR, BRB, BBR, BBB}.

{x:0<x <20}{1,2,3,...,19}.

. Denote the dictionaries by dy, d»; the third book by a. The answers are

{dldza, dladz, dzdla, d2ad1, Cldldz, adgdl} and {dldza, adldz}.

E F: One 1 and one even.
E€F: One 1 and one odd.
E€F°: Both even or both belong to {3, 5}.

S={QQ.QN,QP,QD,DN,DP,NP,NN, PP}. (a) {QP}; (b) {DN, DP, NN}; (¢) /.
S={x:7<x=<9t}i{x:7<x=<73}U{x:73 <x <83} U{x: 83 <x <9}

EUFUG = G: If E or F occurs, then G occurs.
EFG = G: If G occurs, then E and F occur.

For1 <i <3,1 < j < 3, by a;b; we mean passenger a gets off at hotel i and passenger b
gets off at hotel j. The answers are {a;b;: 1 <i <3, 1 < j < 3} and {a\by, axb, a3bs},
respectively.

(a (EUF)(FUG)=(FUE)(FUG)=FUEG.
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Chapter 1 Axioms of Probability

(b) Using part (a), we have

(EUFYE°UFYEUF)=(FUEE ) EUF)=F(EUF) =FEUFF‘=FE.
(@) AB°C¢; (b)AUBUC; (c¢)A°B°C¢, (d)ABC°UAB°CUA°BC;
(e) ABCC°UA°B‘CUA‘BC*; ()(A—B)U(B—A)=(AUB)— AB.

If B = (, the relation is obvious. If the relation is true for every event A, then it is true for S,
the sample space, as well. Thus

S=(BNSHYU(B‘NS)=0U B =B,
showing that B = @.

Parts (a) and (d) are obviously true; part (c) is true by DeMorgan’s law; part (b) is false: throw
a four-sided die; let F = {1, 2,3}, G ={2,3,4}, E = {1, 4}.

@ U2, A ) UL, A,
Straightforward.
Straightforward.
Straightforward.

Let a;, a,, and as be the first, the second, and the third volumes of the dictionary. Let a4, as,
ae, and a7 be the remaining books. Let A = {a;, as, ... , a7}; the answers are

S = {x1x2x3X4xsx6x7: xip €A, 1 <i<7, andx; #x;ifi # j}

and
{XIX2X3X4X5X6X7 es: XiXi+1Xi42 = A1aa; forsomei,1 <i < 5},

respectively.

m;(1>10=1 U}c’:o=m An

Let Bi=A, By=A,— A, By=As—(A{UA),....,B, = A, —U'Z A, ...

BASIC THEOREMS

. No; P(sum 11) = 2/36 while P(sum 12) = 1/36.

0.33 +0.07 = 0.40.
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. Let E be the event that an earthquake will damage the structure next year. Let H be the

event that a hurricane will damage the structure next year. We are given that P(E) = 0.015,
P(H) =0.025,and P(EH) = 0.0073. Since

P(EUH)=P(E)+ P(H)— P(EH) =0.015 4 0.025 — 0.0073 = 0.0327,

the probability that next year the structure will be damaged by an earthquake and/or a hurricane
is 0.0327. The probability that it is not damaged by any of the two natural disasters is 0.9673.

. Let A be the event of a randomly selected driver having an accident during the next 12 months.

Let B be the event that the person is male. By Theorem 1.7, the desired probability is

P(A) = P(AB) + P(ABS) = 0.12 4 0.06 = 0.18.

. Let A be the event that a randomly selected investor invests in traditional annuities. Let B be

the event that he or she invests in the stock market. Then P(A) = 0.75, P(B) = 0.45, and
P(A U B) = 0.85. Since,

P(AB) = P(A) + P(B) — P(AU B) = 0.75 + 0.45 — 0.85 = 0.35,

35% invest in both stock market and traditional annuities.

. The probability that the first horse wins is 2/7. The probability that the second horse wins

is 3/10. Since the events that the first horse wins and the second horse wins are mutually
exclusive, the probability that either the first horse or the second horse will win is

2 3 41

7710 70

. In point of fact Rockford was right the first time. The reporter is assuming that both autopsies

are performed by a given doctor. The probability that both autopsies are performed by the same
doctor—whichever doctor it may be—is 1/2. Let A B represent the case in which Dr. A performs
the first autopsy and Dr. B performs the second autopsy, with similar representations for other
cases. Then the sample space is S = {AA, AB, BA, BB}. The event that both autopsies are
performed by the same doctor is {AA, BB}. Clearly, the probability of this event is 2/4=1/2.

. Let m be the probability that Marty will be hired. Then m 4 (m 4 0.2) + m = 1 which gives

m = 8/30; so the answer is 8/30 + 2/10 = 7/15.

. Let s be the probability that the patient selected at random suffers from schizophrenia. Then

s +5/3+5/2+5/10 = 1 which gives s = 15/29.
P(AU B) < 1 implies that P(A) + P(B) — P(AB) < 1.

() 2/52 +2/52=1/13; (b) 12/52 +26/52 —6/53 = 8/13; (¢) 1 — (16/52) = 9/13.
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12. (a) False;tossadieandlet A = {1,2}, B ={2,3},and C = {1, 3}.
(b) False;tossadieandlet A ={1,2,3,4}, B =1{1,2,3,4,5},C =1{1,2,3,4,5, 6}.

13. A simple Venn diagram shows that the answers are 65% and 10%, respectively.

14. Applying Theorem 1.6 twice, we have
P(AUBUC) =P(AUB)+ P(C) — P((AUB)C)
— P(A)+ P(B) — P(AB) + P(C) — P(AC U BC)
= P(A)+ P(B)— P(AB)+ P(C) — P(AC) — P(BC)+ P(ABC)
=PA)+ P(B)+ P(C)— P(AB) — P(AC) — P(BC)+ P(ABC).
15. Using Theorem 1.5, we have that the desired probability is
P(AB — ABC) + P(AC — ABC) + P(BC — ABC)
= P(AB) — P(ABC)+ P(AC) — P(ABC)+ P(BC) — P(ABC)
= P(AB) + P(AC)+ P(BC) —3P(ABC).

16. 7/11.
17. 351 pij-

18. Let M and F denote the events that the randomly selected student earned an A on the midterm
exam and an A on the final exam, respectively. Then

PMF)=PWM)+ P(F)—PMUF),

where P(M) = 17/33, P(F) = 14/33, and by DeMorgan’s law,

) 11 22
PMUF)=1—PMF)=1— — = —.
33 33
Therefore,

P(MF)_17 14 22 3
33 33 33 117

19. A Venn diagram shows that the answers are 1/8, 5/24, and 5/24, respectively.

20. The equation has real roots if and only if b? > 4c¢. From the 36 possible outcomes for (b, ¢),
in the following 19 cases we have that b> > 4c¢: (2, 1), 3, 1), (3,2), 4, 1), ..., (4,4), (5, 1),
..., (5,6),(6,1),...,(6,6). Therefore, the answer is 19/36.

21. The only prime divisors of 63 are 3 and 7. Thus the number selected is relatively prime to 63
if and only if it is neither divisible by 3 nor by 7. Let A and B be the events that the outcome
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is divisible by 3 and 7, respectively. The desired quantity is

P(A°By=1—-P(AUB)=1— P(A) — P(B) + P(AB)
21 9 3 4

- 63 63+63_7‘

Let T and F be the events that the number selected is divisible by 3 and 5, respectively.

(a) The desired quantity is the probability of the event 7' F¢:

333 66 267
1000 1000 ~ 1000°

(b) The desired quantity is the probability of the event 7€ F¢:

P(TF) = P(T)— P(TF) =

P(T°F)=1-P(TUF)=1—-P(T)—P(F)+ P(TF)
1 333 200 n 66 533
N 1000 1000 = 1000  1000°

(Draw a Venn diagram.) From the data we have that 55% passed all three, 5% passed calculus
and physics but not chemistry, and 20% passed calculus and chemistry but not physics. So at
least (55 454 20)% = 80% must have passed calculus. This number is greater than the given
78% for all of the students who passed calculus. Therefore, the data is incorrect.

By symmetry the answer is 1/4.

Let A, B, and C be the events that the number selected is divisible by 4, 5, and 7, respectively.
We are interested in P(AB°C¢). Now ABC* = A — A(BUC)and A(BUC) C A. So by
Theorem 1.5,
P(AB°C¢ = P(A) — P(A(B U C)) = P(A)— P(ABUAC)
= P(A) — P(AB) — P(AC) + P(ABC)
250 50 35 n 7172
1000 1000 1000 ~ 1000 1000

A Venn diagram shows that the answer is 0.36.

Let A be the event that the first number selected is greater than the second; let B be the
event that the second number selected is greater than the first; and let C be the event that
the two numbers selected are equal. Then P(A) + P(B) + P(C) =1, P(A) = P(B), and
P(C) =1/100. These give P(A) = 99/200.

Let B = Ay, and forn > 2, B, = A, — Ul'.':_ll A;. Then {By, B;, ...} is a sequence of
mutually exclusive events and | J;2, A; = |J;-, B;. Hence
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P(UJa) = p(ijn) = iP(B,» <Y P4,

n=1 n=1 n=1 n=1

since B, C A,,n > 1.

By Boole’s inequality (Exercise 28),

P(ﬁAn> —1 —P(GAQ) > 1—iP(A;).
n=1 n=1

n=1

She is wrong! Consider the next 50 flights. For 1 < i < 50, let A; be the event that the ith
mission will be completed without mishap. Then ﬂlsil A; is the event that all of the next 50

missions will be completed successfully. We will show that P ( mfﬂ h A,-) > 0. This proves

that Mia is wrong. Note that the probability of the simultaneous occurrence of any number of
A? ’s is nonzero. Furthermore, consider any set E consisting of n (n < 50) of the A{’s. Itis
reasonable to assume that the probability of the simultaneous occurrence of the events of E is
strictly less than the probability of the simultaneous occurrence of the events of any subset of
E. Using these facts, it is straightforward to conclude from the inclusion—exclusion principle

that,
50 50 504
P(UA) <X Pan=> =1
)=z ren =L
Thus, by DeMorgan’s law,

50

P(ﬂA,-):l—P(QAf) >1-1=0.

i=1

Q satisfies Axioms 1 and 2, but not necessarily Axiom 3. So it is not, in general, a probability
onS. Let S ={1,2,3,}. Let P({1}) = P({2}) = P({3}) = 1/3. Then Q({1}) = 0({2}) =
1/9, whereas Q({l, 2}) = P({l, 2})2 = 4/9. Therefore,

0(f1,2,1) # o({1}) + Q(2}).
R is not a probability on S because it does not satisfy Axiom 2; that is, R(S) # 1.

Let BRB mean that a blue hat is placed on the first player’s head, a red hat on the second
player’s head, and a blue hat on the third player’s head, with similar representations for other
cases. The sample space is

S={BBB, BRB, BBR, BRR, RRR, RRB, RBR, RBB).

This shows that the probability that two of the players will have hats of the same color and
the third player’s hat will be of the opposite color is 6/8 = 3/4. The following improvement,
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based on this observation, explained by Sara Robinson in Tuesday, April 10, 2001 issue of
the New York Times, is due to Professor Elwyn Berlekamp of the University of California at
Berkeley.

Three-fourths of the time, two of the players will have hats of the same color and
the third player’s hat will be the opposite color. The group can win every time this
happens by using the following strategy: Once the game starts, each player looks
at the other two players’ hats. If the two hats are different colors, he [or she] passes.
If they are the same color, the player guesses his [or her] own hat is the opposite
color. This way, every time the hat colors are distributed two and one, one player
will guess correctly and the others will pass, and the group will win the game. When
all the hats are the same color, however, all three players will guess incorrectly and
the group will lose.

1.7 RANDOM SELECTION OF POINTS FROM INTERVALS

1 30—10 2
T 30-0 3
) —0.04
g, 006352004 0,
0.12 — 0.04

3. (a) False; in the experiment of choosing a point at random from the interval (0, 1), let
A = (0,1) — {1/2}. A is not the sample space but P(A) = 1.
(b) False; in the same experiment P ({1/2}) = 0 while {3} # 0.

4. P(AUB) > P(A) = 1,50 P(AU B) = 1. This gives
P(AB)=P(A)+ P(B)— P(AUB)=1+1—-1=1.

5. The answer is
1999 1999

P({1,2,...,1999)) = Y "P({i})) =) 0=0.
i=1

i=1

6. Fori =0,1,2,...,9, the probability that i appears as the first digit of the decimal represen-
S
tation of the selected point is the probability that the point falls into the interval [IZ_O’ : I) )

Therefore, it equals

i+1
10 10 _ 1
1—-0 10

This shows that all numerals are equally likely to appear as the first digit of the decimal
representation of the selected point.
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No, itis not. Let S = {wy, wy, ...}. Suppose that for some p > 0, P({w,-}) =p,i=1,2,
.... Then, by Axioms 2 and 3, > ";2, p = 1. This is impossible.

. Use induction. For n = 1, the theorem is trivial. Exercise 4 proves the theorem for n = 2.

Suppose that the theorem is true for n. We show it forn + 1,
P(A1Ay - AyAp) = P(A1Ay - Ay) + P(Ap1) — P(A1Az - Ay U Apyy)
=14+1-1=1,
where P(A1A;--- A,) = 1is true by the induction hypothesis, and
P(A1Ar--- Ay UAp) = P(Apy) =1,

implies that P(AjAy--- A, UA, ;) = 1.

. (a) Clearly,l € ﬁ <l—i l+i> Ifx € ﬁ <l—i l—|—L>,then,foralln >1,
2n=122n22n ”=22n22n
1 1 1 1
2w 2T
Letting n — oo, we obtain 1/2 < x < 1/2; thus x = 1/2.
(b) Let A, be the event that the point selected at random is in (l — i l + i) then
2 2n 2 2n

AID2ADA32 - DA, DA 2.
1
Since P(A,) = —, by the continuity property of the probability function,
n
P({1/2}) = lim P(A,) =0.
n—oo

The set of rational numbers is countable. Let Q = {r;, r,,r3,...} be the set of rational
numbers in (0, 1). Then

o0

PQ = P({ri.ra.r3,...}) = Y_ P({r:}) =0.

i=1

Let I be the set of irrational numbers in (0, 1); then
POH=PQ)=1-POQ =1

Fori =0,1,2,...,9, the probability that i appears as the nth digit of the decimal represen-
tation of the selected point is the probability that the point falls into the following subset of
©, :

10"=1-1

10m +i 10m +i+1
U [ 10’ 10" )
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Since the intervals in this union are mutually exclusive, the probability that the point falls into
this subset is

10m+i+1 10m+i
10m=1—1 -

n n 1 1
Z 10 10 — 0% . _ L
1-0 10" 10

m=0
This shows that all numerals are equally likely to appear as the nth digit of the decimal
representation of the selected point.

12. P(B,) <> 2 P(A,).Since Y o2, P(A,) converges,

o0
lim P(By) < lim Z P(A,) = 0.

This gives lim,, o P(B,;) = 0. Therefore,
BiI2B,2B32--- 2By 2Bup1 2

implies that
o0 o0 o0
P( Ny An) - P( N Bm> = lim P(By) =0.
m=1n=m m=1

13. In the experiment of choosing a random point from (0, 1), let E, = (0, 1) — {¢},for0 < ¢ < 1.
Then P(E;) = 1 for all ¢, while

P( N E,) — P(#) = 0.

te(0,1)

14. Clearly r, € (a,, B,). By the geometric series theorem,

]

1
~ Z

4
E(ﬁn_an)zg %28 1=§<8-

n=1 n=1 1 ——

REVIEW PROBLEMS FOR CHAPTER 1

325-2
1. ———— =054
43-2

2. We have that

S = {(@ (1), (@, (2), (9, {1,2}), ({13, 2}), ({13, {1, 2}), (2, {1, 2})}-
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The desired events are
@ {(@.{1}),(@.{2}), (2.{1.2}). ({1, 21) }: ® {(©.{1,2}), ({1}. {2) )
© {(¥,{1}). (9, {2}). (4, {1, 2}), ({1}. {1, 2}), ({2}, {1, 2}) }.

. Since A C B, we have that B¢ C A°. This implies that (a) is false but (b) is true.

. In the experiment of tossing a die let A = {1, 3, 5} and B = {5}; then both (a) and (b) are

false.

. We may define a sample space S as follows.

S={xxxn>=1, x; e (T} x;i # x4, 1< <n—2; X0 =1,

. A venn diagram shows that 18 are neither male nor for surgery.

. We have that ABC € BC, so P(ABC) < P(BC) and hence P(BC) — P(ABC) > 0. This

and the following give the result.
P(AUBUC) = P(A)+ P(B) + P(C) — [P(AB) + P(AC) + P(BC) — P(ABC)]
< P(A)+ P(B) + P(C).

. If P(AB) = P(AC) = P(BC) =0, then P(ABC) = 0since ABC C AB. These imply that

P(AUBUC)= P(A)+ P(B)+ P(C) — P(AB) — P(AC) — P(BC) + P(ABC)
= P(A) + P(B)+ P(O).

Now suppose that
P(AUBUC)=P(A)+ P(B)+ P(C).

This relation implies that
P(AB) + P(BC) + [P(AC) — P(ABC)] = 0. (1)

Since P(AC) — P(ABC) > 0 we have that the sum of three nonnegative quantities is 0; so
each of them is 0. That is,

P(AB)=0, P(BC)=0, P(AC)= P(ABCQC). 2)
Now rewriting (1) as
P(AB)+ P(AC) + [P(BC) — P(ABC)]| =0,
the same argument implies that
P(AB)=0, P(AC)=0, P(BC)= P(ABCQC). 3)
Comparing (2) and (3) we have
P(AB) = P(AC) = P(BC) =0.



10.

11.

12.

13.

14.

15.

Chapter 1 Review Problems 11

. Let W be the event that a randomly selected person from this community drinks or serves

white wine. Let R be the event that she or he drinks or serves red wine. We are given that
P(W)=0.40, P(R) =0.50,and P(W U R) = 0.70. Since

P(WR)=P(W)+ P(R)— P(WUR)=0.4040.50 - 0.70 = 0.20,
20% percent drink or serve both red and white wine.

No, it is not right. The probability that the second student chooses the tire the first student
chose is 1/4.

By De Morgan’s second law,
P(A°B)=1—P((A°B°)) =1— P(AUB) =1— P(A) — P(B) + P(AB).
By Theorem 1.5 and the fact that A — B and B — A are mutually exclusive,

P((A—B)U(B—A))=P(A—B)+P(B—A)=P(A— AB)+ P(B— AB)
= P(A) — P(AB) + P(B) — P(AB) = P(A) + P(B) —2P(AB).

Denote a box of books by a;, if it is received from publisher i, i = 1, 2, 3. The sample space
is

S = {x 1X2X3X4X5X6: two of the x;’s are a;, two of them are a, and the remaining two are a3}.
The desired event is E = {X1X2X3X4X5x6 eS:x5s= x(,}.

Let E, F, G, and H be the events that the next baby born in this town has blood type O, A, B,
and AB, respectively. Then

1
P(E)= P(F), P(G) = EP(F), P(G) =2P(H).
These imply

P(E)=P(F)=20P(H).

Therefore, from
P(EY+ P(F)+ P(G)+ P(H) =1,

we get
20P(H)+20P(H)+2P(H)+ P(H) =1,

which gives P(H) = 1/43.

Let F, S, and N be the events that the number selected is divisible by 4, 7, and 9, respectively.
We are interested in P(F°¢S°N€¢) which is equal to 1 — P(F U S U N) by DeMorgan’s law.
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Now

P(FUSUN)=P(F)+ P(S)+ P(N)— P(FS)— P(FN)— P(SN)+ P(FSN)

250 142 111 35 27 15 3
1000~ 1000 = 1000 1000 1000 1000 = 1000

So the desired probability is 0.571.

The number is relatively prime to 150 if is not divisible by 2, 3, or 5. Let A, B, and C be the
events that the number selected is divisible by 2, 3, and 5, respectively. We are interested in
P(A°B°C°)=1—- P(AUBUC). Now

P(AUBUC)= P(A)+ P(B)+ P(C) — P(AB) — P(AC) — P(BC) + P(ABC)
75 50 30 25 15 10 5 11

=150 7150 7150 150 150 150 T 150 _ 15°

11 4
Therefore, the answeris 1 — — = —.
15 15

(@ UDy; (b)) U Uy-- Uy (¢) (UiD) U U3 D3) U---U (U, Dy);

(d) (U1 DUSDS) U (U USDSDs) U (D U,US DS) U (DyUS DSUS)
U(DSUS D,Us) U (DSUSUS Do) U (DSUS DSUS DSUS);

(&) DSDS--- Dt

199 —96 103
199—-0  199°

We must have b?> < 4ac. There are 6 x 6 x 6 = 216 possible outcomes for a, b, and c. For
cases in which a < ¢, a > ¢, and a = ¢, it can be checked that there are 73, 73, and 27 cases
in which b? < 4ac, respectively. Therefore, the desired probability is

73+73+27 173
216 216"
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COUNTING PRINCIPLES

. The total number of six-digit numbersis 9 x 10x 10 x 10 x 10 x 10 = 9 x 107 since the first digit

cannot be 0. The number of six-digit numbers without the digit five is8 x 9 x 9 x9Ix 9 x 9 =
8 x 9°. Hence there are 9 x 10° — 8 x 9° = 427, 608 six-digit numbers that contain the digit
five.

. (@ 5 =3125. (b) 5 =125

. There are 26 x 26 x 26 = 17, 576 distinct sets of initials. Hence in any town with more than

17,576 inhabitants, there are at least two persons with the same initials. The answer to the
question is therefore yes.

. 415 =1,073, 741, 824.
2 1 N
? = ﬁ =~ (0.00000024.
. (@) 525 =1380,204,032. (b) 52 x 51 x50 x 49 x 48 = 311, 875, 200.
. 6/36 =1/6.
4x3x2x2 1 8x5x6x2 27
.a) ——=—. (b) 1

2x8x8x4 64 T 12x8x8x4 32

1
— ~ 0.00000000093.
415

26 x 25 x24 x 10 x 9 x 8 =11, 232, 000.
There are 26 x 102 = 1, 757, 600 such codes; so the answer is positive.
2nm

2+ 1B+ 1)(2+ 1) = 36. (See the solution to Exercise 24.)
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There are (2° — 1)23 = 504 possible sandwiches. So the claim is true.
(@ 5*=0625. (b) 5*—5x4x3x2=505.

212 = 4096.

48 x 48 x 48 x 48
52 x 52 x52x%x52

=0.274.

10 x9x8x7=5040. (a)9 x9x8x7=4536; (b)5040 —1x 1 x 8 x7=4984.

Ny
Nt

1

By Example 2.6, the probability is 0.507 that among Jenny and the next 22 people she meets
randomly there are two with the same birthday. However, it is quite possible that one of these
two persons is not Jenny. Let n be the minimum number of people Jenny must meet so that
the chances are better than even that someone shares her birthday. To find n, let A denote the
event that among the next n people Jenny meets randomly someone’s birthday is the same as
Jenny’s. We have

364"

365"

To have P(A) > 1/2, we must find the smallest n for which

P(A)=1—-PA)=1-

364" 1
> -,
365" 2

or
364" 1

< —.
365" 2

This gives
1
log 3
= 252.652.
4

l P
%365

Therefore, for the desired probability to be greater than 0.5, n must be 253. To some this might
seem counterintuitive.

n >

Draw a tree diagram for the situation in which the salesperson goes from I to B first. In
this situation, you will find that in 7 out of 23 cases, she will end up staying at island /. By
symmetry, if she goes from I to H, D, or F first, in each of these situations in 7 out of 23
cases she will end up staying at island /. So there are 4 x 23 = 92 cases altogether and in
4 x 7 = 28 of them the salesperson will end up staying atisland /. Since 28/92 = 0.3043, the
answer is 30.43%. Note that the probability that the salesperson will end up staying at island
I is not 0.3043 because not all of the cases are equiprobable.



22,

23.

24,

25.

26.

27.

28.

29.

Section 2.2 Counting Principle 15

He is at O first, next he goes to 1 or —1. If at 1, then he goes to 0 or 2. If at —1, then he goes
to 0 or —2, and so on. Draw a tree diagram. You will find that after walking 4 blocks, he is at
one of the points 4, 2, 0, —2, or —4. There are 16 possible cases altogether. Of these 6 end up
at 0, none at 1, and none at —1. Therefore, the answer to (a) is 6/16 and the answer to (b) is 0.

We can think of a number less than 1,000,000 as a six-digit number by allowing it to start with
0 or 0’s. With this convention, it should be clear that there are 9° such numbers without the
digit five. Hence the desired probability is 1 — (96/10°) = 0.469.

Divisors of N are of the form p{' p3* - - - pi, wheree; =0, 1,2,... ,n;,1 <i < k. Therefore,
the answeris (n; + 1)(ny + 1) - - - (ny + 1).

There are 6* possibilities altogether. In 5* of these possibilities there is no 3. In 53 of these
possibilities only the first die lands 3. In 5% of these possibilities only the second die lands 3,
and so on. Therefore, the answer is

54 4+4 x5

i = 0.868.

Any subset of the set {salami, turkey, bologna, corned beef, ham, Swiss cheese, American
cheese} except the empty set can form a reasonable sandwich. There are 27 — 1 possibilities.
To every sandwich a subset of the set {lettuce, tomato, mayonnaise} can also be added. Since
there are 3 possibilities for bread, the final answer is (27 — 1) x 23 x 3 = 3048 and the
advertisement is true.

11 x10x9x8xT7Tx6x5x%x4

TG = 0.031.

Fori = 1,2,3, let A; be the event that no one departs at stop i. The desired quantity is
P(A{ASAS) =1— P(A U Ay U Az). Now
P(A1UAyU A3) = P(A1) + P(A2) + P(A3)
— P(A1A2) — P(A1A3) — P(A2A3) + P(A1A2A3)
_26+26+26 1_1 1. .7
S30 36036 36 36 36 7 27"
Therefore, the desired probability is 1 — (7/27) = 20/27.

For 0 <i <9, the sum of the first two digits is 7 in (i 4+ 1) ways. Therefore, there are (i + 1)?
numbers in the given set with the sum of the first two digits equal to the sum of the last two
digits and equal to i. Fori = 10, there are 9> numbers in the given set with the sum of the first
two digits equal to the sum of the last two digits and equal to 10. Fori = 11, the corresponding
numbers are 82 and so on. Therefore, there are altogether

PP+22 4+ 41004+ +8+---+12=670
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numbers with the desired probability and hence the answer is 670/10* = 0.067.

Let A be the event that the number selected contains at least one 0. Let B be the event that it
contains at least one 1 and C be the event that it contains at least one 2. The desired quantity
is P(ABC) =1— P(A°U B°U C°), where

P(A°UB°UC ) = P(A°)+ P(B°) + P(CY)
— P(A°B¢) — P(A°C°) — P(B°C°) 4+ P(A°B°C")

__ v 8x 9! L 8x 91 8" 8"
S 9x 10T T 9x 10 T 9x 10 9x 10T 9 x 107!
7 x 8! 7"

T 9x10- Tox 101

PERMUTATIONS

1 1
. The answeris — = — ~ 0.0417.

41 24

. 31 =6.

8!
35!

. The probability that John will arrive right after Jim is 7!/8! (consider Jim and John as one

arrival). Therefore, the answer is 1 — (7!/8!) = 0.875.

Another Solution: If Jim is the last person, John will not arrive after Jim. Therefore, the
remaining seven can arrive in 7! ways. If Jim is not the last person, the total number of
possibilities in which John will not arrive right after Jim is 7 x 6 x 6!. So the answer is

7! !
M:O.Sﬁ.
8!
312 = 531, 441 b —12! =924 —12! = 27,720
- @) 3T =514l b) re =924 (© g = 27,720,
. 6P =30.
20!
———— = 3,491, 888, 400.
41315!8!
Sx4x7 4x3x6 3x2x5
Ox4xT)x@Ex3x6)x (3x2x ):50’400.

3!
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. There are 8! schedule possibilities. By symmetry, in 8!/2 of them Dr. Richman’s lecture

precedes Dr. Chollet’s and in 8!/2 ways Dr. Richman’s lecture precedes Dr. Chollet’s. So the
answer is 8!/2 = 20, 160.

11!

—— =92, 400.
31213131

1 — (6!/6% = 0.985.

1 34,650
@ gy =40
10!
(b) Treating all P’s as one entity, the answer is A = 6300.
8!
(c) Treating all /’s as one entity, the answer is i 840.

7!
(d) Treating all P’s as one entity, and all I’s as another entity, the answer is i 210.

(e) By (a) and (c), The answer is 840/34650 = 0.024.

<2v 31 3;)/68 = 0.000333.

<3'3!3;)/529 =6.043 x 10713,

m!
(n+m)!
Each girl and each boy has the same chance of occupying the 13th chair. So the answer is
12x 19! 12
12/20 = 0.6. This can also be seen from X =0.6.
20! 20
12!
= 0.000054.
1212
. . 5! x 18!
Look at the five math books as one entity. The answer is o = 0.00068.
9Py
1— o= 0.962
2 x 5!'x 5!
——— =0.0079.
10!

nl/n".
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1 — (6!/6°%) = 0.985.

Suppose that A and B are not on speaking terms. 134 P4 committees can be formed in which
neither A serves nor B; 4 x 134 P; committees can be formed in which A serves and B does not.
The same numbers of committees can be formed in which B serves and A does not. Therefore,
the answer is 134 P4 + 2(4 X134 P3) = 326, 998, 056.

@ m". (b)) P, () nl

(3 - %)/68 — 0.003.

20!
39x37x35%x---x5%x3x1
1
39x37x35%x---x5%x3x1

(a) =761 x 1075,

(b) =3.13 x 1074,

Thirty people can sit in 30! ways at a round table. But for each way, if they rotate 30 times
(everybody move one chair to the left at a time) no new situations will be created. Thus in
30!/30 = 29! ways 15 married couples can sit at a round table. Think of each married couple
as one entity and note that in 15!/15 = 14! ways 15 such entities can sit at a round table. We
have that the 15 couples can sit at a round table in (2!)!5 - 14! different ways because if the
couples of each entity change positions between themselves, a new situation will be created.
So the desired probability is

1412nH"
YT 3031071,
29!
The answer to the second part is
241(21)°
2MCEY 95 x 107,
29!

In 13! ways the balls can be drawn one after another. The number of those in which the first
white appears in the second or in the fourth or in the sixth or in the eighth draw is calculated
as follows. (These are Jack’s turns.)

EXSIXIIN+8XTXO6XIXN+8XxTXxO6Xx5x4x5xT7!
+8XxTx6x5x4x3x2x5x5!=2,399, 846, 400.

Therefore, the answer is 2, 399, 846, 400/13! = 0.385.
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COMBINATIONS

100

i=51

(

1

20
6

25
6

. (20> = 38, 760.
6

) = 6, 864, 396, 000.

) =21, 624.

O)/<172) — 0.318.

Section 2.4 Combinations

100
Z ( ) ) = 583,379, 627, 841, 332, 604, 080, 945, 354, 060 ~ 5.8 x 10%.
i

19

12
The coefficient of 2°x? in the expansion of (2 + x)'? is ( 9 ) Therefore, the coefficient of x°

12
is 23< 9 ) = 1760.

7
The coefficient of (2x)3(—4y)* in the expansion of (2x — 4y)” is <4) Thus the coefficient

7
of x*y? in this expansion is 23(—4)* (4) =71, 680.

-(

9
3

JI(

6
4

)+

6
3

)] — 4620.
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10 710
10 __ . 10 _
(a) (5 )/2 —0.246: (b) ?:5: ( l_ )/2 = 0.623.

If their minimum is larger than 5, they are all from the set {6, 7, 8, ... , 20}. Hence the answer

is (155> / (250> —0.194.
6)E) () (6) (&) (5)
2J\ 4 6 6 6 6
N =0.228; (b) 34 = 0.00084.
(6) 6)
(50) (150)
% — 0.00206.
(o)
- i n _ - n iqn—i __ n __An
;2(i>_§<i>21 =Q24+1)"=3"
“ i n « n iqn—i __ n
Zx(i):§<i>XI =@+ D"

i=0

[(§>54]/66 = 0.201.
212/<?2> = 0.00151.

4
Royal Flush: TN = 0.0000015.
(5)

) 36
Straight flush: TN = 0.000014.
(5)

4

13 x 12(1)
————— = 0.00024.

)

(a)

Four of a kind:
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4 4
13(3) . 12(2)
— e = 0.0014.
(%)
4(153> — 40
— e = 0.002.
(%)
10(4)° — 40

)

3 (3) .
Three of a kind: (

Full house:

Flush:

Straight: = 0.0039.

(2)G)G) ()
. 2 /\2)\2 1)
Two pairs: <52) = 0.048.
5
4 12\
13 )5 4
One pair: =0.42

None of the above: 1— the sum of all of the above cases = 0.5034445.

The desired probability is

(12) (12)
6 6
— = =0.3157.
24
12
The answer is the solution of the equation (;) = 20. This equation is equivalent to

x(x — 1)(x —2) = 120 and its solution is x = 6.
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Thereare 9x 10° = 9000 four-digit numbers. From every 4-combination of the set {0, 1, ... , 9},
exactly one four-digit number can be constructed in which its ones place is less than its tens
place, its tens place is less than its hundreds place, and its hundreds place is less than its

10
thousands place. Therefore, the number of such four-digit numbers is ( 4 ) = 210. Hence
the desired probability is 0.023333.

n!
2 §
(x Y Z) - ni'nyn |xnlynzzn3
PIEE e

21 21 21
::2!0!0!x2y0z0+0!2!0!x0y2z0+ x'y’e

010! 2!
2' 1..1_0 2' 1.0_1 2' 0.1_1
TR R TT R TR TR TR TR

= x>+ y* + 224+ 2xy +2xz + 2yz.

213121

The coefficient of (2x)?(—y)3(3z)? in the expansion of (2x — y + 3z) is . Thus the

7!
coefficient of x2y3z? in this expansion is 22(—1)3(3)2m = —7560.

Therefore,

The coefficient of (2x)°(—y)’(3)? in the expansion of (2x — y 4 3)" is 3 7,'3,-
13! o

the coefficient of xy” in this expansion is 23(—1)’ (3)3m = —7,413, 120.

52! 52!
n = ways 52 cards can be dealt among four people. Hence the sample
131131131130 (13)*
space contains 52!/(13!)* points. Now in 4! ways the four different suits can be distributed

among the players; thus the desired probability is 4!/[52!/(13))*] ~ 4.47 x 1028,

I

The theorem is valid for k = 2; it is the binomial expansion. Suppose that it is true for all
integers < k — 1. We show it for k. By the binomial expansion,

n

n n n—n
(X1+X2+"'+Xk)"zz<n>X1I(X2+"'+Xk) :
1

n1=0

“ n (n —ny)!
n 1 ny _n3 n
= E x] E X, X3 e X
ni nylns! - nyg!

n1=0 na+n3+-+ng=n—ni

n (n —nyp)! . e
= E —— X Xy X,
ny ) nplns! - nyg!

ny+ny+-4ng=n :
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n!
= E —x;”xgz--.x;;k,
nllng! l’lk!

nytny+-tng=n

29. We must have 8 steps. Since the distance from M to L is ten 5-centimeter intervals and the
first step is made at M, there are 9 spots left at which the remaining 7 steps can be made. So

the answer is (3) = 36.

(1)) ()
30. (a) - 49100 ) 0753 (b) 2% / (15000
()

31. (a) It must be clear that

) =1.16 x 1074,

)

ni
)-I—nn]

(
(
("2) + na(n +ny)
(
(

\S]

\]

2

n

np

ns
ns

ny +n3(n +n; + ny)

ni

Ng—1
) )—l—nk_l(n—i-m + -+ npg).

(b) Forn = 25, 000, successive calculations of n;’s yield,
ny = 312,487, 500,
ny, = 48, 832, 030, 859, 381, 250,
ny = 1,192,283, 634, 186, 401, 370, 231, 933, 886, 715, 625,
ng = 710,770, 132, 174, 366, 339, 321, 713, 883, 042, 336, 781, 236,
550, 151, 462, 446, 793, 456, 831, 056, 250.
For n = 25, 000, the total number of all possible hybrids in the first four generations,

ny+n,+nz+ng,is 710,770,132,174,366,339,321,713,883,042,337,973,520,184,337,
863,865,857,421,889,665,625. This number is approximately 710 x 10%3.

32. For n = 1, we have the trivial identity

1 1
X+y= (O)xoylo + <1>x1y11.
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Assume that
n—1

-1\ ; ‘
(x + y)n71 = Z (l’l ; )xlynll‘

i=0

This gives

-1\ . )
x+y»'=x +y)z (n ; )xlynll

33. The desired probability is computed as follows.
GIG)CIE)GIE)G)EIE)RIEEE)) 2=oomse
6 /JL\2)\2)\2)\2)\2 )\ 2 /\3/\3)\3/\3/\3/\3
0 o (0
34. ) 2/ —0347. ()

— < = 0.520;

(5)
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Let a 6-element combination of a set of integers be denoted by {a;, as, ... , ag}, where a; <
ap < --- < ag. It can be easily verified that the function i: 5 — A defined by

h({a17a29“' ’a6}):{alia2+1"" 7a6+5}

is one-to-one and onto. Therefore, there is a one-to-one correspondence between B and

44
A. This shows that the number of elements in A is <6 ) Thus the probability that no

44 49
consecutive integers are selected among the winning numbers is < 6 ) / ( 6 ) ~ 0.505. This

implies that the probability of at least two consecutive integers among the winning numbers
is approximately 1 — 0.505 = 0.495. Given that there are 47 integers between 1 and 49, this
high probability might be counter-intuitive. Even without knowledge of expected value, a
keen student might observe that, on the average, there should be (49 — 1)/7 = 6.86 numbers
between each ¢; and a; 11, 1 <i < 5. Thus he or she might erroneously think that it is unlikely
to obtain consecutive integers frequently.

(a) Let E; be the event that car i remains unoccupied. The desired probability is

P(ESES---ES)=1—P(E\UE,U---UE,).

Clearly,
Py =""" 1<i<n
nm
—2ym
P(E,-E,):(nn—m), l<ij<n i#]:
—3)m
P(EiEjEk):(nn—m), 1<i,jk<n,i#j#k

and so on. Therefore, by the inclusion-exclusion principle,

. " PN (n—10)"
P(EyUE,U---UE,) =Y (1) (l>—

i=1 n"
So
‘ o (n\(m—0D" ‘ (n\ (n—10)"
P(ESES---E)=1— —1)i! —_— = -1 _—
(E{E§ - EY) E()Q>m1 ;(%Jnm
1 . ifn S\
=— > = )Jm -
nm 4 i
i=0
(b) Let F be the event thatcars 1, 2, ..., n — r are all occupied and the remaining cars are

unoccupied. The desired probability is (n) P(F). Now by part (a), the number of ways m
r
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passengers can be distributed among n — r cars, no car remaining unoccupied is

— (n—r
Z(—U’( _ )(n—r—i)m.
i=0 !

So

1 = (n—r o
P(F)=n7§<—1>( l. )(n—r—z)

and hence the desired probability is

1 /1) — (n—r )
—m(>2(—1)'< . )(n—r—z)'".

Let the n indistinguishable balls be represented by 7 identical oranges and the n distinguishable
cells be represented by n persons. We should count the number of different ways that the n
oranges can be divided among the n persons, and the number of different ways in which exactly
one person does not get an orange. The answer to the latter part is n(n — 1) since in this case
one person does not get an orange, one person gets exactly two oranges, and the remaining
persons each get exactly one orange. There are n choices for the person who does not get
an orange and n — 1 choices for the person who gets exactly two oranges; n(n — 1) choices
altogether. To count the number of different ways that the n oranges can be divided among the
n persons, add n — 1 identical apples to the oranges and note that by Theorem 2.4, the total

2n — 1)!
number of permutations of these n — 1 apples and n oranges is % (We can arrange
n!(n—1)!
n — 1 identical apples and n identical oranges in a row in 2n — 1)!/ [n! (n— 1)!] ways.) Now
2n — 1)! 2n — 1
each one of these % = ( " ) permutations corresponds to a way of dividing the
n!(n—1)! n

n oranges among the n persons and vice versa. Give all of the oranges preceding the first apple
to the first person, the oranges between the first and the second apples to the second person,
the oranges between the second and the third apples to the third person and so on. Therefore,
if, for example, an apple appears in the beginning of the permutation, the first person does not
get an orange, and if two apples are at the end of the permutations, the (n — 1)st and the nth

2n — 1
persons get no oranges. Thus the answerisn(n — 1) / ( )
n

The left side of the identity is the binomial expansion of (1 — 1)" = 0.
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40. Using the hint, we have
n n n+1 n n+2 T n+r
0 1 2 r
_(n n n+42 n+1 n n+3 n+2
-~ \o 1 0 2 1
n+4 n+3 n4r41 n4r
3 2 r r—1
_(n n+1 n n+r+1\ (n+r+1
—\o 0 r N r '
41. The identity expresses that to choose r balls from n red and m blue balls, we must choose

either r red balls, O blue balls or r — 1 red balls, one blue ball or » — 2 red balls, two blue balls
or - -- O red balls, r blue balls.

1 1 1
42. Note that - n = — r.z—i— . Hence
i+1\: n+1\i+1
1 n—+1 n—+1 n+1 1
Th i = :_2""’1_1.
e given sum n—|—1|:( ! )+( 5 )+ +(n+1>] n+1( )
5\ 43 5
23. |(3)3 /4 — 0.264.

()

(b) From part (a), we have

Py (N—0D(N —n)
Pyv.i NWN-—-t—n+m)’

This implies Py > Py_; if and only if (N —t)(N —n) > N(N —t —n + m) or, equivalently,
if and only if N < nt/m. So Py is increasing if and only if N < nt/m. This shows that the
maximum of Py is at [nt/m], where by [nt/m] we mean the greatest integer < nt/m.

45. The sample space consists of (n + 1)* elements. Let the elements of the sample be denoted by
X1, X2, X3, and x4. To count the number of samples (x1, x5, x3, x4) for which x; +x; = x3+ x4,
let y3 = n — x3 and y4 = n — x4. Then y; and y, are also random elements from the set
{0, 1,2, ..., n}. The number of cases in which x; 4+ x, = x3 + x4 is identical to the number of
cases in which x| + x, + y3 + y4 = 2n. By Example 2.23, the number of nonnegative integer
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) ) . . (2n+3 ) . )
solutions to this equation is ( 3 ) However, this also counts the solutions in which one

of x1, x2, y3, and y, is greater than n. Because of the restrictions 0 < xi, x2, y3, y4 < n,
we must subtract, from this number, the total number of the solutions in which one of x;, x»,
v3, and y4 is greater than n. Such solutions are obtained by finding all nonnegative integer
solutions of the equation x; + x, + y3 + y4 = n — 1, and then adding n + 1 to exactly one
of xy, x2, y3, and y4. Their count is 4 times the number of nonnegative integer solutions of

2
X1+ x2 + y3+ y4 =n — 1; that is, 4(n ;_ ) Therefore, the desired probability is

2n+3 4 n+2
3 3 ) 2n*+4n+3

(n+ 14 34 1)3

(@) The n — m unqualified applicants are “ringers.” The experiment is not affected by their
inclusion, so that the probability of any one of the qualified applicants being selected is the
same as it would be if there were only qualified applicants. That is, 1/m. This is because in
a random arrangement of m qualified applicants, the probability that a given applicant is the
first one is 1/m.

(b) Let A be the event that a given qualified applicant is hired. We will show that P(A) =
1/m. Let E; be the event that the given qualified applicant is the ith applicant interviewed,
and he or she is the first qualified applicant to be interviewed. Clearly,

n—m+1
P(A)= ) P(E,
i=1
where p | o
P(E,'):n_m i—1- '(l’l—l)..
n!
Therefore,
n—m+1 .
n—mPi—l . (I’l - l)'
P(A) = ; -
(n —m)! .
n—m+1 . | (n —1)!
. Z n—m—i+1)!
P n!
n—m+1 .
1 1 —1i)!
_ 2 . (1) (m — 1)!
P m! n! m—m—i+1D!(m—1)
m! (n —m)!
n—m+1

- 5(,1) (2 7)
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11 & e
= ( ). )
m <n> ; m—1

n—m+1 . .
n—i n—iy\ . . . .
To calculate E , note that is the coefficient of x”~! in the expansion
— \m—1 m—1

n—m-+1 .
of (1 + x)"~*. Therefore, Z (n 11) is the coefficient of x”~! in the expansion of
m—
i=1

n—m+1

n__ m—1
Z (14+x)"" = -+ X(I—HC) .
i=1

n—m+1 .

. n—i . . . .

This shows that E ( 1) is the coefficient of x™ in the expansion of

m —
i=I

(1 +x)" — (1 +x)""!, which is (n) So (4) implies that

m
1 ny 1
(n) m) m’

m

1
P(4) = -

6
47. Clearly, N = 6'°, N(A;) = 59, N(A;A;) = 4%, i # j, and so on. So S; has (1) equal

6 ..
terms, S, has (2> equal terms, and so on. Therefore, the solution is

s G G- () (e
o w30)07) w0 w3000

The answer is

4ol _ (=40 —5)
Aol + Al +1421 — w242

. : . (2n o .
49. The coefficient of x” in (1 + x)** is (n ) Its coefficient in (1 + x)" (1 + x)" is
G)C) ()G G =+ ()6)
0)\n 1)\n—1 2)J\n—-2) " " \n)\0
n\* n\’ n\? n\?
() () )+ ()
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. n n
smce(.):( ) 0<i<n.
i n—1

Consider a particular set of k letters. Let M be the number of possibilities in which only
these k letters are addressed correctly. The desired probability is the quantity (Z) M / n!. All

we got to do is to find M. To do so, note that the remaining n — k letters are all addressed
incorrectly. For these n — k letters, there are n — k addresses. But the addresses are written
on the envelopes at random. The probability that none is addressed correctly on one hand is
M /(n — k)!, and on the other hand, by Example 2.24, is

(- 1)[l L (-1
=L

i=1 i=2

n—k

So M satisfies

and hence

The final answer is

k i U I (=1t
n P

=

The set of all sequences of H’s and T’s of length i with no successive H’s are obtained either
by adding a T to the tails of all such sequences of length i — 1, or a TH to the tails of all such
sequences of length i — 2. Therefore,

X =Xi_1+Xxi—0, i >2.

Clearly, x; = 2 and x3 = 3. For consistency, we define xo = 1. From the theory of recurrence
relations we know that the solution of x; = x;_; + x;_» is of the form x; = Ar{ + Br;, where

1++/5 1-+/5
2 2

and so

and r, =

r; and r, are the solutions of 7> = r + 1. Therefore, r; =

= a () (R

5+3V5 535

Using the initial conditions xo = 1 and x, = 2, we obtain A = R and 0
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Hence the answer is

% I VEN (5 =33y 1 — By
3=l () () () )]

- ﬁ[(s +3V5) (14 3)" + (5 - 35) (1 = V5)']

52. For this exercise, a solution is given by Abramson and Moser in the October 1970 issue of the
American Mathematical Monthly.

2.5 STIRLING’s FORMULA

(211) 1 2n)! 1 Varn (2n)*t e 1
1. (a) — = ~

n)2  nln! 22 Qan)n?te~2122  Jmn'

[en] [Vamn 2n)2 e=2]’ V2

b = .
® @m)! (n))?  /8xn (4n)* e Qun)yn2re=2n 4"

REVIEW PROBLEMS FOR CHAPTER 2

1. The desired quantity is equal to the number of subsets of all seven varieties of fruit minus 1
(the empty set); so itis 27 — 1 = 127.

2. The number of choices Virginia has is equal to the number of subsets of {1, 2, 5, 10, 20} minus
1 (for empty set). So the answer is 25 — 1 = 31.

3. (6 x5x4x3)/6"=0.78.

4. 10/(120) — 0.222.

9!
5. ———— =7560.
31212121

6. 5!/5=4!=24.

7. 31-41.41.41 = 82,944,

(s)
8. 1- AP = 0.83.
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. Since the refrigerators are identical, the answer is 1.

6! = 720.

(Draw a tree diagram.) In 18 out of 52 possible cases the tournament ends because John wins
4 games without winning 3 in a row. So the answer is 34.62%.

Yes, it is because the probability of what happened is 1/7> = 0.02.
98 = 43,046, 721.
(@) 26 x 25 x24 x23 x22 x 21 =165,765, 600;

(b) 26 x25x24 x 23 x 22 x5 = 39,468, 000;

B)=0)()
(c) 26 25 24 23 =21, 528, 000.
2 1 1 1

(§)+(T)+§?12>+ 000
©00
)

Another Solution:

8 x 4 x¢ P,
w=0‘57]‘
8 Ps
278
1—=— =0.252.
288
| n3
m:o.ooos%.
15!/15
. 312 =531,441.
4\ [48\ /3\ [36)\ [2\ [24\ (1 [12
1/\12)\1/)\iz2)\1/\12/\1/\12
= 0.1055.
52!

13!113113!13!
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Let Aj, Ay, Az, and A4 be the events that there is no professor, no associate professor, no
assistant professor, and no instructor in the committee, respectively. The desired probability

is
P(ATASASAY) =1 —P(AjUA, UA3U Ay),

where P(A; U Ay U Az U Ay) is calculated using the inclusion-exclusion principle:

P(A1UAUA3UAy) = P(A)) + P(A2) + P(A3) + P(Ay)
— P(A1Ay) — P(A1A3) — P(A1Ay) — P(A2A3) — P(A2A4) — P(A3Ay)
+ P(A1A2A3) + P(A1A3A4) + P(A1A2A4) + P(A2A3A4) — P(A1A2A3Ay)

=[N () +(6)+(5)-(0)- () () - (5)
() (5)+ (5)+ () () + () o] o

Therefore, the desired probability equals 1 — 0.621 = 0.379.

(151)2
301/(2)15

(N—n+1)/(1:).

()() (V)

25—224 =0.390; (b) 5% =6.299 x 107'%;

() ()
(5)EEE)

(© > 52 389 3/ 0.00000261.

(5)(5)

12!/(3)* = 369, 600.

= 0.0002112.

(a)

There is a one-to-one correspondence between all cases in which the eighth outcome obtained
is not a repetition and all cases in which the first outcome obtained will not be repeated. The

answer is
6X5X5Xx5x5x5%x5x%x5 <5

7
_ _> — 0.279.
6XO6XO6XO6XO6XH6X6X6 6

There are 9 x 103 = 9, 000 four-digit numbers. To count the number of desired four-digit
numbers, note that if 0 is to be one of the digits, then the thousands place of the number must be
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0, but this cannot be the case since the first digit of an n-digit number is nonzero. Keeping this
in mind, it must be clear that from every 4-combination of the set {1, 2, ... , 9}, exactly one
four-digit number can be constructed in which its ones place is greater than its tens place, its
tens place is greater than it hundreds place, and its hundreds place is greater than its thousands

place. Therefore, the number of such four-digit numbers is 1) = 126. Hence the desired

probability is = 0.014.

Since the sum of the digits of 100,0001s 1, we ignore 100,000 and assume that all of the numbers
have five digits by placing 0’s in front of those with less than five digits. The following process
establishes a one-to-one correspondence between such numbers, dd,d3dsds, Zle d; = 8,
and placement of 8 identical objects into 5 distinguishable cells: Put d; of the objects into
the first cell, d, of the objects into the second cell, d3 into the third cell, and so on. Since
8+5—-1 12

5-1 ) \8
{1,2,3,...,100000} in which the sum of the digits is 8 is 495. Hence the desired probability
is 495/100, 000 = 0.00495.

this can be done in = 495 ways, the number of integers from the set
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and ]nd@p@nd@n@@

3.1

. P(IW|U) =

CONDITIONAL PROBABILITY

P(UW 0.15
Www) = —— = 0.60.
PU) 0.25

. Let E be the event that in the blood of the randomly selected soldier A antigen is found. Let

F be the event that the blood type of the soldier is A. We have

P(FE) 041

P(F | E) = -
P(E)  0.41+0.04

=0.911.

0.20 0.625
032

. The reduced sample space is {(1, 4),2,3),(3,2),4,1),4,6),(5,5), (6, 4)}; therefore, the

desired probability is 1/7.
30-20 2

30-15  3°

. Both of the inequalities are equivalent to P(AB) > P(A)P(B).

1/3 2

A/3)+(1/2) 5

. 4/30 = 0.133.
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40\ /65

2 6

105
8
(2)(%)
28—\

-2

' 105
i=0
8
1/19 ifi =0

Pla=i|B=0=42/19 ifi=1,2,3,...,9
0 ifti =10,11,12,...,18.

= 0.239.

Let b* gb mean that the oldest child of the family is a boy, the second oldest is a girl, the youngest
is a boy, and the boy found in the family is the oldest child, with similar representations for
other cases. The reduced sample space is

S = {ggb*, gb*g, b gg, b*bg, bb*g, gb*b, gbb*, bgb*, b*gb, b*bb, bb*D, bbb*}.

Note that the outcomes of the sample space are not equiprobable. We have that

P({ggb*}) = P({gb*g}) = P({b*gg}) = 1/7
P({b*bg}) = P({bb*g}) = 1/14
P({gb*b}) = P({gbb*}) = 1/14
P({bgb*}) = P({b*gb}) = 1/14
P({b*bb}) = P({bb*b}) P({bbb*}) = 1/21.

The solutions to (a), (b), (c) are as follows.
(@) P({bb*g}) =1/14;
(b) P({bb*g, gbb*, bgb*, bb*b, bbb*}) = 13/42;
(c) P({b*bg, bb*g, gb*b, gbb*, bgb*, b*gb}) =3/7.
P(A) = 1 implies that P(A U B) = 1. Hence, by
P(AUB)= P(A)+ P(B) — P(AB),

we have that P(B) = P(AB). Therefore,

__P(AB) _P(B) _
P(B|A) = P = 1" P(B).
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P(AB)
P(A|B) = 5 , Where
P(AB)=P(A)+ P(B)— P(AUB)> P(A)+ P(B)—1=a+b—1.
(a) P(AB) >0, P(B) > 0. Therefore, P(A | B) = P(AB)
o ' ’ ~PB)
b P B =B _PB
P(B)  P(B)
. P((U?ilAi)B) P(UE AiB)
“ P<iL=J1Ai 7)= P(B) TP
S PAB) .
— i=l1 _ P(AlB) _

Note that P(U2,A;B) = Zf’il P(A;B), since mutual exclusiveness of A;’s imply that of
A;B’s;ie., AjA; =0,i # j,implies that (A;B)(A;B) =0,i # j.

The given inequalities imply that P(EF) > P(GF) and P(EF¢) > P(GF¢). Thus
P(E) = P(EF)+ P(EF°) > P(GF)+ P(GF°) = P(G).

Reduce the sample space: Marlon chooses from six dramas and seven comedies two at random.

7 13
What is the probability that they are both comedies? The answer is <2> / ( ) ) = 0.269.

Reduce the sample space: There are 21 crayons of which three are red. Seven of these crayons
are selected at random and given to Marty. What is the probability that three of them are red?

. (18 21
The answer is 4 / 7 = 0.0263.

(@) The reduced sample spaceis S = {1,3,5,7,9,...,9999}. There are 5000 elements in
S. Since the set {5,7,9, 11, 13, 15, ... , 9999} includes exactly 4998 /3 = 1666 odd numbers
that are divisible by three, the reduced sample space has 1667 odd numbers that are divisible
by 3. So the answer is 1667/5000 = 0.3334.

(b) Let O be the event that the number selected at random is odd. Let F' be the event that it is
divisible by 5 and T be the event that it is divisible by 3. The desired probability is calculated
as follows.

P(F'T°|O0)=1—P(FUT |O)=1—P(F|O)—P(T|O)+ P(FT | O)

1000 1667 333

=1- - +
5000 5000 5000

= 0.5332.
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Let A be the event that during this period he has hiked in Oregon Ridge Park at least once. Let
B be the event that during this period he has hiked in this park at least twice. We have

P(B)
PB|A) =——,
P(A)
where
510
P(A)=1- o0 = 0.838
and 0 0
5 10 x 5

So the answer is 0.515/0.838 = 0.615.

The numbers of 333 red and 583 blue chips are divisible by 3. Thus the reduced sample space
has 333 4 583 = 916 points. Of these numbers, [1000/15] = 66 belong to red balls and
are divisible by 5 and [1750/15] = 116 belong to blue balls and are divisible by 5. Thus the
desired probability is 182/916 = 0.199.

Reduce the sample space: There are two types of animals in a laboratory, 15 type I and 13
type II. Six animals are selected at random; what is the probability that at least two of them

are Type II? The answer is
(15) n (13) (15)
6 1 5
11— = 0.883.
28
6
Reduce the sample space: 30 students of which 12 are French and nine are Korean are divided

randomly into two classes of 15 each. What is the probability that one of them has exactly
four French and exactly three Korean students? The solution to this problem is

(15)()

This sounds puzzling because apparently the only deduction from the name “Mary” is that one
of the children is a girl. But the crucial difference between this and Example 3.2 is reflected
in the implicit assumption that both girls cannot be Mary. That is, the same name cannot be
used for two children in the same family. In fact, any other identifying feature that cannot be
shared by both girls would do the trick.
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3.2 LAW OF MULTIPLICATION

1. Let G be the event that Susan is guilty. Let L be the event that Robert will lie. The probability
that Robert will commit perjury is

P(GL) = P(G)P(L | G) = (0.65)(0.25) = 0.1625.

2. The answer is

11 10 9 8 7 6
— X — X — X — X — x — =0.15.
14 13 12 11 10 9

3. By the law of multiplication, the answer is

52 50 48 46 44 42
— X — X — X — X —x — =0.72.
52 51 50 49 48 47

4. (a) 6 3 00144
. — X —x—x—=0. ;
T T RART RN

8 7 12 8 12 7 12 8 7 8 7 6
b)) —X—X—4+—=X—X—4+—X—X—+4+— X —x — =0.344.
20 19 18 20 19 18 20 19 18 20 19 18

() 5 5 4 4 3 3 2 2 1 1
B. (@ — X —X-X-X=-X=X=X-x-=-x=x-=_0.00216.
11 10 9 8 7 6 5 4 3 2 1
(b) > 4 5 2] 0.00216
X —x-x-x=-=0. )
11 10 9 8 7

6. Exixixi—i—éxixixizo.OﬂZ.
8 10 13 15 8 11 13 16

7. Let A; be the event that the ith person draws the “you lose” paper. Clearly,

1
P(A) = 200°

199 1 1
200 199 ~ 200
199 198 1 1

P(A3) = P(A{ASA3) = P(A))P(AS | A)P(A3 | ASA) = —  — - — = —
(3) (123) (1)(2' 1)(3| 12) 200 199 198 200,

P(Ay) = P(ATA2) = P(ADP (A | AY) =

and so on. Therefore, P(A;) = 1/200 for 1 < i < 200. This means that it makes no difference
if you draw first, last or anywhere in the middle. Here is Marilyn Vos Savant’s intuitive solution
to this problem:
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It makes no difference if you draw first, last, or anywhere in the middle. Look at it
this way: Say the robbers make everyone draw at once. You'd agree that everyone
has the same change of losing (one in 200), right? Taking turns just makes that
same event happen in a slow and orderly fashion. Envision a raffle at a church with
200 people in attendance, each person buys a ticket. Some buy a ticket when they
arrive, some during the event, and some just before the winner is drawn. It doesn’t
matter. At the party the end result is this: all 200 guests draw a slip of paper, and,
regardless of when they look at the slips, the result will be identical: one will lose.
You can’t alter your chances by looking at your slip before anyone else does, or
waiting until everyone else has looked at theirs.

. Let B be the event that a randomly selected person from the population at large has poor credit

report. Let I be the event that the person selected at random will improve his or her credit
rating within the next three years. We have

P(BI) PU|B)P(B) (0.30)(0.18)

P(B|I) = - = —
() P() 0.75

= 0.072.

The desired probability is 1 —0.072 = 0.928. Therefore, 92.8% of the people who will improve
their credit records within the next three years are the ones with good credit ratings.

. For 1 < n < 39, let E, be the event that none of the first » — 1 cards is a heart or the ace

of spades. Let F, be the event that the nth card drawn is the ace of spades. Then the event
of “no heart before the ace of spades” is U;:g:l E,F,. Clearly, {E, F,, 1 <n < 39} forms a
sequence of mutually exclusive events. Hence

39 39 39
P(UEF) =Y PEF) =Y P(E)PF, | E
n=1 n=1

n=1

38
Z< ) Lot

n—1 o
52 53—n 14’
n—1

a result which is not unexpected.

(13) (39)
10. P(F)PE | F)= 23/ 7\0/ 104050

G

11. By the law of multiplication,

n+1 2

X X = .
n+2 n+2

P(A,) =

ST NS)
AW
X
vl &~
X
|
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Nowsince Ay 2 Ay, D A3 2 -2 A, D Ays 2 -+, by Theorem 1.8,

P(QA,») — lim P(A,) = 0.

n—o0

3.3 LAW OF TOTAL PROBABILITY

—h

1 1
) x 0.05 + 3 x 0.0025 = 0.02625.

N

. (0.16)(0.60) + (0.20)(0.40) = 0.176.

w

1 1 1
. 5(0.75) + 5(0.68) + 5(0.47) = 0.633.

12 13 13 39

1
5152 5 5Ty

50 ()@ o @§_4

. (0.20)(0.40) + (0.35)(0.60) = 0.290.

=

)

N O

. (0.37)(0.80) + (0.63)(0.65) = 0.7055.

©

1 1 1 1 1 1
. 6(0.6) + 6(0.5) + 6(0.7) + 6(0.9) + 8(0.7) + 8(0.8) =0.7.

©

. (0.50)(0.04) + (0.30)(0.02) 4 (0.20)(0.04) = 0.034.

10. Let B be the event that the randomly selected child from the countryside is a boy. Let E be
the event that the randomly selected child is the first child of the family and F be the event
that he or she is the second child of the family. Clearly, P(E) = 2/3 and P(F) = 1/3. By
the law of total probability,

1 2 1 1 1
P(B) = P(B | EYP(E)+ P(B| F)P(F) = 5 x 3+ 5 X 3= 7.

Therefore, assuming that sex distributions are equally probable, in the Chinese countryside,
the distribution of sexes will remain equal. Here is Marilyn Vos Savant’s intuitive solution to
this problem:
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The distribution of sexes will remain roughly equal. That's because—no matter how
many or how few children are born anywhere, anytime, with or without restriction—
half will be boys and half will be girls: Only the act of conception (not the govern-
ment!) determines their sex.

One can demonstrate this mathematically. (In this example, we’ll assume that
women with firstborn girls will always have a second child.) Let’s say 100 women
give birth, half to boys and half to girls. The half with boys must end their families.
There are now 50 boys and 50 girls. The half with girls (50) give birth again, half
to boys and half to girls. This adds 25 boys and 25 girls, so there are now 75 boys
and 75 girls. Now all must end their families. So the result of the policy is that there
will be fewer children in number, but the boy/girl ratio will not be affected.

11. The probability that the first person gets a gold coin is 3/5. The probability that the second

person gets a gold coin is

2 3+3 2 3

- X—-4+-Xx=-=-.

4 5 4 5 5

The probability that the third person gets a gold coin is
32 1 3 2 2 2 3 2 1 3 3
—X=-X-F=-X-X-F-X-X=-4+=-X-X=-=-—,
54 3 5 4 3 5 4 5 5 4 3 5

and so on. Therefore, they are all equal.

12. A Probabilistic Solution: Let n be the number of adults in the town. Let x be the number

of men in the town. Then n — x is the number of women in the town. Since the number of
married men and married women are equal, we have

x-§_(n—x)-§.
This relation implies that x = (27/62)n. Therefore, the probability that a randomly selected
adultis maleis (27/62)n / n = 27/62. The probability that a randomly selected adult is female
is 1 — (27/62) = 35/62. Let A be the event that a randomly selected adult is married. Let M
be the event that the randomly selected adult is a man, and let W be the event that the randomly
selected adult is a woman. By the law of total probability,

P(A)=PA | M)P(M)+ P(A| W)P(W)

7 27+3 35—42—21~0677
962 562 62 31 U
Therefore, 21/31st of the adults are married.

An Arithmetical Solution:  The common numerator of the two fractions is 21. Hence
21/27th of the men and 21/35th of the women are married. We find the common numerator
because the number of married men and the number of married women are equal. This shows
that of every 27 4 35 = 62 adults, 21 4 21 = 42 are married. Hence 42/62th = 21/31st of the
adults in the town are married.



13.

14.

15.

16.

17.

Section 3.3  Law of Total Probability 43

The answer is clearly 0.40. This can also be computed from

(0.40)(0.75) 4 (0.40)(0.25) = 0.40.

Let A be the event that a randomly selected child is the kth born of his or her family. Let B;
be the event that he or she is from a family with j children. Then

P(A) = ZP(A | Bj)P(B;)),

j=k
where, clearly, P(A | B;) = 1/j. To find P(B}), note that there are o; N families with j
children. Therefore, the total number of children in the world is Zf:o i(a; N) of which j (Na;)
are from families with j children. Hence
J(Ney) — joy
YicoilaiN) Yo i

This shows that the desired fraction is given by

P(B)) =

c ‘1 jo;
P(A)=) PAI|B)PB)=) — —=i"—
2 ’ ’ 2212 J o Yizoidi
_ XC: o _ Z;:k aj
ik Dol Dol
P(EFB)
Q(EF) P(EF | B) P(B) P(EFB)
Q(E | F)= = = = = P(E | FB).
Q(F) P(F | B) P(FB) P(FB)
P(B)
Let M, C, and F denote the events that the random student is married, is married to a student

at the same campus, and is female, respectively. We have that
1 2
P(F|M)=P(F|MC)P(C|M)+P(F|MC)YP(C°| M) = (O.40)§+(O.30)§ = 0.333.

Let p(k, n) be the probability that exactly k of the first n seeds planted in the farm germinated.
Using induction on n, we will show that p(k,n) = 1/(n — 1) for all k < n. Forn = 2,
p(1,2)=1=1/2—=1)istrue. If p(k,n — 1) = 1/(n — 2) for all k < n — 1, then, by the
law of total probability,

k—1 n—k—1
plk,n) = mp(k— I,n— 1)+Tp(k’n_ D

k=1 1 n—k-1 1 1

n—1 n—2 n—1 n—2 n-—1

This proves the induction hypothesis.
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Reducing the sample space, we have that the answer is 7/10.

O 9 I 9 ey 6 9 [ Y I Y

HHO 060 00

P(A|G)=PA|GO)P(O|G)+PA|IGM)P(M | G)+ P(A|GY)P(Y | G)

0 1+1 1+3 1 5
=0X-4+=-X=-4+-X=-=—.
32 3 4 3 12

Let E be the event that the third number falls between the first two. Let A be the event that
the first number is smaller than the second number. We have that

pg |y~ PEA 161

P(A) 12 3

Intuitively, the fact that P(A) = 1/2 and P(EA) = 1/6 should be clear (say, by symmetry).
However, we can prove these rigorously. We show that P(A) = 1/2; P(EA) = 1/6 can be
proved similarly. Let B be the event that the second number selected is smaller than the first
number. Clearly A = B¢ and we only need to show that P(B) = 1/2. To do this, let B; be
the event that the first number drawn is i, 1 <i < n. Since {By, By, ... , B,} is a partition of
the sample space,

P(B)=Y_P(B|B)P(B).
i=1
Now P(B | B;) = 0 because if the first number selected is 1, the second number selected
cannot be smaller. P(B | B;) = -

, 1 < i < n since if the first number is i, the second

number must be one of 1, 2, 3, ..., i_— 1 if it is to be smaller. Thus

n
i=1 i=2

n . _1 1 1 n
P(B)=) P(B|B)P(B) =) ~— == T D
i=2

. 1 (n—l)n_l
T m—-Ln 2 2

Let E,, be the event that Avril selects the best suitor given her strategy. Let B; be the event
that the best suitor is the ith of Avril’s dates. By the law of total probability,

n 1 n
P(Ey) =)  P(En | B)P(B) =~  P(Ey | By).
i=1 i=1
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Clearly, P(E,, | B;) = 0for 1 <i < m. Fori > m, if the ith suitor is the best, then Avril
chooses him if and only if among the first i — 1 suitors Avril dates, the best is one of the first
m. So

m
P(E, | B) = —.
i—1
Therefore,
1 < m m — 1
P(E,) = — = — .
(Ewm) n,Zi—l n,Zi—l
i=m+1 i=m+1
Now
. 1 "]
Z . %/ —dx=1n<£).
, i—1 m X m
i=m+1
Thus

P(E,) ~ %m (}%)

To find the maximum of P (E,,), consider the differentiable function

h(x) = %m (f)

X

Since
W(x) = S1n (f) L
n by n
implies that x = n/e, the maximum of P(E,,) is at m = [n/e], where [n/e] is the greatest
integer less than or equal to n/e. Hence Avril should dump the first [n/e] suitors she dates
and marry the first suitor she dates afterward who is better than all those preceding him. The
probability that with such a strategy she selects the best suitor of all n is approximately

h(f) Dne = é ~ 0.368.

e) e
Let N be the set of nonnegative integers. The domain of f is
{(g.r)eNxN: 0<g<N,0<r<N,0<g+r <2N}.

0 0
Extending the domain of f to all points (g,7) € R x R, we find that 8_f = a—f = 0 gives
g r

g=r=N/2and f(N/2, N/2) = 1/2. However, this is not the maximum value because on
the boundary of the domain of f along r = 0, we find that

1 N —g
0)=-(1
&0 2< +2N—g)
is maximum at g = 1 and
1 /3N -2 1
1,0) == > —,
F1.0) 2(2N—1>_2
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We also find that on the boundary along r = N,

o= (2 )

is maximum at g = N — 1 and

ETEIEE N

1/3N -2
The maximums of f along other sides of the boundary are all less than 3 (2N 7 ) . Therefore,

there are exactly two maximums and they occur at (1, 0) and (N —1, N). That is, the maximum
of f occurs if one urn contains one green and O red balls and the other one contains N — 1 green

1 /3N -2 3
and N red balls. For large N, the probability that the prisoner is freed is 3 (2N 1) ~ -

1

BAYES’ FORMULA

(3/4)(0.40) 3
(3/4)(0.40) + (1/3)(0.60) 5"

1(2/3) _ 8
12/3) + (1/4)(1/3) 9"

. Let G and I be the events that the suspect is guilty and innocent, respectively. Let A be the

event that the suspect is left-handed. Since {G, I} is a partition of the sample space, we can
use Bayes’ formula to calculate P(G | A), the probability that the suspect has committed the
crime in view of the new evidence.

P(A|G)P(G) _ (0.85)(0.65) ~0.87
P(A|G)P(G)+ P(A| )P(I)  (0.85)(0.65) + (0.23)(0.35) o

P(G|A)=

. Let G be the event that Susan is guilty. Let C be the event that Robert and Julie give conflicting

testimony. By Bayes’ formula,

P(C| G)P(G) (0.25)(0.65)

PGICO) = P(C|G)P(G)+ P(C | G)P(GY) - (0.25)(0.65) + (0.30)(0.35) -

0.607.

(0.02)(0.30) — 0.1463.
(0.02)(0.30) + (0.05)(0.70)

Q/Ge .
/o6 7
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. (0.92)(1/5000) B
" (0.92)(1/5000) + (1/500)(4999/5000)

0.084.

8. Let A be the event that two of the three coins are dimes. Let B be the event that the coin
selected from urn I is a dime. Then

(é.é %.1)‘_‘

P A) = P(A| B)P(B) ~ 73477797 s
_P(A|B)P(B)+P(A|BC)P(BC)_(§ 3.2 1)4_1 <§ 1>§_83'
7 47 4)7 " \7 4)7

0. (0.15)(0.25) — 0.056.
(0.15)(0.25) 4 (0.85)(0.75)

10. Let R be the event that the upper side of the card selected is red. Let B B be the event that the
card with both sides black is selected. Define RR and R B similarly. By Bayes’ Formula,

P(R| RB)P(RB)
P(R| RB)P(RB)+ P(R| RR)P(RR) + P(R | BB)P(BB)
(1/2)(1/3) 1

T (1/2(/3)+1(/3)+0(1/3) 3

1

1(=

11. - <6>
1000 — i\ 7/1000\7 /1
;[( 100 >/(100>](6)

12. Let A be the event that the wallet originally contained a $2 bill. Let B be the event that the
bill removed is a $2 bill. The desired probability is given by

P(RB|R) =

=0.21.

P(B | A)P(A)
P(B | A)P(A) + P(B | A¢) P(A°)

1
1 x =

2

: 1+1 1
X — — X
2 272

P(A|B) =

2
3

13. By Bayes’ formula, the probability that the horse that comes out is from stable I equals
(20/33)(1/2) 4

(20/33)(1/2) + (25/33)(1/2) )
The probability that it is from stable II is 5/9; hence the desired probability is

20 4+25 5_205_069
33 9 33 9 297 7
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(G)E)
(4

2
4

L0000 00,5 00

8 4 8 8 8
4 4 4 4
Let I be the event that the person is ill with the disease, N be the event that the result of the

test on the person is negative, and R denote the event that the person has the rash. We are
interested in P(I | R):

+2 3
4 4

P(I|R)y=P(UN|R)+P(UIN°|R)=0+ P(N°|R).
Since {IN, IN€, I°N, I°N¢} is a partition of the sample space, by Bayes’ Formula,

P(I|R)= P(IN‘|R)
B P(R | IN®)P(IN®)
" P(R|IN)P(IN)+ P(R|INS)P(INC)+ P(R| I°N)P(IN) 4+ P(R | IcN€)P(I¢N€)
B (0.2)(0.30 x 0.90) B
"~ 0(0.30 x 0.10) + (0.2)(0.30 x 0.90) + 0(0.70 x 0.75) 4+ (0.2)(0.70 x 0.25)

0.61.

INDEPENDENCE

. No, because by independence, regardless of the number of heads that have previously occurred,

the probability of tails remains to be 1/2 on each flip.

. A and B are mutually exclusive; therefore, they are dependent. If A occurs, then the probability

that B occurs is O and vice versa.

. Neither. Since the probability that a fighter plane returns from a mission without mishap is

49/50 independent of other missions, the probability that a pilot who flew 49 consecutive
missions without mishap making another successful flight is still 49/50=0.98; neither higher
nor lower than the probability of success in any other mission.

P(AB) =1/12=(1/2)(1/6); so A and B are independent.
(3/8)%(5/8)° = 0.00503.

(3/4) = 0.5625.
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(a) (0.725)> = 0.526; (b) (1 — 0.725)> = 0.076.

Suppose that for an event A, P(A) = 3/4. Then the probability that A occurs in two con-
secutive independent experiments is 9/16. So the correct odds are 9 to 7, not 9 to 1. In later
computations, Cardano, himself, had realized that the correct answer is 9 to 7 and not 9 to 1.

We have that
4
P(Abeats B) = P(Arolls 4) = 2
4 2
P(Bbeats A) =1— P(Abeats B) =1 — i3
4
P(B beats C) = P(C rolls 2) = 3

4 2
P(Cbeats B)=1— P(BbeatsC) =1— - =

6 6
2 4 3 4
P(C beats D) = P(C rolls 6) + P(C rolls 2 and D rolls 1) = 3 + 3 X 3 = 2
4 2
P(DbeatsC) =1— P(Cbeats D) =1 — 3 = 3
3 3 2 4
P(D beats A) = P(D rolls 5) + P(D rolls 1 and A rolls 0) = 3 + 3 X 3 = G

For 1 < i < 4, let A; be the event of obtaining 6 on the ith toss. Chevalier de Méré had
implicitly thought that A;’s are mutually exclusive and so

1 1 1 1 1
P(A]UAzUA3UA4)=8+6+g+6=4X6.

Clearly A;’s are not mutually exclusive. The correct answers are 1 — (5/6)* = 0.5177 and
1 —(35/36)* = 0.4914.

(1 —0.0001)%* = 0.9936.

In the experiment of tossing a coin, let A be the event of obtaining heads and B be the event
of obtaining tails.

(@ P(AUB)> P(A)=1,s0 P(AUB) = 1. Now
1=P(AUB)= P(A)+ P(B)— P(AB) =1+ P(B) — P(AB)

gives P(B) = P(AB).

(b) If P(A) =0, then P(AB) = 0; so P(AB) = P(A)P(B) is valid. If P(A) = 1, by
part (a), P(AB) = P(B) = P(A)P(B).

P(AA) = P(A)P(A) implies that P(A) = [P(A)]’. This gives P(A) = 0 or P(A) = 1.
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P(AB) = P(A)P(B) implies that P(A) = P(A)P(B). This gives P(A)[l — P(B)] =0
so P(A)=0or P(B) = 1.

1 — (0.45)° = 0.9917.
1 — (0.3)(0.2)(0.1) = 0.994.

There are
(100 x 10%) x (300 x 10°) — 1 =30 x 10%! — 1

other stars in the universe. Provided that Aczel’s estimate is correct, the probability of no life
in orbit around any one given star in the known universe is

0.99999999999995

independently of other stars. Therefore, the probability of no life in orbit around any other
star is
(0.99999999999995)30,000,000,000,000,000,000,000 —1 .

Using Aczel’s words, “this number is indistinguishable from 0 at any level of decimal accuracy
reported by the computer.” Hence the probability that there is life in orbit around at least one
other star is 1 for all practical purposes. If there were only a billion galaxies each having 10
billion stars, still the probability of life would have been indistinguishable from 1.0 at any level
of accuracy reported by the computer. In fact, if we divide the stars into mutually exclusive
groups with each group containing billions of stars, then the argument above and Exercise 8
of Section 1.7 imply that the probability of life in orbit around many other stars is a number
practically indistinguishable from 1.

1 —(0.94)"% — 15(0.94)'%(0.06) = 0.226.

A and B are independent if and only if P(AB) = P(A)P(B), or, equivalently, if and only if

m _ M m-+w
M+W M+W M+W

This implies that m /M = w/W. Therefore, A and B are independent if and only if the fraction
of the men who smoke is equal to the fraction of the women who smoke.

(a) By Theorem 1.6,

P(A(BUC)) = P(ABUAC) = P(AB) + P(AC) — P(ABC)
= P(A)P(B) + P(A)P(C) — P(A)P(B)P(C)
= P(A)[P(B) + P(C) — P(B)P(C)] = P(A)P(BUC).

(b) P((A - B)C) = P(AB°C) = P(A)P(B°)P(C) = P(AB)P(C) = P(A— B)P(C).

1 —(5/6)° = 0.6651.
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(@ 1—[(m—1/n]". (b) Asn— oo, this approaches 1 — (1/e) = 0.6321.

1 —(0.85)!° — 10(0.85)°(0.15)

PYOYEL = 0.567.

No. In the experiment of choosing a random number from (0, 1), let A, B, and C denote the
events that the point lies in (0, 1/2), (1/4,3/4), and (1/2, 1), respectively.

Denote a family with two girls and one boy by ggb, with similar representations for other
cases. The sample space is S = {ggg, bbb, ggb, gbb}. we have

P({ggg}) = P({bbb}) = 1/8, P({ggb}) = P({gbb}) = 3/8.
Clearly, P(A) = 6/8 = 3/4, P(B) = 4/8 = 1/2, and P(AB) = 3/8. Since P(AB) =
P(A)P(B), the events A and B are independent. Using the same method, we can show that

for families with two children and for families with four children, A and B are not independent.

If p is the probability of its occurrence in one trial, 1 — (1 — p)* = 0.59. This implies that
p=0.2.

@ 1-(0-p)d=p)---A=py). B A=-p)d—=p2)---1—py).
Let E; be the event that the switch located at i is closed. The desired probability is

P(E\E2E4EqUE\E3EsEe) = P(E\E2E4Eq)+ P(E1E3EsEe)— P(E| ExE3E4EsEe) = 2p* — p°.

()E) @) =0

For n = 3, the probabilities of the given events, respectively, are

D@+ Gy=1
OO +O)Ere)=2

The probability of their joint occurrence is
3 (1)2<1)_3_1 3
2)\2/ \2) 8 2 4

So the given events are independent. For n = 4, similar calculations show that the given
events are not independent.

and
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@ 1—(1/2". (b) (Z)(%)

(c) Let A, be the event of getting n heads in the first n flips. We have
AlDA)DA3D---DA, DA 1D -

The event of getting heads in all of the flips indefinitely is ()~ A,. By the continuity property
of probability function (Theorem 1.8), its probability is

P(é’”) = lim P(4,) = lim (%) _o.

Let A; be the event that the sixth sum obtainedisi,i = 2,3, ..., 12. Let B be the event that
the sixth sum obtained is not a repetition. By the law of total probability,

12

P(B) = ZP(B | Ai) P (A)).

i=2

Note that in this sum, the terms for i = 2 and i = 12 are equal. This is true also for the terms
fori = 3 and 11, for the terms for i = 4 and 10, for the terms for i = 5 and 9, and for the
terms for i = 6 and 8. So

6
P(B)=2[ Y P(B| A)P(A)| + P(B | A7) P (A7)
i=2

S CERCIENENENENE
+ (%)5(;—6)] + (%)5(%) — 0.5614.

(a) Let E be the event that Dr. May’s suitcase does not reach his destination with him. We
have

P(E) = (0.04) + (0.96)(0.05) + (0.96)(0.95)(0.05) + (0.96)(0.95)(0.95)(0.04) = 0.168,

or simply, P(E) =1 — (0.96)(0.95)(0.96) = 0.168.

(b) Let D be the event that the suitcase is lost in Da Vinci airport in Rome. Then, by Bayes’
formula,
P(D)  (0.96)(0.05)

_ — 0.286.
P(E) 0.168

P(D|E)=

Let E be the event of obtaining heads on the coin before an ace from the cards. Let H, T, A,
and N denote the events of heads, tails, ace, and not ace in the first experiment, respectively.
We use two different techniques to solve this problem.
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Technique 1: By the law of total probability,
1 1
P(E)=P(E|H)PH)+PE|T)P(T)=1- 5t PE|T)- X
where

P(E|T)=PE|TAPA|T)+ PE|TN)P(N|T)=0- % + P(E) - %

Thus
PE) =1+ [PE)] S
2 1312’

which gives P(E) = 13/14.

Technique 2: We have that
P(E)=P(E| HA)P(HA)+P(E|TA)P(TA)+P(E| HN)P(HN)+P(E |TN)P(TN).

Thus
P(E) = 1 1 1+0 1 l—l-l 1 12—|—P(E) 1 12
=1X=-x— X — X — X — X — X — X —.
2 13 2 13 2 13 2 13

This gives P(E) = 13/14.

Let P(A) = p and P(B) = q. Let A, be the event that none of A and B occurs in the first
n — 1 trials and the outcome of the nth experiment is A. The desired probability is

P(UA”):ZP(An):Z(l—p—q)”*lp: p p
n=1 n=1 n=1

1-(1-p—q) p+q

The probability of sum 5 is 1/9 and the probability of sum 7 is 1/6. Therefore, by the result of

1/9
Exercise 36, the desired probability is _1P =2/5.
1/6 +1/9

Let A be the event that one of them is red and the other one is blue. Let RB represent the
event that the ball drawn from urn I is red and the ball drawn form urn II is blue, with similar
representations for RR, BB, and BR. We have that

P(A) = P(A| RB)P(RB) + P(A | RR)P(RR) + P(A | BB)P(BB) + P(A | BR)P(BR)
00 o 5 00 0 (0 5 60

W) o o5y A\ 0 oy W)W osy W) o

== (o e) iy (o e) *~an (o)t~ (o s)

) () () ()

= 0.495.
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For convenience, let py = 0; the desired probability is

n n

L= =p)=> 0 =p)A=p2)-- (1= pip)pi(l = pisr) -+ (1 = py).

i=1 i=1

Let p be the probability that a randomly selected person was born on one of the first 365 days;
then 365p + (p/4) = 1 implies that p = 4/1461. Let E be the event that exactly four people
of this group have the same birthday and that all the others have different birthdays. E is the
union of the following three mutually exclusive events:

F: Exactly four people of this group have the same birthday, all the others have different
birthdays, and none of the birthdays is on the 366th day.

G: Exactly four people of this group have the same birthday, all the others have different
birthdays, and exactly one has his/her birthday on the 366th day.

H: Exactly four people of this group have their birthday on the 366th day and all the others
have different birthdays.

‘We have that
P(E)=P(F)+ P(G)+ P(H)

) (o)
() (V) ) (=)

30\, 1 \* (365 4 \2
¥ (_) : 26!(_) = 0.00020997237.
4 )\1a61) "\ 26 1461

If we were allowed to ignore the effect of the leap year, the solution would have been as

follows. 365\ /30\ ; 1 \4 [364 1 \26
—) . 26!(—) = 0.00021029.
( 1 )( 1 )(365) (26) (365)

Let E; be the event that the switch located at i is closed. We want to calculate the probability of
E,E4UEEsUE,E;EsU E| E3E4. Using the rule to calculate the probability of the union of
several events (the inclusion-exclusion principle) we get that the answeris 2p>+2p3—5p*+p°.

Let E be the event that A will answer correctly to his or her first question. Let ' and G be
the corresponding events for B and C, respectively. Clearly,
P(ABC) = P(ABC | EFG)P(EFG)+ P(ABC | ESFG)P(E‘FQG) 5)
+ P(ABC | ESFC)P(E°F°).

Now

P(ABC | EFG) = P(ABC), 6)
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and
P(ABC | E°F°) = 1. (7

To calculate P(ABC | E°F G), note that since A has already lost, the game continues between
B and C. Let BC be the event that B loses and C wins. Then

P(ABC | E°FG) = P(BC). ®)
Let F; be the event that B answers the second question correctly; then
P(BC) = P(BC | F,)P(Fy) + P(BC | Fy)P(Fy). ©)

To find P(BC | F3), note that this quantity is the probability that B loses to C given that B
did not lose the first play. So, by independence, this is the probability that B loses to C given
that C plays first. Now by symmetry, this quantity is the same as C losing to B if B plays first.
Thus it is equal to P(C B), and hence (9) gives

P(BC)=P(CB)-p+1-(—p);

noting that P(CB) = 1 — P(BC), this gives
P(BC) = !
S l+p
Therefore, by (8),

1
P(ABC | E°FG) = ——.
l+p

substituting this, (8), and (7) in (5), yields
1
P(ABC) = P(ABC) - p> + m(l —p)pt+ (1= p)2.
Solving this for P(ABC), we obtain

1
(1+p)d+p+p?)

P(ABC) =

Now we find P(BCA) and P(CAB).

P(BCA) = P(BCA | E)P(E) + P(BCA | E)P(E®)
p

— P(ABC)-p+0-(1—p) = ,
ABCY - p+0- U =D = a7+

P(CAB) = P(CAB | E)P(E) + P(CAB | E)P(E®)

p2

= P(BCA) - 0-(1—p)= )
( )-p+0-(1—p) A+ pdtpt
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We have that
. . 11 3 1
P(H)) = P(Hy | H)P(H) + P(Hy | HOP(H) = - 2 +0- 7 = .
Similarly, P(H,) = 1/8. To calculate P(H| Hy), the probability that none of her sons is
hemophiliac, we condition on H again.
P(H{H;) = P(H{H; | H)P(H) + P(H{H; | H)P(H").

Clearly, P(H{H; | H°) = 1. To find P(H{H; | H), we use the fact that H, and H, are
conditionally independent given H.

“HE c ¢ 1 1 1
P(H{HS | H)= P(H{ | H)P(HS | H) = = - — = —
2 2 4
Thus
1) =57 1= 16

The only quantity not calculated in the hint is P(U, | Rm) By Bayes’ Formula,
(nl ) <n +l >
P Rm Ui P Ui 1

()
gp(zem | U P(UL) Z (S)m(n Jlr ) Z(S)m

APPLICATIONS OF PROBABILITY TO GENETICS

. Clearly, Kim and Dan both have genotype O O. With a genotype other than A O for John, it is

impossible for Dan to have blood type O. Therefore, the probability is 1 that John’s genotype
is AO.

k(k+1)
—

. The genotype of the parent with wrinkled shape is necessarily 7. The genotype of the other

parent is either Rr or RR. But, R R will never produce wrinkled offspring. So it must be Rr.
Therefore, the parents are rr and Rr.

. Let A represent the dominant allele for free earlobes and a represent the recessive allele for

attached earlobes. Let B represent the dominant allele for freckles and b represent the recessive
allele for no freckles. Since Dan has attached earlobes and no freckles, Kim and John both
must be AaBb. This implies that Kim and John’s next child is AA with probability 1/4, Aa
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with probability 1/2, and aa with probability 1/4. Therefore, the next child has free earlobes
with probability 3/4. Similarly, the next child is B B with probability 1/4, Bb with probability
1/2, and bb with probability 1/4. Hence he or she will have no freckles with probability 1/4.
By independence, the desired probability is (3/4)(1/4) = 3/16.

If the genes are not linked, 25% of the offspring are expected to be BbV v, 25% are expected
to be bbvv, 25% are expected to be Bbvv, and 25% are expected to be bbVv. The observed
data shows that the genes are linked.

. Clearly, John’s genotype is either Dd or dd. Let E be the event that it is dd. Then E* is the

event that John’s genotype is Dd. Let F be the event that Dan is deaf. That is, his genotype
is dd. We use Bayes’ theorem to calculate the desired probability.

P(E | F) = P(F | E)P(E)
)= P(F | E)P(E) + P(F | E)P(E*)
1- 00l —=0.0198.

~ 1-(0.01) + (1/2)(0.99)
Therefore, the probability is 0.0198 that John is also deaf.

. A person who has cystic fibrosis carries two mutant alleles. Applying the Hardy-Weinberg

law, we have that ¢g> = 0.0529, or ¢ = 0.23. Therefore, p = 0.77. Since ¢> + 2pq =
1 — p? = 0.4071, the percentage of the people who carry at least one mutant allele of the
disease is 40.71%.

. Dan inherits all of his sex-linked genes from his mother. Therefore, John being normal has no

effect on whether or not Dan has hemophilia or not. Let E be the event that Kim is H%. Then
E°€ is the event that Kim is H H. Let F be the event that Dan has hemophilia. By the law of
total probability,

P(F)=P(F | E)P(E)+ P(F | E°)P(E°)
= (1/2)[2(0.98)(0.02)] +0-(0.98)(0.98) = 0.0196.

. Dan has inherited all of his sex-linked genes from his mother. Let E be the event that Kim is

CC, E, be the event that she is Cc, and E5 be the event that she is cc. Let F be the event that
Dan is color-blind. By Bayes’ formula, the desired probability is
P(F | E3)P(E3)
P(F | E\)P(E\) + P(F | E;)P(E2) + P(F | E3)P(E5)
_ 1-(0.17)(0.17) o7
0-(0.83)(0.83) + (1/2)[2(0.83)(0.17)] +1-(0.17)(0.17)

P(E3 | F) =

Since Ann is 44 and John is hemophiliac, Kim is either Hh or hh. Let E be the event that she
is Hh. Then E° is the event that she is hh. Let F be the event that Ann has hemophilia. By
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Bayes’ formula, the desired probability is
P(F | E)P(E)
P(F | EYP(E)+ P(F | E)P(E")

B (1/2)[2(0.98)(0.02)] _o
©(1/2)[2(0.98)(0.02)] + 1 - (0.02)(0.02)

P(E|F)=

Clearly, both parents of Mr. J must be Cc. Since Mr. J has survived to adulthood, he is not cc.
Therefore, he is either CC or Cc. We have

. . P(heis CC) 1/4 1
PheisCC |heisCCor Cc) = - =— =
PteisCCorCc) 3/4 3

2
P(heis Cc | heis CC or Cc) = 3

Mr. J’s wife is either CC with probability 1 — p or Cc with probability p. Let E be the event
that Mr. J is Cc, F be the event that his wife is Cc, and H be the event that their next child is
cc. The desired probability is

P(H) = P(HEF) = P(H | EF)P(EF)

1 p
=P(H|EF)P(E)P(F)=--=-p=—.
(HIEF)P(E)P(F)=7-3-p=7¢
Let E; be the event that both parents are of genotype AA, let E; be the event that one parent
is of genotype Aa and the other of genotype AA, and let E5 be the event that both parents are

of genotype Aa. Let F be the event that the man is of genotype AA. By Bayes’ formula,

P(F | E)P(E))
P(F | ED)P(E\) + P(F | E2)P(Ey) + P(F | E3) P(E3)

P(E\ | F) =

1-p* P’ 5

L p*+(1/2) 4pdg + (/4 - 4p2q2 ~ (p+aq)? 1

Similarly, P(E, | F) = 2pq and P(E3 | F) = ¢*. Let B be the event that the brother is AA.
We have

P(B|F)=P(B|FE\)P(E\ | F)+ P(B| FE)P(Ey | F) + P(B | FE3)P(E3 | F)
= P(B| E\)P(E\ | F)+ P(B| E2))P(Ey | F) + P(B| E3)P(E3 | F)

1 1 QCp+q)? (1+p)?
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REVIEW PROBLEMS FOR CHAPTER 3

a + ® DN

10.

11.

12.

13.

12 13 13 12 2
%-£+£-%=%=0.347.
1 — (0.97)° = 0.167.

(0.48)(0.30) + (0.67)(0.53) + (0.89)(0.17) = 0.65.
(0.5)(0.05) + (0.7)(0.02) + (0.8)(0.035) = 0.067.

(a) (0.95)(0.97)(0.85) =0.783; (b) 1 —(0.05)(0.03)(0.05) = 0.999775;
(c) 1—1(0.95)(0.97)(0.85) =0.217; (d) (0.05)(0.03)(0.15) = 0.000225.

103/132 = 0.780.

(0.08)(0.20) — 0.079.
(0.2)(0.3) 4+ (0.25)(0.5) + (0.08)(0.20)

N0

1/6.
(@) -0 6)
=)

4
7

5
=

= 0.615.

8
= — =0.35.
23

e IS

2

53
77 7
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Let A be the event of “head on the coin.” Let B be the event of “tail on the coin and 1 or 2 on
the die.” Then A and B are mutually exclusive, and by the result of Exercise 36 of Section 3.5,

. 1/2 3
the answeris ——— = —.
1/2)+(1/6) 4

The probability that the number of 1°s minus the number of 2’s will be 3 is

P (four 1’s and one 2) + P(three 1’s and no 2’s)

SO QOO ()6 =om
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The probability that the first urn was selected in the first place is

20 1
45 2 _ 10
20 110 1 19
45 2 25 2
The desired probability is
20 10 10 9
— =~ 0.42.

519725 19
Let B be the event that the ball removed from the third urn is blue. Let BR be the event that

the ball drawn from the first urn is blue and the ball drawn from the second urn is red. Define
BB, RB, and RR similarly. We have that

P(B) = P(B|BB)P(BB)+ P(B| RB)P(RB)+ P(B| RR)P(RR)+ P(B| BR)P(BR)
4 15+5 95+6 91+5 11 38 036
14 106 14 106 14 106 14 106 105
Let E be the event that Lorna guesses correctly. Let R be the event that a red hat is placed
on Lorna’s head, and B be the event that a blue hat is placed on her head. By the law of total

probability,

P(E) = P(E | R)P(R) + P(E | B)P(B)
L 1_1
eyt d-a-5=7

This shows that Lorna’s chances are 50% to guess correctly no matter what the value of « is.
This should be intuitively clear.

Let F be the event that the child is found; E be the event that he is lost in the east wing, and
W be the event that he is lost in the west wing. We have
P(F)=P(F | E)P(E)+ P(F|W)P(W)
= [1 - (0.6)*](0.75) + [1 — (0.6)*](0.25) = 0.748.

The answer is that it is the same either way. Let W be the event that they win one of the nights
to themselves. Let F be the event that they win Friday night to themselves. Then
1 1 2 2
PW)y=PW |F)P(F)+ PW |F)P(F)=1--+---=—.
3 23 3
Let A be the event that Kevin is prepared. We have that
P(RB°S?)  P(RB°S°| A)P(A) + P(RB“S° | A“)P(A)
P(B¢S¢) — P(B<S¢| A)P(A) + P(B<Sc | A°)P(A°)

~(0.85)(0.15)%(0.85) + (0.20)(0.80)(0.15)
o (0.15)2(0.85) + (0.80)2(0.15)

P(R | B°S) =

= 0.308.
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Note that
P(R)=P(R|A)P(A)+ P(R | A)P(A°) = (0.85)(0.85) 4+ (0.20)(0.15) = 0.7525.

Since P(R | B°S°) # P(R), theevents R, B, and S are not independent. However, it must be
clear that R, B, and S are conditionally independent given that Kevin is prepared and they are
conditionally independent given that Kevin is unprepared. To explain this, suppose that we are
given that, for example, Smith and Brown both failed a student. This information will increase
the probability that the student was unprepared. Therefore, it increases the probability that
Rose will also fails the student. However, if we know that the student was unprepared, the
knowledge that Smith and Brown failed the student does not affect the probability that Rose
will also fail the student.

20. (a) Let A be the event that Adam has at least one king; B be the event that he has at least
two kings. We have

P(AB)  P(Adam has at least two kings)
P(A)  P(Adam has at least one king)

48 48\ (4
1 — 13/ \12/\1
) ()
13 13
48
_ 13
52
13
(b) Let A be the event that Adam has the king of diamonds. Let B be the event that he has
the king of diamonds and at least one other king. Then

(1)) (1)) * (5) ()
_ros_ ()

P(B|A) = -
(B]4) P(A) (51)
12

(52\
13
Knowing that Adam has the king of diamonds reduces the sample space to a size considerably
smaller than the case in which we are given that he has a king. This is why the answer to

P(B|A)=

= 0.5612.
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part (b) is larger than the answer to part (a). If one is not convinced of this, he or she should
solve the problem in a simpler case. For example, a case in which there are four cards, say,
king of diamonds, king of hearts, jack of clubs, and eight of spade. If two cards are drawn,
the reduced sample space in the case Adam announces that he has a king is

{KaKp, KgJe, Ka8s, Ky Je, Ki8s},

while the reduced sample space in the case Adam announces that he has the king of diamonds
is
{KaKn, KaJe, K485}

In the first case, the probability of more kings is 1/5; in the second case the probability of
more kings is 1/3.
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4.2 DISTRIBUTION FUNCTIONS

1. The set of possible values of X is {0, 1, 2, 3,4, 5}. The probabilities associated with these
values are

x o 1 2 3 4 5
P(X =x) | 6/36 10/36 8/36 6/36 4/36 2/36

2. The set of possible values of X is {—6, —2, —1, 2, 3, 4}. The probabilities associated with
these values are

c)
2
PX=-6=PX=2)=PX =4 = TN = 0.095,
(=)
()0)
1)\
PX=-2)=PX=-1)=P(X=3)= N = 0.238.

()

3. The set of possible values of X is {0, 1,2..., N}. Assuming that people have the disease
independent of each other,

(1-p)~'p 1<i<N

PX=i)=
1 —pN i =0.
4. Let X be the length of the side of a randomly chosen plastic die manufactured by the factory,
then
1.25-1.125 1

P(X? > 1424) = P(X > 1.125) = =_.
1.25 -1 2
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5. P(X <1)=F(1-) = 1/2.

P(X=1)=F()—F(1-) = 1/6.
PAl<X<2)=FQ2-)—F(-)=1/4.
PX>1/2)=1-F(1/2)=1-1/2=1)2.
P(X =3/2) =0.
Pl<X<6)=F®6)—F()=1-2/3=1/3.

6. Let F be the distribution function of X. Then

0 t <0
1/8 0<r<1
Ft)y=131/2 1<t<?2
7/8 2<t<3
1 t>3.

7. Note that X is neither continuous nor discrete. The answers are
(@) F(6—) =1 implies that k(=36 + 72 — 3) = 1;s0 k = 1/33.
(b) F@4)— F(2)=129/33 —4/33 =25/33.
() 1—F@3)=1-(24/33) =9/33.

29 9
_F&-FB-) 33 33 5
(d P(X=4]X=3)= -FG 9 6
33

8. F(Qos) = 1/2 implies that 1 + ¢™* = 2. The only solution of this question is x = 0. So
x = 01is the median of F. Similarly, F(Qg.2s) = 1/4 implies that 1 + ¢~ = 4, the solution
of whichis x = —In3. F(Qo75) = 3/4 implies that 1 + ¢™* = 4/3, the solution of which is
x =In3. So —In3 and In 3 are the first and the third quartiles of F, respectively. Therefore,
50% of the years the rate at which the price of oil per gallon changes is negative or zero, 25%
of the years the rate is — In 3 &~ —1.0986 or less, and 75% of the years the rate is In 3 ~ 1.0986

or less.
9. (a)
PIX|<t)=P(-t<X<t)=PX <t)—P(X <-1)
=Ft)—[1-PX>=-D]=F@t)—[l-Px <n]=2F@1) —1.
(b) Using part (a), we have
P(X|>0=1=-P(X|<t)=1—[2F@) — 1] =2[1 - F(0)].



10.

11.

12.

13.

14.

15.

Section 4.2  Distribution Functions 65

(c)

PX=t)=14+PX=0)—-1=PX<t)+PX>0)+PX=1)—1
= PX<t)+PX>1)—1=PX<t)+P(X<—1)—1
= F(t) + F(—1) — 1.

F is a distribution function because F(—oo) = 0, F(oco) = 1, F is right continuous, and

1
F'(t) = —e™" > 0 implies that F is nondecreasing.
T

F is a distribution function because F'(—o0) = 0, F(oco) = 1, F is right continuous, and

F'(t) = > ( implies that it is nondecreasing.

1
(141)?
Clearly, F is right continuous. On t < 0 and on ¢ > 0, it is increasing, lim,_,, F(t) = 1,
and lim,, _», F(t) = 0. It looks like F satisfies all of the conditions necessary to make
it a distribution function. However, F(0—) = 1/2 > F(0+) = 1/4 shows that F is not
nondecreasing. Therefore, F is not a probability distribution function.

Let the departure time of the last flight before the passenger arrives be 0. Then Y, the arrival
time of the passenger is a random number from (0, 45). The waiting timeis X =45 —Y. We
have that for 0 < r < 45,

P(Xft):P(45—Y§t)=P(YZ45—t)=sz.

45 45

So F, the distribution function of X is

0 t<0

F(t)=1t/45 0<t <45

1 t > 45.
Let X be the first two-digit number selected from the set {00, 01, 02, . .. , 99} which is between
4 and 18. Since fori =4,5,...,18,

P(X =1i) 1/100 1

PX=i|4<X<18) = = = —,
P4<X<18) 15/100 15
we have that X is chosen randomly from the set {4, 5, ..., 18}.

Let X be the minimum of the three numbers,

()
P(X<5)=1—P(X25)=1—L=O.277.

()
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16.
> 2-0 2
P(X*—5X+6>0)=P((X—-2)(X—3)>0)=P(X <2)+P(X >3) = 003
17.
0 t <0
Fo=1_1_ o</<1)2
1—t
1 t>1)2.

18. The distribution function of X is F(t) = 0ift < 1; F(t) =1 —(89/90)" ifn <t <n + 1,
n > 1. Since

89\ 25 89\ 26
FQ6—)=1— (%) — 0244 <025 <1— (%) —0.252 = F(26),
26 is the first quartile. Since

89 62 89 63
F(63—) =1— (%) —0.4998 < 0.5 < 1 — (%> — 0.505 = F(63),

63 is the median of X. Similarly,

80 124 89\ 125
F(125—) =1 — (%) —0.7498 < 0.75 < 1 — (%) = 0.753 = F(125),

implies that 125 is the third quartile of X.

19.
F() t <5
G@)=

4.3 DISCRETE RANDOM VARIABLES

1. F, the distribution functions of X is given by

0 ifx <1
1/15 ifl<x<?2
3/15  if2<x<3
6/15 if3<x<4
10/15 if4<x <5
1 if x > 5.

F(x) =
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2. p, the probability mass function of X, is given by

x |1 2 3 4 5 6
p(x) | 11736 9/36  7/36  5/36 3/36 1/36

F, the probability distribution function of X, is given by

0 ifx <1

11/36 ifl <x <2
20/36 if2<x <3
F(x)=127/36 if3<x<4
32/36 if4<x <5
35/36 if5<x<6
1 if x > 6.

67

3. The possible values of X are 2, 3, ..., 12. The sample space of this experiment consists of 36

equally likely outcomes. Hence the probability of any of them is 1/36. Thus

p(2) =P(X =2)=P({(1,D}) = 1/36,
p(3)=P(X =3)=P({(1,2), (2, D}) = 2/36,
p@=PX=4=r({1,3),2,2,3,D}) =3/36.

Similarly,

i |5 6 7 8 9 10 11 12
p(i) | 436 536 6/36  5/36 4/36 3/36 2/36 1/36

4. Let p be the probability mass function of X. We have

x | -2 2 4 6
p(x) | 172 1710 13/45 19

5. Let p be the probability mass function of X and ¢ be the probability mass function of Y. We

have

p(i):(%)Fl(%), i=1,2,....

q() =P = j)=P(X = %) . (%)(j_3)/2(%>, Ji=357....

6. Mode of p = 1; mode of ¢ = 1.
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(@ Yo_kx=1=k=1/15.
(b) k(—1)2+k+4k—|—9k: 1=k=1/15.

(© Zk(é)leék:mzl/[%]:&

x=1
1 2

1424 dn)=1=k= - .
d k(1+2+--+n)=1=k L2 re T

6

2 2 2: ==
© kIT+2 4 A =1=k="T=E

. Let p be the probability mass function of X; then

(18)( 28 )
)= P(X =iy= ~IN2Z0 65

(i)

. Forx <0, F(x) =0. If x > 0, for some nonnegative integer n, n < x < n + 1, and we have

(D+G) =+ ()]

— n+l n
Nl Ol :1_<l) o
4 1—(1/4) 4

o= $30) =3l

=

Thus
ifx <0

0
Fx) =
11—/ ifn<x<n+1,n=0,1,2,....

Let p be the probability mass function of X and F be its distribution function. We have

pli) = (%)H(é), i=1,2,3,....

F(x) =0forx < 1. If x > 1, for some positive integer n, n < x < n + 1, and we have that

=50 = (e (e ()]

i=

1 1-(5/6)" | — <5>n.

T 6 1-(55/6)
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Hence
0 ifx <1
5

1—(6)n fn<x<n+1, n=1,2,3,....

F(x) =

The set of possible values of X is {2, 3,4, ...}. Forn > 2, X = n if and only if either all of
the first n — 1 bits generated are O and the nth bit generated is 1, or all of the first n — 1 bits
generated are 1 and the nth bit generated is 0. Therefore, by independence,

I\n—1 1 I\n=1 1 I\r-1
P(X:I’l):<§) §_|_(§) E:<§> , n>2.

The event Z > i occurs if and only if Liz has not played with Bob since i Sundays ago, and
the earliest she will play with him is next Sunday. Now the probability is i /k that Liz will
play with Bob if last time they played was i Sundays ago; hence

P(Z>i)=l—%, i=1.2...  k—1.

Let p be the probability mass function of Z. Then, using this fact for 1 < i < k, we obtain

p(i):P(Z:i):P(Z>i—1)—P(Z>i):<l—i;1>—(1—£>:%.

The possible values of X are 0, 1,2, 3,4, and 5. Fori,0 <i <5,
5

() 6P - 9P5_; - 10!
PX =i) =

15!

The numerical values of these probabilities are as follows.

i | o0 1 2 3 4 5
P(X =1i) | 42/1001 252/1001 420/1001 240/1001 45/1001 2/1001

)
B

The numerical values of these probabilities are as follows.

Fori =0, 1, 2, and 3, we have

P(X =i) =

i | 0 1 2 3
p(i) | 112/323 168/323 42/323 1/323




70

15.

16.

Chapter 4  Distribution Functions and Discrete Random Variables

Clearly,
6
P(X )=P E; )

To calculate P(E TUE,U-.- U Eé), we use the inclusion-exclusion principle. To do so, we
must calculate the probabilities of all possible intersections of the events from E, ..., Eg,
add the probabilities that are obtained by intersecting an odd number of events, and subtract
all the probabilities that are obtained by intersecting an even number of events. Clearly, there

6 6 6
are 1) terms of the form P(E;), 5 terms of the form P(E;E)), 3 terms of the form
P(EE;Ey), and so on. Now for all i, P(E;) = (5/6)"; forall i and j, P(E,;E;) = (4/6)";
foralli, j,and k, P(E;E; Ex) = (3/6)"; and so on. Thus

P(X>n)=P(E1UE2U--'UE6)

=N - )@+ - (@ + ()@
—o(2) - is(2) 202y () (L)

Let p be the probability mass function of X. The set of all possible values of X is {6, 7, 8, ...},
and

pm)=PX=n)=PX>n—1)— P(X >n)

S0 S0 ) () nme

Put the students in some random order. Suppose that the first two students form the first team,
the third and fourth students form the second team, the fifth and sixth students form the third
team, and so on. Let F stand for “female” and M stand for “male.” Since our only concern
is gender of the students, the total number of ways we can form 13 teams, each consisting of
two students, is equal to the number of distinguishable permutations of a sequence of 23 M’s

26! 26
and three F’s. By Theorem 2.4, this number is = 3 ) The set of possible values of
the random variable X is {2, 4, ..., 26}. To calcuiaté the probabilities associated with these
values, note that for k = 1,2,...,13, X = 2k if and only if one of the following events

occurs:

A:  One of the first k — 1 teams is a female-female team, the kth team is either a male-female
or a female-male team, and the remaining teams are all male-male teams.

B: The first k — 1 teams are all male-male teams, and the kth team is either a male-female
team or a female-male team.
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1.
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To find P (A), note that for A to occur, there are k — 1 possibilities for one of the first k — 1 teams
to be a female-female team, two possibilities for the kth team (male-female and female-male),
and one possibility for the remaining teams to be all male-male teams. Therefore,

P(A) = M

26
3
To find P(B), note that for B to occur, there is one possibility for the first k — 1 teams to

be all male-male, and two possibilities for the kth team: male-female and female-male. The

number of possibilities for the remaining 13 —k teams is equal to the number of distinguishable

26 — 2k)!
permutations of two F’s and (26 —2k) —2 M’s, which, by Theorem 2.4, is ) =

21 (26 — 2k —2)!
26 — 2k
( 5 ) Therefore,
(26 — Zk)
2 2
PBY=—"re
3

26 — 2k
ﬂk—1)+2( )
1, 1

Hence, for 1 <k < 13,

2 1

=k — —k+-.

<26) 650" 26 ' 4
3

P(X =2k)=P(A)+ P(B) =

EXPECTATIONS OF DISCRETE RANDOM VARIABLES

Yes, of course there is a fallacy in Dickens’ argument. If, in England, at that time there were
exactly two train accidents each month, then Dickens would have been right. Usually, for all
n > 0 and for any two given days, the probability of #n train accidents in day 1 is equal to the
probability of n accidents in day 2. Therefore, in all likelihood the risk of train accidents on
the final day in March and the risk of such accidents on the first day in April would have been
about the same. The fact that train accidents occurred at random days, two per month on the
average, imply that in some months more than two and in other months two or less accidents
were occurring.

. Let X be the fine that the citizen pays on a random day. Then

E(X) =25(0.60) 4+ 0(0.40) = 15.

Therefore, it is much better to park legally.
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3. The expected value of the winning amount is

30(ﬂ) + 800<L> + 1,200, 000(

—— ) =0.86.
2,000, 000 2,000, 000 2, 000, OOO)

Considering the cost of the ticket, the expected value of the player’s gain in one game is
—1+0.86 = —0.14.

. Let X be the amount that the player gains in one game, then

()0)
3/\1
(4)
and P(X =—1)=1-0.114 — 0.005 = 0.881. Thus
E(X) = —1(0.881) 4+4(0.114) 4+ 9(0.005) = —0.38.

Therefore, on the average, the player loses 38 cents per game.

. Let X be the net gain in one play of the game. The set of possible values of X is {—8, —4, 0, 6, 10}.

The probabilities associated with these values are

RN 1[G

p(=8) = p0) = 7 = 107 p(—4) = ECUERETE
() ()

2
andp(6):p(10):T:E.Hence
2
E(X)=-8 ! 4 4+0 1+6 2+10 2 _4
N 10 10 10 10 10 5

Since E(X) > 0, the game is not fair.

6. The expected number of defective items is

=0
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7. Fori =4,5,6,7,let X; be the profit if i magazines are ordered. Then

4a
E(X4)=?,
by 2 6 a2 _da
3 18 3 18 3
E(X6):O.£+a.i+6_a.l=&’
18 18 3 18 18
by 2 6,05 A4 a3
3 18 3 18 3 18 3 18 18

Since 4a/3 > 19a/18 and 4a/3 > 10a/18, either 4, or 5 magazines should be ordered to
maximize the profit in the long run.

o oo
6 6 1 6
@ X n=mla=a =t
x=1

6 6 <1
(b) E(X):anzxzz—Z—:oo.

2
9 4 1 4 9
9. A AU A A
® l_zzzp(x) ittty

) EX) =Y. ,xp()=0, E(X])= Y7 _,x|px)=44/27,
E(X?) =Y2_ ,x*p(x) = 80/27. Hence
EQX?*—5X +7) =2(80/27) — 5(0) + 7 = 349/27.

10

1
10. Let R be the radius of the randomly selected disk; then E (27 R) = 27 Z i 0= 11m.
i=1

11. p(x) the probability mass function of X is given by

x |-3 0 3 4
p(x) [ 3/8 1/8 1/4 1/4

Hence
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E(X]) =3 3+o !
T8 8

77 23
EX?>=2|X))= — —2(=
8 8

N—
I
oo|&

3
EXIX)==9-2+0-

1 11 10 1 77
= [ — = — 2 = .2-—:—
12. E(X) = E i 0 5 and E(X") ig_ll 0 5 So

5 11 77
E[X(l]—X)]:E(llX—X):11-7—7:22.

13. Let X be the number of different birthdays; we have

365 x 364 x 363 x 362

PX=4= 365

= 0.9836,

4
( )365 x 364 x 363
P(X =3) =

o = 0.0163,

4 4
(2)365 x 364 + <3>365 x 364
P(X=2)= o = 0.00007,

365
P(X=1= 365 = 0.000000021.

Thus
E(X) =4(0.9836) + 3(0.0163) + 2(0.00007) + 1(0.000, 000, 021) = 3.98.

14. Let X be the number of children they should continue to have until they have one of each sex.
Fori > 2, clearly, X = i if and only if either all of their firsti — 1 children are boys and the ith
child is a girl, or all of their first i — 1 children are girls and the ith child is a boy. Therefore,
by independence,

= () ) A e

Eo-Yi(2) " - —1+§:i(%)” 1+ G =

i=2

So

Note that for |r| < 1, Y2, ir' ™' = 1/[(1 — r)?].
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15. Let A; be the event that the person belongs to a family with j children. Then

c

a 1
P(K=k) =) P(K=klA})P(A)) = Z;a,.

j=0 j=k
Therefore,
C C C a] C c kaj
EK)=) kP(K=k =) kY L=~
k=1 k=1 j= J k=1 j=k J

16. Let X be the number of cards to be turned face up until an ace appears. Let A be the event
that no ace appears among the first i — 1 cards that are turned face up. Let B be the event that
the ith card turned face up is an ace. We have

48
i—1

4
52—(i—1)'<52 )
i—1

/48
49 l(. B 1>4
EX) =) ! = 10.6.

= (.52 )(53—i>
i—1

To some, this answer might be counterintuitive.

P(X =i)= P(AB) = P(B|A)P(A) =

Therefore,

17. Let X be the largest number selected. Clearly,

P(X=i)=P(X§i)—P(X§i—1)=<—)n—(i_l)n, i=1,2,...,N.

N N
Hence
N - n+1 n N
l(l — 1) 1 n ; "
E0 =3[ |= 2l =i —1y]
i=1 i=1
N
N Nn+1 _ Z(l _ 1)}1
1 i
n+1 i n+1 . n i=1
=2l - -G -] = 7
i=1 N
For large N,

N N Nn+1
E (i—l)"%/ xtdx = .
izl 0 n +1
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Therefore,
n+l1
Nn—H _ Nt
E(X) ~ n+1 _ nN
Nn n+1
18. (a) Note that
1 1 1

n(n—l—l):n n+1

So

k k
1
Zn(n+1> Z< n+1) L

n=1 n=1

This implies that

1 . 1
ZP(’“— tim Zm P fim =

Therefore, p is a probability mass function.

o0 o0 1
(b) E(X)= an(n) =L

where the last equality follows since we know from calculus that the harmonic series,

1+1/24+1/3+---, is divergent. Hence E(X) does not exist.

19. By the solution to Exercise 16, Section 4.3, it should be clear that for 1 < k < n,

2n — 2k
2(k—1)+2< 5 )

)

2n — 2k
" 0 4k(k—1)+4k< 5 )
E(X) =) 2kP(X =2k)

- - 2n
k=1 k=1
(%)

P(X =2k) =

Hence

- 2‘:1 [2Zk3 —@n—2)Y K+ @n* —n— I)Zk]
k=1 k=1 n=1
(%)
_ 4 n?(n+1)>? nn+1)2n+1) 2
- (Zn) 2 T n-2). ; +(2n
3
(n + 1)?

—n—1)

nin—+1)

]
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4.5 VARIANCES AND MOMENTS OF DISCRETE RANDOM VARIABLES

1. On average, in the long run, the two businesses have the same profit. The one that has a profit
with lower standard deviation should be chosen by Mr. Jones because he’s interested in steady
income. Therefore, he should choose the first business.

2. The one with lower standard deviation, namely, the second device.
3. EX) = Zi:_3 xp(x) =—1, E(X?) = Z;(__gx p(x) = 4. Therefore, Var(X) = 4—1 = 3.

4. p, the probability mass function of X is given by

x |-3 0 6
p(x) | 318 3/8 2/8

Thus
9 12 3 27 72 99
EX)=—4+—=—, E(X?) ="+ —==2",
(X) st T =% (X°) s T3 g
99 9 783
Var(X):§—a:a:12.234, ox = ~/12.234 = 3.498.

5. By straightforward calculations,

XN:' 1 1 NWN+1) N+1
l: — . J—

N N 2 2

E(X) =
i=1

N
E(Xz):ZiZ.l:l,N(N"'l;(ZN"‘l) _ (N+1)22N+1),
(N+D@N+1D (N+D> N -1
6 a 4 =12

Var(X) =

N2 -1
12

Ox =

6. Clearly,

i= 0

(13) 39 )
EX) = 525_i =1.25,
(%)

3 39

) = 2.426.

1
E(X)_Zz ( 5-—

)
- (552>
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Therefore, Var(X) = 2.426 — (1.25)> = 0.864, and hence oy = +/0.864 = 0.9295.

7. By the Corollary of Theorem 4.2, E(X?> — 2X) = 3 implies that E(X?) — 2E(X) = 3.
Substituting E(X) = 1 in this relation gives E(X?) = 5. Hence, by Theorem 4.3,

Var(X) = E(X*) - [EX)]' =5-1=4.

By Theorem 4.5,
Var(—3X +5) = 9Var(X) =9 x 4 = 36.

8. Let X be Harry’s net gain. Then

—2  with probability 1/8
0.25 with probability 3/8

x= 0.50 with probability 3/8
0.75 with probability 1/8.
Thus
E(X) = —2-14—0.25 . 3 —4—0.50-§+0.75‘l =0.125
8 8 8 8
E(X?) = (=2)%- % +0.252 . % +0.50% - % +0.75%- % = 0.6875.

These show that the expected value of Harry’s net gain is 12.5 cents. Its variance is

Var(X) = 0.6875 — 0.125% = 0.671875.

9. Note that E(X) = E(Y) = 0. Clearly,

0 ifr<l1
P(IX -0l <1)=

1 ifr>1,

0 ifr <10
Py —oj<r)=1" "%

1 ifr > 10.

These relations, clearly, show that for all ¢ > 0,
P(lY =0/ <t) < P(IX — 0] <1).
Therefore, X is more concentrated about O than Y is.

10. (a) Let X be the number of trials required to open the door. Clearly,

1ye-11
P(X:x):(l——) S x=123. ...
n n
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Thus

E(X):ix(l —%)x_lézéix(l —%)H. (10)

x=1 x=I

We know from calculus that Vr, |r| < 1,

D arl = T (11)

Thus
> 1! 1 5
§ x(l——) = —n’ (12)
n 1

Substituting (12) in (10), we obtain E(X) = n. To calculate Var(X), first we find E(X?). We
have

e 1

s =3 () )= ) o

x=1 x=1

Now to calculate this sum, we multiply both sides of (11) by r and then differentiate it with
respect to r; we get

o0

1
E X2 = tr .
—~ 1-r)3

Using this relation in (13), we obtain
EXH=- —— " _—2p%_n.
n

Therefore,
Var(X) = 2n* —n) —n*> =nn — 1).

(b) Let A; be the event that on the ith trial the door opens. Let X be the number of trials
required to open the door. Then

1
PX=1)=-,
n
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P(X =2) = P(ASAy) = P(A;|AS)P(AS)
1 n— 1 1

’

n—1 n n
P(X =3) = P(A{A5A3) = P(A3|ASA]) P(ASAY)
= P(A3]A5A7) P (A5 A} P(A))
1 n—2 n— 11

n—2 n—1 n n

Similarly, P(X = i) = 1/nfor 1 <i < n. Therefore, X is a random number selected from
{1,2,3,...,n}. By Exercise 5, E(X) = (n + 1)/2 and Var(X) = (n> — 1)/12.

11. For E(X?) to exist, we must have E(|X?|) < oo. Now

PN oY G IR e N Gl O
;xnmxn)—nz; e DD <

whereas

6
X?)) =
| E |x |p(xn) =

n=1 n=1
12. For 0 < s < r, clearly,
lx[* <max (1, |x]") < 1+|x|", VxeR.

Let A be the set of possible values of X and p be its probability mass function. Since the rth
absolute moment of X exists, ), [x|"p(x) < co. Now

Dl p) Y (1+1x)plx)

X€EA XEA
=Y P+ Y IxI'pa) =14 |xI'p(x) < o,
XeA XeEA xXeEA

implies that the absolute moment of order s of X also exists.
13. Var(X)=Var(Y) implies that
EX) - [EX) = EXY) - [EM].
Since E(X) = E(Y), this implies that E(X?) = E(Y?). Let

P(X =a) = pi, P(X =) = pa, P(X =c¢) = p3;
P(Y =a) =q, PY =D) = qa, P(Y =c¢) =gs.
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Clearly,
prtptpi=qt+qt+g =1

This implies
(Pr—q1) +(p2—q2) + (p3 —q3) = 0.
The relations E(X) = E(Y) and E(X?) = E(Y?) imply that

apy + bpy + cp3 = aqy + bq + cq3
a’pi +b*pr + P py = a*qi + b + .

81

(14)

These and equation (14) give us the following system of 3 equations in the 3 unknowns p; —qj,

P2 — q2, and p3 — g3.

pPr—q) + (p2—q2) + (p3—q3) =0
a(pi—q1) + b(pr—q) + c(p3—¢q3) =0
a*(p1 — q1) + b*(p2 — q2) + *(p3 —q3) = 0.

In matrix form, this is equivalent to

111\ (p—a 0
a b cl|p—q)|=10
a’> b* ¢? P3—q3 0
Now
1 1 1
det{a b ¢ | =bc+ca®+ab® —ba* — cb* — ac®
a? b ?

=(c—a)c=b)(b—a)#0,

since a, b, and ¢ are three different real numbers. This implies that the matrix

1 1 1
a b c
a’ b* 2

is invertible. Hence the solution to (15) is

Pr—q1=p2—q =p3s—q=0.

Therefore, p; = q1, p» = g2, p3 = g3 implying that X and Y are identically distributed.

(15)
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14. Let
P(X =ay) = pi, P(X = ay) = p», P(X =a,) = pu;
P(Y =ay) = q1, P(Y =ay) = q>, cee P(Y =a,) = q,.
Clearly,

pitpttpn=q @t tgn =1

This implies that

(pr—gq)+(p2—q)+---+(pn —q,) =0.

The relations E(X") = E(Y"), forr =1,2,... ,n — 1 imply that

aip1+apy+ -+ appn = a1q1 +axqa + - - + angn,
aipi+aspr+ -+ anpy = ajqr + ayq + - + angn,

n—1

n—1

A +d e+ ad  p=d g+ -+ a

These and the previous relation give us the following n equations in the n unknowns p; — gy,

P2—4q2 ..

-,pn_QIr

pPr—q) + (P2—q2) +--+ (Pu—q) =0
al(pl —Q]) + az(pz-Qz) +--- + an(pn_Qn) =0
al(pr—q) + a2(pr—q) +- + a2(pa—qy) =

AN pr—q)+dy  (pr—gq) - +a T (P —qa) =0

In matrix form, this is equivalent to

Now

1 Lo 1 P1—q 0
a a - ay D2 — q2 0
a a; - a P3—q3| =10
n'—l n.—l n'—l _ 0
al a2 e an pn qn
1 1 1
a) ay a,
det| @t a3 o a | = T[] (@—a)#0,
: : j=nn—1,...2

(16)
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since a;’s are all different real numbers. The formula for the determinant of this type of
matrices is well known. These are referred to as Vandermonde determinants, after the famous
French mathematician A. T. Vandermonde (1735-1796). The above determinant being nonzero
implies that the matrix

al a2 e an
2 2 2
al a2 .. an
n—1 n—1 n—1
al az e an

is invertible. Hence the solution to (16) is

PL—qi=p2—q@=-=py— ¢, =0.

Therefore, p; = q1, p2 = q2, - - ., pn = qn, implying that X and Y are identically distributed.

4.6 STANDARDIZED RANDOM VARIABLES

1. Let X; be the number of TV sets the salesperson in store 1 sells and X, be the number of
TV sets the salesperson in store 2 sells. We have that X7 = (10 — 13)/5 = —0.6 and
X5 = (6 —7)/4 = —0.25. Therefore, the number of TV sets the salesperson in store 2 sells
is 0.6 standard deviations below the mean, whereas the number of TV sets the salesperson
in store 2 sells is 0.25 standard deviations below the mean. So Mr. Norton should hire the
salesperson who worked in store 2.

2. Let X be the final grade comparable to Velma’s 82 in the midterm. We must have

82—72 X —68
2 15

This gives X = 80.5.

REVIEW PROBLEMS FOR CHAPTER 4

10
1. Note that 5 )= 45. We have

i ‘ 1,2,16,17 3,4,14,15 5,6,12,13 7,8,10,11 9
p(@) ‘ 1/45 2/45 3/45 4/45 5/45




84

6.
7.
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. The answer is

1 2+2 5+3 9+4 9+5 4+6 5—3676
34 34 34 34 34 34 - T

. Let N be the number of secretaries to be interviewed to find one who knows TgX. We must

find the least n for which P(N <n) > 0.500r1 — P(N > n) > 0.50 or 1 — (0.98)" > 0.50.
This gives (0.98)" < 0.50 orn > In0.50/1n 0.98 = 34.31. Therefore, n = 35.

. Let F be the distribution function of X, then

t
Ft)y=1- (1 n ﬁ)e—’/m, t>0.

Using this, we obtain
P(200 < X <300) = P(X <300) — P(X < 200) = F(300) — F(200—)
= F(300) — F(200) = 0.442 — 0.264 = 0.178.

. Let X be the number of sections that will get a hard test. We want to calculate E(X). The

random variable X can only assume the values 0, 1, 2, 3, and 4; its probability mass function

is given by
8 22
(0)(2)

)=P(X =i)= 1 =0,1,2,3,4
p(l) ( l) 30 9 l b 9 9 9 b
4
where the numerical values of p(i)’s are as follows.
i | 0 1 2 3 4

p(i) | 02669 0.4496 0.2360 0.0450 0.0026
Thus
E(X) = 0(0.2669) + 1(0.4496) + 2(0.2360) + 3(0.0450) + 4(0.00026) = 1.067.
(@)1 — F(6) =5/36. (b) F(9) =76/81. (¢) F(7) — F(2) = 44/49.
We have that
E(X) = (15.85)(0.15) + (15.9)(0.21) + (16)(0.35) + (16.1)(0.15) + (16.2)(0.14) = 16,
Var(X) = (15.85 — 16)*(0.15) + (15.9 — 16)#(0.21) + (16 — 16)*(0.35)
+ (16.1 — 16)%(0.15) + (16.2 — 16)?(0.14) = 0.013.
E(Y) = (15.85)(0.14) 4 (15.9)(0.05) + (16)(0.64) + (16.1)(0.08) + (16.2)(0.09) = 16,
Var(Y) = (15.85 — 16)%(0.14) 4 (15.9 — 16)*(0.05) + (16 — 16)*(0.64)
+ (16.1 — 16)%(0.08) + (16.2 — 16)2(0.09) = 0.008.



Chapter 4  Review Problems 85

These show that, on the average, companies A and B fill their bottles with 16 fluid ounces of
soft drink. However, the amount of soda in bottles from company A vary more than in bottles
from company B.

8. Let F be the distribution function of X, Then

0 t <58
7/30 58 <t <62
13/30 62 <t <64

F(1) =
18/30 64 <t <76
23/30 76 <t < 80
1 t > 80.
o, (20) — (1)’
9. (a) To determine the value of k, note that Z k—— = 1. Therefore, k Z — = 1. This
Py i! P i!

2t)!
implies that ke? = 1 or k = ¢~ *. Thus p(i) = 6*2’%.
i!

(b)
3

P(X <4)=) P(X =i)=e [l +2t + 26>+ (4/3)],
i=0

PX>1)=1-PX=0—-PX=1)=1—e2—2te .

10. Let p be the probability mass function, and F be the distribution function of X. We have
1 3
pO0) =p@) =2, p(l) = p2) = 2. and

0 t <0

1/8 0<r<l1
F(t)y=134/8 1<t<?2
7/8 2<t<3

1 t > 3.
11. (a) The sample space has 52! elements because when the cards are dealt face down, any
ordering of the cards is a possibility. To find p(j), the probability that the 4th king

4
will appear on the jth card, we claim that in 1) (- 1)P3 - 48! ways the 4th king

will appear on the jth card, and the remaining 3 kings earlier. To see this, note that
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4
we have (1) combinations for the king that appears on the jth card, and -1 P3

different permutations for the remaining 3 kings that appear earlier. The last term 48!,
is for the remaining 48 cards that can appear in any order in the remaining 48 positions.

Therefore,
4 j—1 j—1
(1)‘<f—1)P3’48! ( 3 ) ( 3 )

pU) = 521 =750 T /3
ww (1)

41 48!
o . 51 52
(b) The probability that the player wins is p(52) = 3 / 1) = 1/13.

(¢) To find

=4

E= me (07N,
()

the expected length of the game, we use a technique introduced by Jenkyns and Muller
in Mathematics Magazine, 54, (1981), page 203. We have the following relation which
can be readily checked.

j(j S 1) - §[<j+ 1)@ —j(j . 1)} j=s.

B3 4[5 )-E0)]

J=
5 4 4 ’ ’ ’

where the next-to-the-last equality follows because terms cancel out in pairs. Thus

This gives

i) = [ (U
V) WA U T ) LI\ 3
j=4 j=5
4 4
1
= T(‘l + 11, 478,736) = 42.4.
(%)
As Jenkyns and Muller have noted, “This relatively high expectation value is what makes the
game interesting. However, the low probability of winning makes it frustrating!”



Chapter 5

Sp@@ial Discrete

)istributi(ms

5.1 BERNOULLI AND BINOMIAL RANDOM VARIABLES

8\ /1\4/3\4
1. (4) (Z) <Z> — 0.087.
1
2. (a) 64 x 3= 32.
1
(b) 6 x 3 + 1 = 4 (note that we should count the mother of the family as well).
6\ /1\3/5\3
3. (— (— — 0.054.
(5)E Q)
6 1\2/9\4
4. (—) (—) — 0.098.
2/\10 10
5\ /10\2 /20,3
5. (—) (—) — 0.33.
2/ \30 30
6. Let X be the number of defective nails. If the manufacturer’s claim is true, we have
PX>2)=1-PX=0-PX=1

=1- <204> (0.03)°(0.97)** — (21‘1) (0.03)(0.97)% = 0.162.

This shows that there is 16.2% chance that two or more defective nails is found. Therefore, it
is not fair to reject company’s claim.

7. Let p and g be the probability mass functions of X and Y, respectively. Then

4
px) = ( )(0.60)”(0.40)4“”, x=0,1,2,3,4;
X
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10.

11.

12.

13.

14.
15.

16.
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g0 =P =y =p(x=""1)

4
- <y—1)(0-60><~V—”/2(0.40)4—[0’—“/2], y=1.3.57.9.
2

(1,5>(0.8)"(0.2)‘5" =0.142.
l

(5) ) Ge) =008
1= () ()0 Q) =0 () (5 =omm

We know that p(x) is maximum at [(n 4+ 1) p]. If (n 4+ 1) p is an integer, p(x) is maximum at

[(n + 1)p] = np + p. Butin such a case, some straightforward algebra shows that

n

npEp (1 — p)t—hP—P —
)p (1—-p) (np+p_1

( >pnp+p—l(1 _ p)n—np—p+1’
np+p

implying that p(x) is also maximum atnp + p — 1.

52
The probability of royal or straight flush is 40 / ( 5 ) If Ernie plays n games, he will get, on

52 52
the average, n |:40 / ( s )] royal or straight flushes. We want to have 40n / ( 5 ) = 1; this

. 52
gives n = (5 )/40 — 64,974,

()C)CY =0z
1 —(999/1000)'% = 0.095.

The maximum occurs at k = [11(0.45)] = 4. The maximum probability is

10
( . )(0.45)4(0.55)6 =0.238.
Call the event of obtaining a full house success. X, the number of full houses is n independent

poker hands is a binomial random variable with parameters (n, p), where p is the probability

that a random poker hand is a full house. To calculate p, note that there are 5 possible

4\ [4\ 13! 52
poker hands and (3) (2> T 3744 full houses. Thus p = 3744 / ( 5 ) ~ (0.0014. Hence



17.

18.

19.

20.

21.
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E(X) = np =~ 0.0014n and Var(X) = np(1 — p) =~ 0.00144n. Note that if n is approximately
715, then E(X) = 1. Thus we should expect to find, on the average, one full house in every
715 random poker hands.

6 /1\6,3\0 6\ /1\5/3
o (6)(4_1) (3) - @(z) (3) ~ 0995,
3000 3000
1- ( 0 )(0.0005)0(0.9995)3000 - ( : )(0.0005)(0.9995)2999 ~ 0.442.
The expected value of the expenses if sent in one parcel is
45.20 x 0.07 4+ 5.20 x 0.93 = 8.
The expected value of the expenses if sent in two parcels is

(23.30 x 2)(0.07)* + (23.30 + 3.30) <?) (0.07)(0.93) + (6.60)(0.93)* = 9.4.

Therefore, it is preferable to send in a single parcel.
Let n be the minimum number of children they should plan to have. Since the probability of all
girlsis (1/2)" and the probability of all boysis (1/2)", we musthave 1—(1/2)"—(1/2)" > 0.95.

in0.05
This gives (1/2)"' < 0.050rn — 1 > 1n(0 5, = 4320rn = 532 Therefore, n = 6
n(v.

(a) For this to happen, exactly one of the N stations has to attempt transmitting a message.

. .. (N N1 N1
The probability of this is ] p(1—Dp) = Np(l—p)" .

(b) Let f(p) = Np(1 — p)¥~!. The value of p which maximizes the probability of a message
going through with no collision is the root of the equation f (p) = 0. Now

f () =N1-p)""' = Np(N -1 - pN2=0.

Noting that p # 1, this equation gives p = 1/N. This answer makes a lot of sense because at
every “suitable instance,” on average, Np = 1 station will transmit a message.

(¢) By part (b), the maximum probability is

1 1 1\N-1 1 \N—1
() ="FH0-5) =0-5
N N N N
As N — oo, this probability approaches 1/e, showing that for large numbers of stations

(in reality 20 or more), the probability of a successful transmission is approximately 1/e
independently of the number of stations if p = 1/N.
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22. The k students whose names have been called are not standing. Let Ay, A,, ..., A,_; be the
students whose names have not been called. Fori, 1 <i <n —k, call A; a “success,” if he or
she is standing; failure, otherwise. Therefore, whether A; is standing or sitting is a Bernoulli
trial, and hence the random variable X is the number of successes in n — k Bernoulli trials.
For X to be binomial, for i # j, the event that A; is a success must be independent of the
event that A is a success. Furthermore, the probability that A; is a success must be the same
forall i, 1 <i < n — k. The latter condition is satisfied since A; is standing if and only if his
original seat was among the first k. This happens with probability p = k/n regardless of i .
However, the former condition is not valid. The relation

k—1

P(A j is standing | A; is standing) = ,
n

shows that given A; is a success changes the probability that A is success. That is, A; being a
success is not independent of A ; being a success. This shows that X is not a binomial random
variable.

23. Let X be the number of undecided voters who will vote for abortion. The desired probability
is

[5=2] o
Plb+(—X)>a+X)=P(X < W) N 2:: (’:)G)(%)
L
n n
-6 T ()

24. Let X be the net gain of the player per unit of stake. X is a discrete random variable with
possible values —1, 1, 2, and 3. We have

== (o) (6) = i
ror == ()@ - e
== ()6 ) =
== () @) - 5
Hence s B . |

E(X)=— +1 —+2-—+3-— = —-0.08.

 p——
216 216 216 216
Therefore, the player loses 0.08 per unit stake.
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26.

27.

28.
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E(X?) = Zﬁ(;l)pm -p)t = Z(x2 —x +X)<Z>p"(1 -p)
x=1

x=1

=) x(x- 1)(2)19"0 -p)"+ ZX(Z)pX(l -p)"
x=1 x=lI

|
=3 = 2)7(,1 — PP ECO

x=2

" (n—=2
=n(n—1p* ) (x B 2)p”(l —p)" +np
x=2

n—2
=n(n—Dp*[p+1A—-p]" " +np=n’p*—np>+np.

(a) A four-engine plane is preferable to a two-engine plane if and only if

_ 4 0 _ 4 4 . 3 . 2 0 _ 2
1 (0>p (I-=p) (1)10(1 p) > 1 (0)19 (I-p).

This inequality gives p > 2/3. Hence a four-engine plane is preferable if and only if p > 2/3.
If p = 2/3, it makes no difference.
(b) A five-engine plane is preferable to a three-engine plane if and only if

5 5 5 3
(5)p5<1 -p)'+ (4)p4<1 -p+ (3)p3<1 -’ > (2);72(1 -p)+p

Simplifying this inequality, we get 3(p — 1)*>(2p — 1) > 0 which implies that a five-engine
plane is preferable if and only if 2p — 1 > 0. That is, for p > 1/2, a five-engine plane is
preferable; for p < 1/2, athree-engine plane is preferable; for p = 1/2 it makes no difference.

Clearly, 8 bits are transmitted. A parity check will not detect an error in the 7-bit character
received erroneously if and only if the number of bits received incorrectly is even. Therefore,
the desired probability is

4
8
§ j (2 >(1 —0.999)%"(0.999)%2" = 0.000028.
n
n=1

The message is erroneously received but the errors are not detected by the parity-check if for
1 < j <6, j of the characters are erroneously received but not detected by the parity—check,
and the remaining 6 — j characters are all transmitted correctly. By the solution of the previous
exercise, the probability of this event is

6
Z(o.oooozs)f(0.999)8<6-f> = 0.000161.

j=1
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30.

31.
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. . . 52
The probability of a straight flush is 40 / 5 ~ 0.000015391. Hence we must have

3
1—- (g) (0.000015391)°(1 — 0.000015391)" > T

This gives
(1 —0.000015391)" <

ENT

So
log(1/4)
n
~ log(1 — 0.000015391)

Therefore, n =~ 90, 072.

~ 90071.06.

Let p, g, and r be the probabilities that a randomly selected offspring is AA, Aa, and aa,
respectively. Note that both parents of the offspring are AA with probability («/n)?, they are
both Aa with probability [1 — (a¢/n)]’, and the probability is 2(a/n)[1 — (/n)] that one
parent is AA and the other is Aa. Therefore, by the law of total probability,

Pt () 3 (=5 2205 =50 +2() +5
=0 () 0-2) 5209 =530’
0 () 02 0202 - 302

The probability that at most two of the offspring are aa is

2

3 (’?)r"(l —
i=0

The probability that exactly i of the offspring are AA and the remaining are all Aa is

(’7) piqm—i .

The desired probability is the sum of three probabilities: probability of no customer served and
two new arrivals, probability of one customer served and three new arrivals, and probability
of two customers served and four new arrivals. These quantities, respectively, are (0.4)* -

(j) (0.45)(0.55)>, (‘1‘) (0.6)(0.4)° - (i) (0.45)%(0.55), and (j) (0.6)%(0.4)% - (0.45)*. The

sum of these quantities, which is the answer, is 0.054.
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33.
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(a) Let S be the event that the first trial is a success and E be the event that in 7 trials, the
number of successes is even. Then

P(E) = P(E|S)P(S) + P(E|S)P(S°).

Thus
rn=U—=rp_)p+r.—1(1—p).

Using this relation, induction, and ry = 1, we find that

1
Fo = E[l + (1 =2p)"].

(b) The left sum is the probability of 0, 2, 4, ..., or [n/2] successes. Thus it is the probability
of an even number of successes in n Bernoulli trials and hence it is equal to 7;,.

For 0 <i < n, let B; be the event that i of the balls are red. Let A be the event that in drawing
k balls from the urn, successively, and with replacement, no red balls appear. Then

PAIBYPBy) _ 1% (5) _ I

n

s ramrea ¥ ()@ L)

i=0

P(By|A) =

Let E be the event that Albert’s statement is the truth and F' be the event that Donna tells the
truth. Since Rose agrees with Donna and Rose always tells the truth, Donna is telling the truth
as well. Therefore, the desired probability is P(E | F) = P(EF)/P(F). To calculate P(F),
observe that for Rose to agree with Donna, none, two, or all four of Albert, Brenda, Charles,
and Donna should have lied. Since these four people lie independently, this will happen with

probability
3 ()G G 6 =5
3 2)\3/ \3 3/ 81
To calculate P(E F), note that E F is the event that Albert tells the truth and Rose agrees with

Donna. This happens if all of them tell the truth, or Albert tells the truth but exactly two of
Brenda, Charles and Donna lie. Hence

ran- (s QG703

P(EF) 13/81 13
P(F)  41/81 41

Therefore,

P(E|F) = = 0.317.
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5.2

. A =0.025 x 80 = 2; the answeris 1 —

. A =(500)(0.0014) = 0.7. The answeris 1 —

. A= (3/10)35 = 10.5. The probability of 10 misprints in a given chapter is

. The probability that a bun contains no raisins is

Chapter 5  Special Discrete Distributions

POISSON RANDOM VARIABLES

—330
. % = (0.05)(60) = 3; the answeris 1 — - o =17 =09502
—1.8 18 i
. A = 1.8; the answer is Z?:o & ~ (.89.

i!

e 220 22!

o = 1 — 3¢ %2 =0.594.

e 97(0.7)° B e %7(0.7)!

~ (.156.
0! 1!

. We call a room “success” if it is vacant next Saturday; we call it “failure” if it is occupied.

Assuming that next Saturday is a random day, X, the number of vacant rooms on that day is
approximately Poisson with rate A = 35. Thus the desired probability is

29 35 i
e > (35)
1— E — = 0.823.

1.
i=0

6_10'5(10.5)10 _

10!
0.124. Therefore, the desired probability is (0.124)* = 0.0154.
et )3
P(X =1) = P(X = 3) implies that e A = Al from which we get A = V6. The answer
-6 \/6 5 '
e
is # = 0.063.

e (n/k)°

ol = ¢k So the answer is

4
(2)e2n/k(1 — ek,

. Let X be the number of times the randomly selected kid has hit the target. We are given that

—1~0

P(X = 0) = 0.04; this implies that ¢ =0.040ore* =0.04. Sor = —In0.04 = 3.22.

Now

0!

e A

PX>2)=1-PX=0—-PX=1)=1-0.04 - T

=1-0.04 —(0.04)(3.22) = 0.83.

Therefore, 83% of the kids have hit the target at least twice.



10.

11.

12.
13.

14.

15.

Section 5.2 Poisson Random Variables 95

First we calculate p;’s from binomial probability mass function with n = 26 and p = 1/365.
Then we calculate them from Poisson probability mass function with parameter A = np =
26/365. For different values of i, the results are as follows.

i | Binomial Poisson
0] 093115 0.93125
1| 0.06651 0.06634
2
3

0.00228  0.00236
0.00005  0.00006.

Remark: In this example, since success is very rare, even for small n’s Poisson gives good
approximation for binomial. The following table demonstrates this fact for n = 5.

i | Binomial Poisson
0| 09874 0.9864
1] 0.0136 0.0136
2 | 0.00007 0.00009.

Let N (t) be the number of shooting stars observed up to time ¢. Let one minute be the unit of
time. Then {N(t) > O} is a Poisson process with A = 1/12. We have that

e0/12(30/12)}
3!

P(N(30) =3) = = 0.21.

P(NQ2)=0)=¢7? =% =10.00248.

Let N (¢) be the number of wrong calls up toz. If one day is taken as the time unit, itis reasonable
to assume that {N @®:t> 0} is a Poisson process with A = 1/7. By the independent increment
property and stationarity, the desired probability is

P(N()=0)=e""=0.87.

Choose one month as the unit of time. Then A = 5 and the probability of no crimes during
any given month of a year is P(N 1) = 0) = ¢~ = 0.0067. Hence the desired probability is

12
( ) )(0.0067)2(1 —0.0067)'° = 0.0028.

Choose one day as the unit of time. Then A = 3 and the probability of no accidents in one day
is

P(N(1) =0) = ¢ =0.0498.
The number of days without any accidents in January is approximately another Poisson random
variable with approximate rate 31(0.05) = 1.55. Hence the desired probability is
e 193(1.55)3 N
3! -

0.13.
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17.

18.

19.
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Choosing one hours as time unit, we have that A = 6. Therefore, the desired probability is

P(N(0.5) = 1and N(2.5) = 10) = P(N(0.5) = 1 and N(2.5) — N(0.5) = 9)
= P(N(0.5) = 1)P(N(2.5) — N(0.5) =9)
= P(N(0.5) =1)P(N(2) =9)

318_3 1298_12

. ~ (0.013.
1! 9!

The expected number of fractures per meter is A = 1/60. Let N (¢) be the number of fractures
in ¢ meters of wire. Then

/% (1 /60)"

P(N(t) =n) = o

n=0,1,2,....

In a ten minute period, the machine turns out 70 meters of wire. The desired probability,
P(N(70) > 1) is calculated as follows:

P(N(70) > 1) =1 — P(N(70) = 0) — P(N(70) = 1)
— 1= o700 _ 10 0060 1,305,
60
Let the epoch at which the traffic light for the left—turn lane turns red be labeled ¢+ = 0. Let
N (t) be the number of cars that arrive at the junction at or prior to ¢ trying to turn left. Since
cars arrive at the junction according to a Poisson process, clearly, {N @®:t> O} is a stationary
and orderly process which possesses independent increments. Therefore, {N ®:t > 0} is
also a Poisson process. Its parameter is given by A = E[N(l)] = 4(0.22) = 0.88. (For a
rigorous proof, see the solution to Exercise 9, Section 12.2.) Thus

e~ 0891 (0.88)¢]"
n!

P(N(@t)=n) =

and the desired probability is

e~ 0383[(0.88)3]"

~ (0.273.
n!

3
P(NG) z4)=1-)"

n=0

Let X be the number of earthquakes of magnitude 5.5 or higher on the Richter scale during the
next 60 years. Clearly, X is a Poisson random variable with parameter . = 6(1.5) = 9. Let A
be the event that the earthquakes will not damage the bridge during the next 60 years. Since
the events {X =i},i =0, 1,2,..., are mutually exclusive and Uioil{X = i} is the sample
space, by the Law of Total Probability (Theorem 3.4),

-9 gi

o0 o0
P(A) =) PAIX=DP(X=i)=) (10015 ° -
i=0 i=0 :
o0 -9 gi 00 i
99 0.985)(9
= 2(0.985)’ ¢ —= e Z w = ¢ %09890) _ () 873716.
! l!

i=0 i=0
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20. Let N be the total number of letter carriers in America. Let n be the total number of dog bites

21.

22,

letter carriers sustain. Let X be the number of bites a randomly selected letter carrier, say Karl,
sustains on a given year. Call a bite “success,” if it is Karl that is bitten and failure if anyone
but Karl is bitten. Since the letter carriers are bitten randomly, it is reasonable to assume that
X is approximately a binomial random variable with parameters n and p = 1/N. Given that
n is large (it was more than 7000 in 1983 and at least 2,795 in 1997), 1/N is small, and n/N is
moderate, X can be approximated by a Poisson random variable with parameter A = n/N. We
know that P(X = 0) = 0.94. This implies that (¢e=* - 1°) /0! = 0.94. Thus e~* = 0.94, and
hence A = —1n0.94 = 0.061875. Therefore, X is a Poisson random variable with parameter
0.061875. Now

PX>1) 1-PX=0)—-PX=1)
PX>1 1—P(X=0)

PX>1|X=>1)=

1 —-0.94 —0.058162
= 0.94 — 0.0581625 = 0.030625,
1-0.94

where
-\, )\’1

P(X=1)= eT = re™* = (0.061875)(0.94) = 0.0581625.

Therefore, approximately 3.06% of the letter carriers who sustained one bite, will be bitten
again.

—nM/N M 0
We should find #n so that 1 — ¢ (nM/N)

> o. This givesn > —N In(1 — «)/M. The

0!
answer is the least integer greater than or equal to —N In(1 — o)/ M.
(a) For each k-combination ni, n,, ..., ny of 1,2, ..., n, there are (n — 1)"~* distributions
with exactly k matches, where the matches occur at ny, n, ..., ng. This is because each of

the remaining n — k balls can be placed into any of the cells except the cell that has the same

number as the ball. Since there are Z k-combinations ny, n», ...,n;yof 1,2, ..., n, the total

number of ways we can place the n balls into the n cells so that there are exactly k£ matches is
n (o

(k) (n — 1)" . Hence the desired probability is BT E—

(b) Let X be the number of matches. We will show that lim,,_, o, P(X = k) = e~!/k!; that is,
X is Poisson with parameter 1. We have

n
(l’l - l)n_k n
. . k . n\(n-—1 —k
lim P(X =%k)= lim —— = lim n—1)
n— 00 n— 00 n" n—oo \ k n

1 o1 .
=1lm—-— —— (l—=)  —— = —¢".
n—oo k! (n —k)! n (n—1DkF k!
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1\" |
Note that lim,, ,o [ 1 — — = ¢!, and lim n = 1, since by Stirling’s
n n—oo (n —k)! (n — 1)k

formula,

n! . N2 -n" e
= lim

nlinc}o n—k)!'mn—Dk noco S2n(n—k) - (n—k)yrk.e~0=h . (n — 1)k

) n n" n—kk 1
= lim . . R
n>oco\n—k (n—k) (n—1Dk ek

n — k" k n
where " — ¢* because (n ) =(1=-=) = e~
(n—k) n" n

23. (a) The probability of an even number of events in (7,  + «) is

— @) —(2n)! 24~ n 24 n
1 1 1
— —ak Aa Y-l = (1 —2
¢ [2 tae ] e

(b) The probability of an odd number of events in (¢, t + «) is

e O S () ol ZL @) 1 (—ha)"
; G = ;m-l)!_ ' [EX:; ] 5; n! |

_ e—/\a[lem _ le—xa] _ 1(1 _ e—zxa).
2 2 2

24. We have that

P(Ny(t) = n, Nx(t) = m)

P(Ni(1) =n, Ny(t) =m | N(t) =i)P(N(1) = i)
=0

P(Ni(t)=n, Ny(t) =m | N(t) =n+m)P(N(t) =n+m)
n+m\ , . e M)t
n )p =P =

Therefore,

e¢]

P(N\(t) =n) =Y P(Ni(t) = n, Ny(t) = m)

m=0
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26.
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pnqg

(" ) 0y — pyn . EOD™
p Py =
2 (n 4+ m)!
_ i (n +m) (1 gy 0 Gy
2 p (n + m)!
B i e P =M U=p) ()t p)n [M(l - P)]m
Z n!'m!
ey e i
- n! Z m!

m=0
e MP(Atp)"
n! '
It can easily be argued that the other properties of Poisson process are also satisfied for the
process {Nl ®:t> O}. So {Nl @®:t> 0} is a Poisson process with rate Ap. By symmetry,
{Nz(t) > O} is a Poisson process with rate A(1 — p).

Let N(t) be the number of females entering the store between 0 and . By Exercise 24,
{N t)y:t> O} is a Poisson process with rate 1 - (2/3) = 2/3. Hence the desired probability is

e 15 [152/3)]7
15!

= 0.035.

P(N(15) =15) =

(a) Let A be the region whose points have a (positive) distance d or less from the given tree.
The desired probability is the probability of no trees in this region and is equal to

—ad?
e Amd ()\.7'[(12)0 3 e—kndz
0! B ‘

(b) We want to find the probability that the region A has at most n — 1 trees. The desired

quantity is
n—1

i e—knd (k]‘[d )z

i=0

p@) = (A/i)p(i — 1) implies that for i < A, the function p is increasing and for i > X it is
decreasing. Hence i = [A] is the maximum.

OTHER DISCRETE RANDOM VARIABLES

. Let D denote a defective item drawn, and N denote a nondefective item drawn. The answer

isS$={NNN,DNN,NDN,NND,NDD, DND, DDN}.
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.S = {ss, fss,sfs,sffs, ffss, fsfs,sfffs, fsffs, fffss, ffsfs,...}.

L@ 1/(1/12) = 12. (b) (%)2<i) ~ 0.07.

12

. @ A=pg)'pg. () 1/pg.

(Z) (0.2)*(0.8)° ~ 0.055.

. (a) (0.55)°(0.45) ~ 0.023.  (b) (0.55)3(0.45)(0.55)3(0.45) ~ 0.0056.

QWG =0

. The probability that at least n light bulbs are required is equal to the probability that the first

n — 1 light bulbs are all defective. So the answer is p"~!.

We have
n— 1 X(l )n—x
P(N=n) x—lp P _x
P(X = X) B n X n—x
( )p I-=p
X
Let X be the number of the words the student had to spell until spelling a word correctly. The

random variable X is geometric with parameter 0.70. The desired probability is given by
4
P(X <4)= (0.30)"'(0.70) = 0.9919.

i=1

The average number of digits until the fifth 3 is 5/(1/10) = 50. So the average number of
digits before the fifth 3 is 49.

The probability that a random bridge hand has three aces is

()(io)
3/\10
= ———> =0.0412.
5 0.0
13
Therefore, the average number of bridge hands until one has three acesis 1/p = 1/0.0412 =
24.27.

Either the (N + 1)st success must occur on the (N + M — m + 1)st trial, or the (M + 1)st
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failure must occur on the (N + M — m + 1)st trial. The answer is
N+ M—m)\ /1\N+M—m+1 N+ M—m\ /1\N+M—m+1
N (5) * ( M <§) '

We have that X + 10 is negative binomial with parameters (10, 0.15). Therefore, Vi > 0,

PX=i)=PX+10=i+10) = (i ;9)(0.15)'0(0.85)i.

Let X be the number of good diskettes in the sample. The desired probability is

(10) (90) (90) (10)
1 9 10/\ 0
PX>9)=PX=9+PX=10)= 100 + 100 ~ 0.74.
10 10
We have that 560(0.35) = 196 persons make contributions. So the answer is
(364) (364) (196)
15 14 1
1-— S60\ 560 = 0.987.

15 15

The transmission of a message takes more than ¢ minutes, if the first [£/2] 4 1 times it is sent

it will be garbled, where [t /2] is the greatest integer less than or equal to ¢ /2. The probability
of this is pl!/21+1,

The probability that the sixth coin is accepted on the nth try is

(" ; 1)(0.10)6(0.90)"6.

Therefore, the desired probability is

49

* /n—1 n—1
0.10)°(0.90)" % =1 — ( )0.1060.90 =6 — (.6346.
;0( 5 )( )°(0.90) 2:; s 010090

The probability that the station will successfully transmit or retransmit a message is (1— p)V 1.
This is because for the station to successfully transmit or retransmit its message, none of the
other stations should transmit messages at the same instance. The number of transmissions
and retransmissions of a message until the success is geometric with parameter (1 — p)V~!.
Therefore, on average, the number of transmissions and retransmissions is 1/(1 — p)V~1.
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20. If the fifth tail occurs after the 14th trial, ten or more heads have occurred. Therefore, the fifth
tail occurs before the tenth head if and only if the fifth tail occurs before or on the 14th flip.
Calling tails success, X, the number of flips required to get the fifth tail is negative binomial
with parameters 5 and 1/2. The desired probability is given by

;X:;P(X —n) = é (" . 1) (%)5(%)_5 ~ 0.91.

21. The probability of a straight is
10(4°) — 40
52
5
Therefore, the expected number of poker hands required until the first straight is
1/0.003924647 = 254.80.

= 0.003924647.

22. (a) Since
PX=n—-1) 1

PX=n)  1—p

P (X = n) is a decreasing function of n; hence its maximum is at n = 1.

> 1,

(b) The probability that X is even is given by

S P =2 =S p(l - i PP lop
k;‘( ) kX_;m p) el

(c) We want to show the following:

Let X be adiscrete random variable with the set of possible values {1, 2,3... . }.
If for all positive integers n and m,

PX>n+m|X >m)=P(X >n), (17

then X is a geometric random variable. That is, there exists a number p,
0 < p < 1, such that

P(X =n)=p(—p) " (18)

To prove this, note that (17) implies that for all positive integers n and m,

P(X >n+m)

= P(X > n).
P(X > m)

Therefore,

P(X>n+m)=PX >n)P(X > m). (19)
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Let p = P(X = 1); using induction, we prove that (18) is valid for all positive integers n. To
show (18) for n = 2, note that (19) implies that

PX>2)=PX>1HP(X >1).
Since P(X > 1)=1— P(X =1) =1 — p, this relation gives
1-PX=D)-PX=2)=(-p?>

or
l—p—P(X=2)=(-p)
which yields
P(X =2)=p(—p),

so (18) is also true for n = 2. Now assume that (18) is valid for all positive integers i, i < n;
that is, assume that
PX=i)y=p(l—p)'", i=<n (20)

We will show that (18) is true for n + 1. The induction hypothesis [relation (20)] implies that

- (1-py

=1-010-=p)".
oy 0P

PX<m=) PX=i)=) pll—p' ' =p
i=1 i=1

So P(X > n) = (1 — p)" and, similarly, P(X > n — 1) = (1 — p)"~'. Now (19) yields
PX>n+1)=PX>nP(X >1),
which implies that
l1-PX<n—-PX=n+1)=>0-p)"1-Dp).
Substituting P(X <n) =1 — (1 — p)” in this relation, we obtain
P(X=n+1)=pl-p)Q,
which establishes (18) for n + 1. Therefore, we have what we wanted to show.

Consider a coin for which the probability of tails is 1 — p and the probability of heads is p.
In successive and independent flips of the coin, let X; be the number of flips until the first
head, X, be the total number of flips until the second head, X3 be the total number of flips
until the third head, and so on. Then the length of the first character of the message and X
are identically distributed. The total number of the bits forming the first two characters of
the message and X, are identically distributed. The total number of the bits forming the first
three characters of the message and X3 are identically distributed, and so on. Therefore, the
total number of the bits forming the message has the same distribution as X. This is negative
binomial with parameters k£ and p.
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Let X be the number of cartons to be opened before finding one without rotten eggs. X is not a
geometric random variable because the number of cartons is limited, and one carton not having
rotten eggs is not independent of another carton not having rotten eggs. However, it should be

. . . . 1000 1200 )
obvious that a geometric random variable with parameter p = 12 / o )= 0.11091is

a good approximation for X. Therefore, we should expect approximately 1/p = 1/0.1109 =
9.015 cartons to be opened before finding one without rotten eggs.

Either the Nth success should occur on the (2N — M)th trial or the Nth failure should occur
on the (2N — M)th trial. By symmetry, the answer is

N N O

The desired quantity is 2 times the probability of exactly N successes in (2N — 1) trials and
failures on the (2N)th and (2N + 1)st trials:

22N—1 lN1 1\ @N-D-N { 1\2 2N — 1\ /1\2N
v )@ =) 03 =0 )G)
Let X be the number of rolls until Adam gets a six. Let Y be the number of rolls of the die

until Andrew rolls an odd number. Since the events (X = i), 1 <i < oo, form a partition of
the sample space, by Theorem 3.4,

P(Y>X):§:P(Y>X|X:i)P(X:i):iP(Y>i)P(X:i)

where P(Y > i) = (1/2)" since for Y to be greater than i, Andrew must obtain an even number
on each of the the first i rolls.

The probability of 4 tagged trout among the second 50 trout caught is
50\ (n —50
4 46
Dn=—""7—~ "
n
(5

It is logical to find the value of n for which p, is maximum. (In statistics this value is called
the maximum likelihood estimate for the number of trout in the lake.) To do this, note that
pi_ (n— 3500
Pn—1 B n(” - 96) ‘
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Now p, > p,— if and only if (n — 50)% > n(n —96), or n < 625. Therefore, n = 625 makes
pn maximum, and hence there are approximately 625 trout in the lake.

(a) Intuitively, it should be clear that the answer is D/N. To prove this, let £; be the event of
obtaining exactly j defective items among the first (k — 1) draws. Let A; be the event that the
kth item drawn is defective. We have

D N—-D
k—1 k-1 D—j [JAVES Y

P(Ak)=ZP(Ak|Ej)P(Ej):ZN_k+1' N
j=0 j=0 ( )
k—1

Now
(D D—1
o i(%)=o("7")
J J
and
(N —k+1) Nyl
k—1) " \k—-1)
Therefore,
D D -1 N —-D D -1 N-—-D
M N -1 TN < N-—1 A
j=0 N j=
k—1 k—1
where

D -1 N-D
‘ N —1 -
J=
k—1
D—1 N-D
j k—1—j/ . .. . .
N1 is the probability mass function of a hypergeometric random
k—1
variable with parameters N — 1, D — 1, and k — 1.
(b) Intuitively, it should be clear that the answer is (D — 1)/(N — 1). To prove this, let A; be
as before and let F; be the event of exactly j defective items among the first (k — 2) draws.
Let B be the event that the (k — 1)st and the kth items drawn are defective. We have

since

k=2

P(B)=Y_P(B| Fj)P(F))

j=0
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(D)2)
= D-j)(D—j—1) J)\k=2—j

(N—k+2)(N—k+1) ( N )
k—2

=~

J

DD — 1 D -2 N —-—D
(2 DD )< J )(k—z—j>

N -2
j=0 N(N_l)(k—Z)

(D—2)< N-—D

_ DID-1) ¢ j k—2—j>

_N(N—l)jZ:: (N—Z)
k=2

Il
o

[\S]

_D(D-1)
NN =1

Using this, we have that the desired probability is

D(D—-1)
_ P(AtA)  P(B)  N(N—1) D-—1
PR = A TPy T T D N1
N

REVIEW PROBLEMS FOR CHAPTER 5

1. Z (21_0) (0.25)1(0.75)*°~" = 0.0009.

i=12
2. N(t), the number of customers arriving at the post office at or prior to ¢ is a Poisson process

with A = 1/3. Thus

6 6 —(1/3)30 i
P(NGO) <6) =Y P(NGO) =i) =3 [(1/3)30]

i=0 i=l

= 0.130141.

i!

8
3. 4. — =1.067.
30

2

4. Z <1i2) (0.30)(0.70)'2~" = 0.253.

i=0
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G) (0.18)%(0.82)* = 0.179.

1999 .

Y (;: 11) (1()%)2(%)1;2 — 0.59386.

i=2

(160) ( 200 )
12 . .
3 VANl VR YV

_ 360
i=7
< 12)

. Call a train that arrives between 10:15 Am. and 10:28 aA.m. a success. Then p, the probability

of success is
28 — 15 B 13
60 60

p:

Therefore, the expected value and the variance of the number of trains that arrive in the given
period are 10(13/60) = 2.167 and 10(13/60)(47/60) = 1.697, respectively.

. The number of checks returned during the next two days is Poisson with A = 6. The desired

probability is
4 —6¢i
6
P(X<4)=) > =0285.

l!
i=0

Suppose that 5% of the items are defective. Under this hypothesis, there are 500(0.05) = 25
defective items. The probability of two defective items among 30 items selected at random is

(25) (475)
2 28
00N = 0.268.
30
Therefore, under the above hypothesis, having two defective items among 30 items selected

at random is quite probable. The shipment should not be rejected.

N is a geometric random variable with p = 1/2. So E(N) = 1/p = 2, and Var(N) =
(1—p)/p*=[1-1/2]/1/4) =2.

() (2)=oser

The number of times a message is transmitted or retransmitted is geometric with parameter
1 — p. Therefore, the expected value of the number of transmissions and retransmissions of a
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message is 1/(1 — p). Hence the expected number of retransmissions of a message is

Call a customer a “success,” if he or she will make a purchase using a credit card. Let E
be the event that a customer entering the store will make a purchase. Let F be the event that
the customer will use a credit card. To find p, the probability of success, we use the law of
multiplication:

p=P(EF)= P(E)P(F | E) = (0.30)(0.85) = 0.255.

The random variable X is binomial with parameters 6 and 0.255. Hence

P(X=i)= (?) (0.255) (1 —0.255)°", i=0,1,... 6.

Clearly, E(X) = np = 6(0.255) = 1.53 and

Var(X) = np(1 — p) = 6(0.255)(1 — 0.255) = 1.13985.

(1 8) ( 10 >
5
i J\S5—i
Z o =0.772.
i=3
5

By the formula for the expected value of a hypergeometric random variable, the desired quantity
is (5 x 6)/16 = 1.875.

We want to find the probability that at most 4 of the seeds do not germinate:

4

> (41_0) (0.06) (0.94)*~ = 0.91.

i=0

2
20 . 4

1—2 7 )(0.06)(0.94)2~ = 0.115.
i=0 !

Let X be the number of requests for reservations at the end of the second day. It is reasonable
to assume that X is Poisson with parameter 3 x 3 x 2 = 18. Hence the desired probability is

23 23

PX>24)=1-) PX=i)=1-)_

i=0 i=0

—18 1 i
ﬂ:1—0.8988920.10111.
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Suppose that the company’s claim is correct. Then the probability of 12 or less drivers using

seat belts regularly is
12

20 . .
§ j( ; )(0.70)'(0.30)20—1 ~ (0.228.
l
=0

Therefore, under the assumption that the company’s claim is true, it is quite likely that out of
20 randomly selected drivers, 12 use seat belts. This is not a reasonable evidence to conclude
that the insurance company’s claim is false.

2999

(a) (0.999)°°(0.001)! = 0.000368. (b) ( )

)(0.001)3(0.999)2997 = 0.000224.

Let X be the number of children having the disease. We have that the desired probability is
> (0.23)%(0.77)?
P(X=3 \3)" ’
PX>1)  1—(0.77)7

@ () G wGE)

Let n be the desired number of seeds to be planted. Let X be the number of seeds which
will germinate. We have that X is binomial with parameters n and 0.75. We want to find the
smallest n for which

PX=3]X=1= = 0.0989.

P(X >5) > 0.90.

or, equivalently,
P(X <5) <0.10.

That is, we want to find the smallest n» for which

4

n i n—i
; (i>(0.75) (.25)"~ < 0.10.

By trial and error, as the following table shows, we find that the smallest n satisfying
P(X <5) <0.101is 9. So at least nine seeds is to be planted.

>iso (1)(0.75) (:25)"
0.7627
0.4661
0.2436
0.1139
0.0489

© 00 J O L S
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Intuitively, it must be clear that the answer is k/n. To prove this, let B be the event that the ith
baby born is blonde. Let A be the event that k of the n babies are blondes. We have

p- (n i 1)19"‘(1 —p)"* (n - 1)
P(B|A)=P(AB)= k=1 = k=1 :E.

P(A) n\ & n—k n n
(k>p (I-=p) <k)

The size of a seed is a tiny fraction of the size of the area. Let us divide the area up into many
small cells each about the size of a seed. Assume that, when the seeds are distributed, each
of them will land in a single cell. Accordingly, the number of seeds distributed will equal
the number of nonempty cells. Suppose that each cell has an equal chance of having a seed
independent of other cells (this is only approximately true). Since X is the average number of
seeds per unit area, the expected number of seeds in the area, A, is AA. Let us call a cell in
A a “success” if it is occupied by a seed. Let n be the total number of cells in A and p be
the probability that a cell will contain a seed. Then X, the number of cells in A with seeds
is a binomial random variable with parameters n and p. Using the formula for the expected
number of successes in a binomial distribution (= np), we see that np = LA and p = LA /n.
As n goes to infinity, p approaches zero while np remains finite. Hence the number of seeds
that fall on the area A is a Poisson random variable with parameter AA and

ef)LA ()\’A)l

P(X=i)=—

Let D/N — p, then by the Remark 5.2, for all n,
()G -)
X n—x n
~ 7 N " 7 X 1 _ nfx'
N (x)p I=p
n
Now sincen — ocand nD/N — A, n is large and np is appreciable, thus

n X n—x e*k)\‘x
prd=pT N —
X X




Chapter 6

C@Hf{iﬂ'@l@us Rande
Variab]l@s

6.1

-(a)f(x)=[x3 r=

15
. (A P(X <1.)) :/ —dx = —.
1

PROBABILITY DENSITY FUNCTIONS

o0
. (a)/ ce ¥dx=1= c=23.
0

1/2
b)PO<X<1/2)= f 3¢ ¥dx=1—e3?~0.78.
0

— > 4
0 x<4
(b) P(X <5)=1-(16/25) =9/25,
P(X >6) =16/36 =4/9,
PG <X =<7 =[1-(16/49)]—[1—(16/25)] =0.313,
P(1<X<35=0-0=0.

x> 3x?

2 2
.(a)/ ctx — 12 —x)dx = 1 =>c[——+——2x]1=1=>c=6.
1

3 2

(b)F(x):/ 6(x —1)2—x)dx, 1 <x < 2. Thus
1

0 x <1
Fx)={-2x349x2—12x+5 1<x<2
1 x> 2.

(©) P(X < 5/4) = F(5/4) = 5/32,
PB/2<X<2)=FQ2)—F3/2)=1-(1/2)=1/2.
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1.252
/ 2 s 3
M P1l<X<125|X<15="0— " _7

15 T 2/3° 5
—de
1 X

1
= [c-arcsinx] = l=c=1/m.

1
c
(a)/ ——dx =
—14/1 —x2
(b)For -1 <x < 1,

x 1 1 1
F(x):/ ———dx = —arcsinx + —.
17/ 1 — x2 b4 2
Thus
0 x < —1
1 . 1
F(x)={—arcsinx+- —-1<x<1
T 2
1 x> 1.

. Since A(x) > 0 and

S . 1 o _ 1 ~ B
[ it | Twd= gl - Fel=t

h is a probability density function.

. (a) Let F be the distribution function of X. Then X is symmetric about « if and only if for all

x,1 — F(a + x) = F(x — x), or upon differentiation f(x + x) = f (¢ — x).

(b) f(a+x) = f(a — x) ifand only if (@ — x — 3)? = (& + x — 3)2. This is true for all x, if
and only if ¢ — x —3 = —(«@ + x — 3) which gives @ = 3. A similar argument shows that g
is symmetric about o = 1.

o
. (a) Since f is a probability density function, / f(x)dx = 1. But

o) 0 0 0
/ fx)dx = / k(2x — 3x%) dx = k/ (2x — 3x%) dx = k[ﬁ - x3] =2
—00 1 -1 -

So—-2k=1ork=—-1/2.

(b) The loss is at most $500 if and only if X > —1/2. Therefore, the desired probability is

1 o 1 0 3
P<XZ ——) =/ ——(2x—3x2)dx=——[x2—x3] =—.
2 —i2 2 2 -12 16
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oo

1 1
9. P(X > 15 = / —e /1 dx = ~. Thus the answer is
15 15 e

10. Since «f + Bg > 0 and

/ [af(x)+ﬂg(x)]dx=a/ f(x)dx+ﬁ/ e dx—atp=1,

o0

af + Bg is also a probability density function.

11. Since F(—o00) = 0 and F(oco) = 1, We have that

a+B(—1/2) =0
o+ B(r/2) = 1.

Solving this system of two equations in two unknown, we obtain« = 1/2 and 8 = 1/m. Thus

f(X):F(X):m, -0 <X < OQ.

6.2 DENSITY FUNCTION OF A FUNCTION OF A RANDOM VARIABLE

1. Let G be the distribution function of Y; for —8 < y < 8,

AR 1 1
GO =P =3) =PI =) = PX =35 = [ g =105+,
)
Therefore,
0 y < —8
1 1
Gy =1-Jy+=- —-8<y<38
4 2
1 y > 8.
This gives
2B _8<y<8

g =Gy =112
0 otherwise.
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Let H be the distribution function of Z; for 0 < z < 16,

4

Vi 1
H(z)=P(X*<2)= P(-Jz<x = 2) =/ Sdx = Sz
_3/34 2
Thus
0 z<0
1
H(z) = E(‘/E 0<z<16
1 z > 16.
This gives
1
—z73* 0<z<16
h(z)=H'(z) =18
0 otherwise.

. Let G be the probability distribution function of Y and g be its probability density function.

Fort > 0,
G(t) = P(eX <1) = P(X <Int) = F(In1).

Fort <0, G(t) = 0. Therefore,
1

g =60 =11
0 t <0.

fdnt) t>0

. The set of possible values of X is A = (0, 00). Leth: (0, 00) — Rbedefinedby h(x) = x4/x.

The set of possible values of /1 is B = (0, c0). The inverse of & is g, where g(y) = y*/3. Thus
g'(y) =2/(3%y) and hence

2 23
e Y,
3y
To find the probability density function of e X, leth: (0, 00) — R be defined by h(x) = e *;

h is an invertible function with the set of possible values B = (0, 1). The inverse of & is
g(z) = —Inz. So g'(z) = —1/z. Therefore,

fr(y) =

y € (0, 00).

f2(2) = "1

1
__‘zz-—=1, z€(0,1);
<

0, otherwise.
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. The set of possible values of X is A = (0, c0). Let i: (0, 00) — R be defined by h(x) =
log, x. The set of possible values of 4 is B = (—00, 00). h is invertible and its inverse is
g(y) = 2%, where g’(y) = (In2)2”. Thus

Fr» =3¢3@) |22 = 3227 3@), y ¢ (—o00, 00).

. Let G and g be the probability distribution and the probability density functions of Y, respec-
tively. Then

Gy)=PY <y)=P(VX2<y)=P(X <yJy)
Yy
:/ re Mdx =1—e VY y €0, 00).
0

So
, 3n
g =G'0) = —/ye WYy >0

0, otherwise.

. Let G and g be the probability distribution and density functions of X2, respectively. For
t >0,
Gt)=P(X*<t)=P(—vi <X <t)=Ft)—F(=1).
Thus
1 1 1
N=G'(t)=—= 1+ ——=f(—=Vt)= —= 1)+ f(=v1)|, t=0.
80 =G6'0 = [V + 5 JVD = 5| 1D + (D)

Fort <0, g(r) =0.

. Let G and g be the distribution and density functions of Z, respectively. For —7/2 < z < 7/2,
tan z 1
G(z) = Parctan X < z) = P(X <t = —d
(2) (arctan X < z) (X <tang) /_oo 2t X

1 tanz 1 1
= [— arctanx] =—Z+ =.
T 2

—00 T
Thus
1 T T
gy=17 2 2
0 elsewhere.

. Let G and g be distribution and density functions of Y, respectively. Then
GH)=PY <nH=PY<t|X<DPX<D+PY<t|X>DHPX>1)

1
:P(X§t|X§1)P(X§1)+P<Xz;‘X>1>P(X>1).
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For t > 1, this gives

1 00
G(t)zl-/ e_)‘dx—i—l-f e “dx =1.
0 1

For 0 < ¢ < 1, this gives

1 t 00
GH)=PX =0+ P(X > ;) =/ e"dx+/ eFdx=1—e"+e V"
0 1/t

Hence
0 <0
Gt)y=3{1l—e"+e " 0<t<1
1 t>1.
Therefore,
1
e_t—i——ze_l/’ 0<t<l1
gt)=G'(t) = 4
0 elsewhere.

EXPECTATIONS AND VARIANCES

32/x3 x>4

. The probability density function of X is f(x) = Thus

0 x < 4.
> 32
(a) E(X) :/ —zdx = 8.
4 X

(b) E(X?) = / ?;—2 dx = 00; 50 Var(X) = E(X2) — [E(X)]” does not exist.
4

2
. @ EX) = 6/ (—x3 +3x* = 2x)dx = %
1

2 23 23 9 1 1
(b) E(X?) = 6/ (—x*+3x3—2xY)dx = =;soVar(X) = ——> = —, andoy = ——.
. 10 10 4 20 V20

. The standardized value of the lifetime of a car muffr manufactured by company A is

(4.25-5)/2 = —0.375. The corresponding value for company B is (3.75—4)/1.5 = —0.167.
Therefore, the mufélr of company B has performed relatively better.

o0 oo
E(e¥) = / e*(Be ) dx = f 3¢ dx = 3/2.
0

0
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1

X
5. E(X) = ——— dx = 0, because the integrand is an odd function.
1w/ 1 — x2 &
6. Let f be the probability density function of Y. Clearly,
K e
—e Kl »/A —00 <y <a
f) =F(y=
0 y > a.
Therefore,
ko ka—yya k asal A kyja A )/ A ¢ A
E(Y)=/Oozye Y dy:ze Eye’ —k—ze} 7m=a—z.

7. Let H be the distribution function of C; then
t—32 t—32
P(F§t)=P(C§ ):H( )
1.8 1.8

Hence the probability density function of F is

Gr=n=on(2) = ().

The expected value of F is given by

oo

E(F)=18E(C)+32 = 1.8/ xh(x)dx + 32.

—00

22Inx . 2
8. ElnX) = 5—dx. To calculate this integral, let U = Inx, dV = 1/x7, and use
1 X
integration by parts:

/2 2Inx , _ 2Inx
1

2 2 2
—/ ——dx=1-1n2 = 0.3069.
x2 X 1

2
1 X

9. The expected value of the length of the other side is given by
4
E(V81 - Xx2) = / V81 —x2. %dx.
2

Letting u = 81 — x2, we getdu = —2xdx and

71
E(vV8l —X?) = % Vudu ~ 8.4.

65



118

10.

11.

12.

13.

Chapter 6 Continuous Random Variables

*1
E(X) = / Exe*‘xl dx = 0, because the integrand is an odd function. Now

—00
o0 1 oo
E(X? = / —x2e Wax = / x2e ¥ dx
—00 2 0

since the integrand is an even function; applying integration by parts to the last integral twice,
we obtain E(X?) = 2. Hence Var(X) =2 — 0> = 2.

Note that o e 5 oo "

E(1X]) =/ T ax= —/ _ X ix
oo (1 + x2) 7 Jo (1+x2)

since the integrand is an even function. Now for 0 < o < 1,

00 x@ 1 X% 00 X«
dx = d —dx.
/0 1+ x2 o /0 1+ x2 x+/1 1+ x2 o

Clearly, the first integral in the right side is convergent. To show that the second one is also
convergent, note that.

x* x* 1
< — = .
1+x2 7 x2 x>
Therefore,
o x * 1 1 oo 1
FY AN N
. 1 4x2 | x2e (¢ — Dxl—> 1y l—«
Foroa > 1,

00 o 00 « 00 1 00
/ a Z/ a dx 2/ al dx = [—ln(l +x2)] = 0.
0 1+x2 1 1+X2 1 1+X2 2 1

[e¢] x()é
So / —— dx diverges.
0 1 + )C2

By Remark 6.4,

E(X) = /OOP(X > t)dt = /Oo(ae_h -|-13e_“[)dl‘ = @ _|_E.
0 0 Au

o0

. . .. c > ¢
(a) c; is an arbitrary positive number because Vcy, / —12 dx =1.Forn > 1, / _dx =
X e

1
o xn+

1 implies that ¢, = n="/®=D,

- 00 ifn =1
0 EC) = [ Sax =
o X n@=-/=D/(n 1) ifn > 1.

. 1
(© P(Z, <t)= P(InX, <) = P(X, <¢') = / o dx = —[— — —t], where
e X" n




14.

15.

Section 6.3 Expectations and Variances 119

¢y =n V0D et g, be the probability density function of Z,,. Then g,(¢) = c,e™",

t >Inc,.
00 Cnxm+l
(d) E(X;"H) = / I dx. This integral exists if and only if m —n < —1.
xi’l

Cn

Using integration by parts twice, we obtain

1 (" L[
E(X"" = —/ "Psinxdx = 7" 4+ (n + 2)—/ 2" cos x dx
T Jo T Jo

— 7" 4 (n +2)[ —(n+ 1)l fﬂ x" sinxdx]
T Jo
="+ +2)[— ( + DEX"].

Hence
EX""Y4+m+ D0 +2EX"" =x",

Since X is symmetric about ¢, forall x € (—o0, 00), f(a+x) = f(a¢—x). Lettingy = x+«,
we have

E(X) f v () dy = / (x4 ) fx +a)dx

oo —0o0

=/Ooxf(x+oc)dx —I—oz/oo f(x+oa)dx.

o0

Now since f is symmetric about &, xf (x + «) is an odd function,

—xf(—x+a) = —[xf(x +a)].

e ¢]

X X
Therefore, / xf(x +a) = 0. Since / fx +a)dx = / f(y)dy = 1, we have
EX)=0+a-1=a. - -

To show that the median of X is o, we will show that P(X < «) = P(X > «). This also
shows that the value of these two probabilities is 1/2. Letting u = o — x, we have

P(Xfa):/a f(x)dx:/oof(a—u)du.
—00 0

Letting u = x — «, we have that

P(XZa):/mf(x)dx:/mf(u+a)du.
o 0
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Since for all u,
fla—u)= fla+u),
we have that
PX<a)=PX>a)=1/2.

By Theorem 6.3,
o] y 00
E(IX —yl) = / lx = ylf()dx = / (y=x)f(x)dx +/ (x = y)f(x)dx
— o y
y y 00 [’}
:y/ f(x)dx—f xf(x)dx—l—/ xf(x)dx—y/ f(x)dx.
—00 —00 y y
Hence
dE(IX — yl) y o
o ). J)dx +yf(y) =yf(y) —yf(y) - i Jx)dx +yf(y)
y 00
=/ f(x)dx—/ f(x)dx.
—o0 y
_dE(X —yl) . . . . .
Setting ——— = 0, we obtain that y is the solution of the following equation:

/y fx)dx = /oof(x)dx.
oo y

By the definition of the median of a continuous random variable, the solution to this equation
is y = median(X). Hence E(|X — y|) is minimum for y = median(X).

00 X 00 X 00
(a)/ I(t)dt:/ I(t)dt+/ I(t)dt:f dt+/ 0dr = X.
0 0 X 0 X

(Note that / 1 () dt is arandom variable.)
0

e e]

(b)E(X):E[/OOI(t)dt] =/OOE[I(t)]dt=/OOP(X>t)dt=/ [1— F()]dt.
0 0 0 0
(¢) By part (b),

E(X") =/ooo P(X > t)dt:/oooP(X > /t)dt

_ /0°° [1 - ()] dr =+ /Oooyr—l[l — F(n]dy.

where the last equality follows by the substitution y = /7.



18.

19.

20.

Section 6.3  Expectations and Variances

On the interval [n,n + 1),
P(IXI =n+1) < P(IX| > 1) < P(IX| = n).

Therefore,

n+1 n+1 n+l
/ P(|X|2n+1)dz§/ P(|X|>t)dt§/ P(1X| = n)dt,

or
n+1
P(IX|=n+1) < / P(IX| > t)dr < P(IX| = n).
So
S * n+1 N
ILICIEVERIED 3 R ICIEIY <3 P(x1= ).
n=0 n=0"v" =
and hence

iP(IXl >n) < E(|X]) Sl+§:P(|X| > n).

n=1 n=1

By Exercise 12,

Ex) =242
A
Using Exercise 16, we obtain
o° 2 2
E(X?) = 2/ x(@e ™ 4 Be M) dx = ;‘ n —ﬂ.
0
Hence
200 2 o 2 2a—a®> 2-PB° 2«
var() = (55 +’3) (—+é)= Il A2
A2 AW A2 w2 Al

X > Y implies that for all ¢,
P(X>1t) = P(Y >1).
Taking integrals of both sides of (21) yields,
/ P(X >1t)dt > / P(Y > t)dt.
0 0
Relation (21) also implies that
I-PX=t) = 1-PX =1),

or, equivalently,
P(X <1 = PY =0)

121

21

(22)
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Since this is true for all #, we have
P(X <-t) < P(Y <-1)

Taking integrals of both sides of this inequality, we have

/OO P(X <-1)
0

_/OOP(XS —1) > _/OOP(Yg—t)dt. (23)
0 0

A

/ P(Y < —t)dt,
0

or, equivalently,

Adding (22) and (23) yields

/OOP(X>t)dt—/ooP(X§—t)dt > /OOP(Y>t)dt—/ooP(Y§—t)dt~
0 0 0 0

By Theorem 6.2, this gives E(X) > E(Y). To show that the converse of this theorem is false,
let X and Y be discrete random variables both with set of possible values {1, 2, 3}. Let the
probability mass functions of X and Y be defined by

px(1)=0.3 px(2) =04 px(3) =0.3
py(1) =05 pr(2) =0.1 py(3) =04

We have that E(X) =2 > E(Y) = 1.9. However, since
P(X>2)=03<P(Y >2)=04,
we see that X is not stochastically larger than Y.

First, we show that lim,_, _, xP(X < x) = 0. To do so, since x — —o00, we concentrate on
negative values of x. Letting u = —¢, we have

X o (e}
xP(X <x)= x/ f@)dt =x f(—u)du = —/ —xf(—u)du.
So it suffices to show that as x — —o0, ffz —xf(—u)du — 0. Now
o o
/ —xf(—u)du 5/ uf(—u)du.
Therefore, it remains to prove that ffj uf(—u)du — 0asx — —oo. But this is true because

/OO |ul f(—u) du = /OO x| f (x) dx < oo.

e¢]
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Next, we will show that lim,_, ., x P (X > x) = 0. To do so, note that

X—>00

lim xP(X > x) = hm x/ ft)dt < hm/ tf(t)dt =0

since [ |tf ()| dt < oo.

REVIEW PROBLEMS FOR CHAPTER 6

1. Let F be the distribution function of Y. Clearly, F(y) =0ify < 1. Fory > 1,

1
1— =
1 1 y 1
) <X_y> ( _y> 1-0 y
So
1/y* y>1
f)=F() =
0 elsewhere.
2-E<X)=/ X-—dx=/ 2 =2 2o,
| x3 . x2 x|,

o 2
EX? = / - dx = 21nx‘1 = 00. So Var(X) does not exist.
1 X

1
3. E(X) = fo (6x2 — 6x%) dx = [2x3 _ §x4] -

: 6 6 .l 3
E(XZ) — / (6)63 _ 6)64) dx = [_x4 _ —XS] _
0 4 -

57 o 10°
Var(X) = 3 (1)2 1 1
ar ) =—, ox=——.
10 \2 200 X T 25
Therefore,
1 1
1 2 1 2 it
-———< + >=/ (6x — 6x%) dx
<2 245 2 25 1
NG
At IS
= 3x2—2x3] = —
[ L 55

123
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. We have that

1 e—\x\ 1 0 1
P(—2<X<1)=/ dx=—[/ exdx+/ e_xdx]
2 2 2L) 0

. Forallc > O,

o c 00
/0 1+xdx:[cln(1+x)]0 = 00.

So, for no value of ¢, f(x) is a probability density function.

. The set of possible values of X is A = [1, 2]. Leth: [1,2] — Rbedefined by h(x) = e*. The

set of possible values of eX is B = [e, ?]; the inverse of /1 is g(y) = In y, where g’(y) = 1/y.
Therefore,

4(Iny)? 4(Iny)?

— "] = 2
fry) =—5—1g) 15y 0 V€ le, e7].
Applying the same procedure to Z and W, we obtain
4(z)3 1 2z
=——|—|=— 1,4].
2@ =3 ‘2ﬁ) 150 cethdl
2(1 4+ Jw)?
= 0, 1].
Jw(w) 15w w € [0, 1]

. The set of possible values of X is A = (0, 1). Let 4: (0, 1) — R be defined by h(x) = x*.

The set of possible values of X*is B = (0, 1). The inverse of (x) = x*is g(y) = ¥y. So

1 1
gy =-y 3= . We have that
4 SVANAT
1 1
f(y)=30(4y)2(1—“y)2‘ ‘:30 y(1—y)?
v VA=Y s | =300 = I
15(1 — #y)2
= (—\/y), y € (0, 1).
2y
‘We have that |
— -1l <x<l
fx)=F(x)={7vl —x2
0 otherwise.
Therefore,
1
X
E(X) = —————dx =0
1w/ —x2

since the integrand is an odd function.
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. Clearly _, «; f; > 0. Since

[ee] n n ') n
| (Caf)war=Ya [ fowd=Ya=1
0 =1 i=1 - i=1
> ', «; f; is a probability density function.
LetU =xanddV = f(x)dx. Then dU = dx and V = F(x). Since F(x) = 1,
E(X) = / Xf(x) dx = [xF(x)]a — / F(x)dx
0 0 0
:aF((x)—/ F(x)dx:oz—/ F(x)dx
0 0

=/adx—faF(x)dx=/a[1—F(x)]dx.
0 0 0

Let X be the lifetime of a random light bulb. The probability that it lasts over 1000 hours is

®© 5% 10°
P(X > 1000) :/

1 ]00 1
1000 x3

dx:5><105[——

2x2 100 4°

Thus the probability that out of six such light bulbs two last over 1000 hours is
6 /1\2/3\*4
(3) (5) ~o3
2)\4/ \4

Since Y >0, P(Y <t)=0fort <0. Fort >0,

PY=<n=P(X|<t)=P(-t<X=<t)=PX=<0)—PX <-1)
=PX<t)—P(X<—-t)=F(t)— F(-1).

Hence G, the probability distribution function of | X| is given by

G {F(r) — F(=1) ?ft >0
0 ifr <O;

g, the probability density function of | X| is obtained by differentiating G:

f@O+ f(=t) ift>0

gm:Gm:{o ifr < 0.



Chapter 7

Sp@@iaﬂ Continuous

)isf{ributi(ms

7.1 UNIFORM RANDOM VARIABLES
1. (23 -20)/(27 — 20) = 3/7.
2. 15(1/4) =3.75.

3. Let 2:00 pMm. be the origin, then a and b satisfy the following system of two equations in two

unknown.
a+b 0
=
b — 2
b—ay
12
Solving this system, we obtain a = —6 and b = 6. So the bus arrives at a random time

between 1:54 pM. and 2:06 pM.
4. P> —4>0)=P(b >20rb < —-2)=2/6=1/3.

5. The probability density function of R, the radius of the sphere is

1 1
—— == 2<r<4
fry=14-2
0 elsewhere.
Thus
44 1
3
E(V) =/ (—m )—dr — 407.
5 \3 2

P<4 R3 36>—P(R3 27) = P(R<3) = .

6. The problem is equivalent to choosing a random number X from (0, £). The desired probability
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. Let X be a random number from (0, £). The probability of the desired event is

20 ¢
) 14 1 ¢ 1 20 3 3 1
P(mm(X,E—X)Z—):P(XZ—,Z—Xz—):P(—f)(g—): _ .
3 3 3 3 3 ? 3
180 —90 3
" 180 —60  4°

. Let X be a random point from (0, b). A triangular pen is possible to construct if and only if

the segments a, X, and b — X are sides of a triangle. The probability of this is

b—a a+b
P(a<X+(b—X),X<a+(b—X),b—X<a+X):P(T<X< : )
a+b b-—a
2 2 _a
N b b

Let F be the probability distribution function and f be the probability density function of X.
By definition,

F(x)=P(X <x)= P(tanf < x) = P(f < arctanx)

4
arctan x — <— —)

1
= 2 = —arctanx + -, —00 <X < 0OQ.
Z_(_Z> T 2
2 2
Thus |
f(_x):F/(x)Im, —_XX <X <.

Fori =0,1,2,...,n—1,

i+1 i
. . 1 - — -
P([nX]:i):P(i§nX<i+1):P<l—§X<l+ ): n_n_Z
n n 1-0 n
P([nX] = i) = 0, otherwise. Therefore, [nX] is a random number from the set

0.1,2,....n—1}.
{ }

(a) Let G and g be the distribution and density functions of Y, respectively. Since Y > 0,
G(x)=0ifx <0.Ifx >0,

Gx)=PY <x)=P(-In(1-X)<x)=P(X <1—e)

(I—e™ -0 .

e
1-0
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Thus

W=cm=1" *=°
xX) = X) =
& 0 otherwise.

(b) Let H and & be the probability distribution and probability density functions of Z, respec-
tively. Forn > 0, H(x) = P(Z <x)=0,x < 0;
Hx)=P(Z<x)=PX <Jx)=Yx, 0<x<l;

H(x) =1, if x > 1. Therefore,

h(x)=H'(x) =
0 elsewhere.

Forn <0, Hx) =P(X"<x)=0,x < 1;

o= == )=l (1))

=PX>x""y=1=-x"" x>1.

Therefore,

1 19 .
——Xxn ifx>1
h(x) = n

0 ifx < 1.

13. Cleary, E(X) = (1 + 6)/2. This implies that § = 2E(X) — 1. Now

14+6—0)>
Var(X) = E(X2) — [EX)]" = %
Therefore,
14+6\2 1+426+6?
E(X) — ( +>= TOTT
2 12
This yields,
02 +20+1
E(Xz):;.
3
So

3E(X?) —20—1=06%
Butf = 2E(X) — ; so
3E(X?) —2[2E(X) — 1] - 1=06"

This implies that
EGX?—4X +1) =6

Therefore, one choice for g(X) is g(X) = 3X? —4X + 1.
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Let S be the sample space over which X is defined. The functions X: S — Rand F: R —
[0, 1] can be composed to obtain the random variable F(X): S — [0, 1]. Clearly,

P(F(X) <t) _ 1 ifr>1
- 0 ifr<0.
Lett € (0, 1); it remains to prove that P(F (X) < t) = t. To show this, note that since F
is continuous, F(—o0) = 0, and F(c0) = 1, the inverse image of #, F~! ({t}), is nonempty.
We know that F is nondecreasing; since F is not necessarily strictly increasing, F _1({t})
might have more than one element. For example, if F is the constant # on some internal
(a,b) € (0, 1), then F(x) =t forall x € (a, b), implying that (a, b) is contained in F~'({r}).
Let
Xo = inf {x: F(x) > t}.

Then F(xp) =t and
F(x) <t ifandonlyif x < xo.

Therefore,
P(F(X) <t)=P(X <x) = F(xo) =1.

‘We have shown that

0 ifr<0
P(F(X)<t)=13t if0<r<l1
1 ifr>1,

meaning that F'(X) is uniform over (0, 1).

We are given that Y is a uniform random variable. First we show that Y is uniform over the
interval (0, 1). To do this, it suffices to show that P(Y < 1) =1 and P(Y < 0) = 0. These
[e.¢]

are obvious implications of the fact that g is nonnegative and gx)dx = 1:

—00

X

PY <1 = P(/ g(t)dt < 1) =1.

—00

P(Y<0):P(/

X
e()dt < 0) —0,

The following relation shows that the probability density function of X is g.

; / g(t)dt — 0

iPX< —iPY</ t) dt —i— _
LPXzuw=- ( =] a0 )—du [ =sw.

where the last equality follows from the fundamental theorem of calculus.
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16. Let F be the distribution function of X, then F(t) = P(X <t)isOfort < —1 and is 1 for
t >4. Let —1 <t < 4; we have that

t+1

F(l)=P(XSt)=P(5a)—15t)=P<a)§%)

1 (t+1)/5 P

5 0 5

Therefore,
0 t < —1
t+1
Foy=4""1 _1<i<4
1 t >4,

This is the distribution function of a uniform random variable over (—1, 4).

17. We have that X = n if and only if /Y = 0.y;ny3y4ys- - - , or, equivalently, if and only if,
10/Y = y1.ny3y4ys - - - . Therefore, X = n if and only if for some k € {0, 1,2,... ,9},

n n+1
k+— <10vY <k .
+ 15 = VY <k + 0

This is equivalent to

L(k+i)2<1/<L(k+

n—+ 1)2
100 10/ — 100 '

10
Therefore, the desired probability is

9
Pk 1) =7 <ok "5

k=0
1 n+1\2 1 n\2
1000 ) ~ 10k + 55) |
0[100( + 10 100 +10
20k +2n + 1
10, 000

Il
~
o |l Mc

= 0.091 + 0.002n.
k=0

We see that this quantity increases as n does.
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7.2 NORMAL RANDOM VARIABLES

1. Since np = (0.90)(50) = 45 and \/np(1 — p) = 2.12,

44.5 — 45

2.12
=1—&(-0.24) = $(0.24) = 0.5948.

P(X > 44.5) = P(z > ) — P(Z > —024)

364
2. np = 1095/365 = 3 and /np(I — p) = 3(%) — 1.73. Therefore,

55-3
>
- 173

P(X >55) = P(z ) — 1 — ®(1.45) = 0.0735.

3. We have that

P(Z]) =x) = P(—x = Z = x) = P(x) — ®(—x)
=0x)—[1— )] =20x) — 1 =¥(x).

4. Let

gX)=Px<Z<x+a)= efyz/zdy.

1 xX+o
V2w /x

The number x that maximizes P(x < Z < x + «) is the root of g’(x) = 0; that is, it is the
solution of

1 2 2
g(x) = [e~(+/2 _ o=512] = g,
N2
which is x = —a/2.
5. E(X cos X), E(sin X) dE( X ) tively, — /OO( Y2 g
. cos X), E(sin X), an are, respectively, —— X cos x)e X,
1+ X2 P Y V21 J -

1 o0 2 1 © x 2
— (sinx)e ™ /*dx, and / e~ /2 dx. Since these are integrals of
V2w /_oo V21 Jooo 1+ x2

odd functions from —oo to oo, all three of them are 0.

X —-355 355-355
>
4.8 4.8

6. (a) P(X > 35.5) = P( ) =1—®0) =05

(b) The desired probability is given by

30—-355 40 —35.5

<X <—
4.8 4.8
= $(0.94) + &(1.15) — 1 = 0.8264 + 0.8749 — 1 = 0.701.

PG3O < X <40):P( ):@(0.94)—q>(—1.15)
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7. Let X be the grade of a randomly selected student;

90 — 67
P(X > 90) = P(z >

) =1—-®(2.88) =1—0.9980 = 0.002,

80 — 67 90 — 67
<Z< 3

= 0.9980 — 0.9484 = 0.0496.

P(80 < X < 90) = P( ) — $(2.88) — ®(1.63)

Similarly, P(70 < X < 80) = 0.3004, P(60 < X < 70) = 0.4586, and P(X < 60) =
0.1894. Therefore, approximately 0.2%, 4.96%, 30.04%, 45.86%, and 18.94% get A, B, C, D,
and F, respectively.

8. Let X be the blood pressure of a randomly selected person;

89 — 80 96 — 80
< Z <

P(89 < X < 96) = P( ) = P(1.29 < Z < 2.29) = 0.0875,

95 — 80

P(X > 95) = P<Z > ) —0.016.

Therefore, 8.75% have mild hypertension while 1.6% are hypertensive.
9. P(745 <X <75.8) = P(—0.5 < Z < 0.8) = ®(0.8) — [1 — ®(0.5)] = 0.4796.

10. We must find x so that P(110 —x < X < 110 + x) = 0.50, or, equivalently,

X X —-110 X
P( - < — < =

20 20 20
Therefore, we must find the value of x which satisfies P( —x/20 < Z < x /20) = 0.50 or
®(x/20)—P(—x/20) = 0.50. Since (—x/20) = 1—D(x/20), x satisfies 2P (x /20) = 1.50
or ®(x/20) = 0.75. Using Table 1 of the appendix, we get x/20 = 0.67 or x = 13.4 So the
desired interval is (110 — 13.4, 110 + 13.4) = (96.6, 123.4).

)zow.

11. Let X be the amount of cereal in a box. We want to have P(X > 16) > 0.90. This gives
16 — 16.5

P(Zz
(o2

) > 0.90,

or ©(0.5/0) > 0.90. The smallest value for 0.5/0 satisfying this inequality is 1.29; so the
largest value for o is obtained from 0.5/0 = 1.29. This gives o = 0.388.

12. Let X be the score of a randomly selected individual;

12

14—
P(X > 14) = P(z = — ) — P(Z > 0.67) = 0.2514.

Therefore, the probability that none of the eight individuals make a score less than 14 is
(0.2514)% = 0.000016.
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We want to find ¢ so that P(X <) = 1/2. This implies that

P(X_M<t_’u>:1,
2

o o

t— 1 t—u
>=—'s0
o

0rd>( ;
2 o

= 0 which gives t = u.

We have that
P(X —u|l>ko)=PX—u>ko)+P(X—u<—ko)=P(Z >k)+ P(Z < —k)
=[1-o®]+[1- K] =2[1—- K]
This shows that P(|X — | > ko) does not depend on w or o.

Let X be the lifetime of a randomly selected light bulb.

900 — 1000
Z —_—

P(X > 900) = P(z 5

) =1—-o(—1)=d(1) =0.8413.
Hence the company’s claim is false.

Let X be the lifetime of the light bulb manufactured by the first company. Let Y be the
lifetime of the light bulb manufactured by the second company. Assuming that X and Y are
independent, the desired probability, P ( max(X,Y) > 980), 1s calculated as follows.

P(max(X,Y) >980) =1 — P(max(X,Y) <980) =1 — P(X < 980,Y < 980)
=1— P(X <980) P(Y < 980)

980 — 1000 980 — 900
< 201000y p (7 < 20200

100 150
=1-P(Z <—-02)P(Z <0.53)=1—[1—P(0.2)]d(0.53)
=1— (1 —0.5793)(0.7019) = 0.7047.

:1—P<Z

Let r be the rate of return of this stock; r is a normal random variable with mean u = 0.12
and standard deviation o = 0.06. Let n be the number of shares Mrs. Lovotti should purchase.
We want to find the smallest n for which the probability of profit in one year is at least $1000.
Let X be the current price of the total shares of the stock that Mrs. Lovotti buys this year,
and Y be the total price of the shares next year. We want to find the smallest n for which
P(Y — X > 1000). We have

P(Y—leOOO):P(Y;X 2@>:P(Q@>

X X
1000
1000 5 012
:P(rz ):P z>=>22 | >0.090.
35n 0.06
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Therefore, we want to find the smallest n for which

1
30500 —0.12
Plz<=__|<o.l0.
0.06
By Table 1 of the Appendix, this is satisfied if

1

LU

)
0.06

This gives n > 670.69. Therefore, Mrs. Lovotti should buy 671 shares of the stock.
18. We have that

1
f(x)ZWeXP[—

(x—l)z]_ 1 ox [_(x—l)z]
12 17 v Pl 2agm b

This shows that f is the probability density function of a normal random variable with mean
1 and standard deviation 1/2 (variance 1/4).

19. Let F be the distribution function of | X — u|. F(t) =0ift < 0; fort > 0,

FO)=P(IX—pl<t)=P(—t <X —pu<t)

t X—n t
=Pu-1=sXsp+n=P(-= = <)
o o o
t t t t 1
=o()-e(-)=2(;) - [1-o(;)]=22(;) -1
o o o o o
Therefore,
t
2@( )-1 1>0
F@) = o
0 otherwise.
This gives
/ 2 / [
F==-o(=) 1zo0.
o o
Hence

© 2 st
E(X—ul)= [ tZo ( )dt.
0 o o
substituting u = ¢/o, we obtain

o0 20' e 2
E(X —u) = 20/ ud (u)du = _/ we 12 du
0 «/E 0

_ 20

[ _uz/z]oo 20 12
= —e = ——— = 0,4/ —.
21 0 W21 4
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20. The general form of the probability density function of a normal random variable is

21.

22,

_ 2 2
ol SN

1 1 1
o2 exp[_ 202 ]_04/27-[ eXp(_F o2 202

fx) =

Comparing this with the given probability density function, we see that

1
k =
o2
2 1
202
W
2k = —;
2
*
202

Solving the first two equations for k and o, we obtain k = 7 and o = 1/(;+/2). These and

the third equation give 4 = —1/7 which satisfy the fourth equation. So k = 7 and f is the
1 1

probability density function of N ( - —, —)
T’ 2m?
Let X be the viscosity of the given brand. We must find the smallest x for which P(X < x) >
—-37 -37
0.90 or P(Z <2 ) > 0.90. This gives c1>(x ) > 0.90 or (x — 37)/10 = 1.29; 50

x =49.9.

Let X be the length of the residence of a family selected at random from this town. Since

6 — 80
P(Xz96):P(Zzg

) — 0.298,

using binomial distribution, the desired probability is

2
12 . .
1— Z 7)(0.298) (1 — 0.298)'27 = (0.742.
i=0 !

23. We have
E( DlZ) > ax 1 —x2/2d
e = e - —¢€ X
—o0 2
2 ] 12 1.2
_ ea /2/ efzut +ax—5x dx
—00 27
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24,

25.

26.

27.
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o0

1 1 2 . 1 | 2, . . .

where / > e 20797 gx = 1, since > e 20797 5 the probability density function
—00 JT T

of a normal random variable with mean « and variance 1.

Fort > 0,

P(th):P(—«/?fXgﬂ):P(—?fo§)=2<D<£)—1.

o

Let f be the probability density function of Y. Then

@/(‘/;), t>0.

o

d
fO =g PO =0 =25

So

1 t
ex (——) t>0
o2t P 202

0 t <0.

f@) =

Fort > 0,

P(Y <) =P(e* <1)=P(X <Int) = P(Z < h”o_ “) = cp(h”a_“).

Let f be the probability density function of Y. We have

d 1 Int —
t)=—PY <t)=—& , t>0.
fy=2P¥ =0 =—o(=—L). 1=

So
t>0

_ (Int —u)z]

|~ g

f@t)={otV2m

0 otherwise.
Let f be the probability density function of Y. Since for ¢ > 0,
PY<t=P(IX|<t)=P(X|<t?)=P(—1* <X <1*) =20(t*) — 1,

we have that 1
_ 4/2
d 4t ——e ! t>0
f=—P¥ =n=1 VT

0 otherwise.

Suppose that X is the number of books sold in a month. The random variable X is binomial
with parameters n = (800)(30) = 24,000 and p = 1/5001. Moreover, E(X) = np = 4.8
and oy = +/np(1 — p) = 2.19. Let k be the number of copies of the bestseller to be ordered



28.

29.

30.
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every month. We want to have P(X < k) > 098 or P(X < kK — 1) > 0.98. Using
De Moivre-Laplace theorem and making correction for continuity, this inequality is valid if
<X—4.8 k—140.5-4.8
<
2.19 2.19

From Table 1 of the appendix, we have (k — 1 + 0.5 — 4.8)/2.19 = 2.06, or k = 9.81.
Therefore, the store should order 10 copies a month.

)>0%.

Let X be the number of light bulbs of type I. We want to calculate P(18 < X < 22).
Since the number of light bulbs is large and half of the light bulbs are type I, we can assume
that X is approximately binomial with parameters 40 and 1/2. Note that np = 20 and
Vnp(I = p) = +/10. Using De Moivre-Laplace theorem and making correction for continuity,
we have

175-20 X -—-20 225 —20)

< <
Yo T J10 T J10
= ®(0.79) — ®(—0.79) = 2d(0.79) — 1 = 0.5704.

P75 <X <225) = P(

Remark: Using binomial distribution, the solution to this problem is

22

5 ()" -0

As we see, up to at least 4 decimal places, this solution gives the same answer as obtained
above. This indicates the importance of correction for continuity; if it is ignored, we obtain
0.4714, an answer which is almost 10% lower than the actual answer.

Let X be the number of 1’s selected; X is binomial with parameters 100, 000 and 1/40. Thus

np = 2500 and /np(1 — p) = 49.37. So

3499.50 — 2500
49.37

Hence it is fair to say that the algorithm is not accurate.

P(X > 3500) ~ P(z > ) —1— ®(20.25) = 0.

Note that 5

2 X
ka ™ =ke —x’lna) =ke (— )
a Xp ( X a) Xp /ina
Comparing this with the probability density function of a normal random variable with pa-
rameters 1 and o, we see that £ = 0 and 20> = 1/Ina. Thus 0 = 4/1/(2Ina), and hence

1 Ina

N oA 2w N T
So, for this value of k, the function f is the probability density function a normal random
variable with mean 0 and standard deviation 4/1/(2Ina).

k
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31.

32.

33.

34.
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(a) The derivation of these inequalities from the hint is straightforward.

(b) By part (a),
1 1 —®(x)
— —2 < 25 < 1.
X [1/aV2m)]e
Thus
1-—®
| < lim SO
¥ [1/(xv/2m) e/
from which (b) follows.
By part (b) of Exercise 31,
x
P(z>1+ ;>

1imP(Z>t+f|Zzt)= lim — 1/
t—00 t t—00 P(Zzt)

1 X\ 2
— = exp[—(t+—> /2]
(t + —)vZTr !
— lim !
t—00 1 e_’2/2
t/2m
£2 x2
= Jim e (—xmgp) =

Let X be the amount of soft drink in a random bottle. We are given that P(X < 15.5) = 0.07

15.5 — 16.3 —
and P(X > 16.3) = 0.10. These imply that q>(—”) — 0.07 and and cb(—’“‘) —
g o
0.90. Using Tables 1 and 2 of the appendix, we obtain

155 —

i T
o

16.3 —

22T R 108
o

Solving these two equations in two unknowns, we obtain 4 = 15.93 and o = 0.29.
Let X be the height of a randomly selected skeleton from group 1. Then

185 — 172
—) = P(Z > 1.44) = 0.0749.

P(X > 185) = P(z >
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Now suppose that the skeleton’s of the second group belong to the family of the first group.
The probability of finding three or more skeleton’s with heights above 185 centimeters is

5

> (?) (0.0749)"(0.9251)°~" = 0.0037.

i=3

Since the chance of this event is very low, it is reasonable to assume that the second group is
not part of the first one. However, we must be careful that in reality, this observation is not
sufficient to make a judgment. In the lack of other information, if a decision is to be made
solely based on this observation, then we must reject the hypothesis that the second group is
part of the first one.

35. Fort € (0, 00), let A be the region whose points have a (positive) distance ¢ or less from the
given tree. The area of A is w¢2. Let X be the distance from the given tree to its nearest tree.
We have that

e (A 1?0
P(X > 1) = P(notreesin A) = + — ot

Now by Remark 6.4,
[e.¢] o0 2
E(X):/ P(X>t)dt=/ e dt.
0 0
Letting u = («/ 201 )t, we obtain
1 © 11 1
E(X) = ——/ gy = L1 L
v/ VA2 2V
36. Note