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Errata List
of

"Digital Signal Processing: A Computer-Based Approach", Second Edition

Chapter 2

1.  Page 48, Eq. (2.17):  Replace "y[n]" with "x u[n]".

2.  Page, 51:  Eq. (2.24a):  Delete "
1

2
x[n] + x * [N − n]( )".  Eq. (2.24b):  Delete 

"
1

2
x[n] − x * [N − n]( )".

3.  Page 59,  Line 5 from top and line 2 from bottom:  Replace "− cos (ω1 + ω2 − π)n( )" with 

"cos (2π – ω1 – ω2 )n( ) ".

4.  Page 61,  Eq. (2.52):  Replace "A cos (Ωo + k ΩT )t + φ( )" with "A cos ±(Ωot + φ) + k ΩTt( ) ".

5.  Page 62, line 11 from bottom:  Replace "ΩT > 2Ωo " with "ΩT > 2 Ωo ".

6.  Page 62, line 8 from bottom:  Replace "2πΩo / ωT " with "2πΩo / ΩT ".

7.  Page 65, Program 2_4, line 7:  Replace "x = s + d;" with "x = s + d';".

8.  Page 79, line 5 below Eq. (2.76):  Replace " αn

n=0

∞
∑ " with " α n

n=0

∞
∑ ".

9.  Page 81, Eq. (2.88):  Replace "αL+1λ2
n + αNλ N−L

n " with "  αL+1λ2
n +L + αNλN− L

n ".

10.  Page 93, Eq. (2.116): Replace the lower limit "n=–M+1" on all summation signs with "n=0".

11.  Page 100, line below Eq. (2.140) and caption of Figure 2.38:  Replace "ωo = 0.03 " with 
"ωo = 0.06π ".

12.  Page 110, Problem 2.44:  Replace "{y[n]} = −1, −1, 11, −3, −10, 20, −16{ }" with 

"{y[n]} = −1, −1, 11, −3, 30, 28, 48{ }", and 

"{y[n]} = −14 − j5, −3 − j17, −2 + j 5, −26 + j 22, 9 + j12{ }" with 

"{y[n]} = −14 − j5, −3 − j17, −2 + j 5, −9.73 + j12.5, 5.8 + j5.67{ }".

13.  Page 116, Exercise M2.15:  Replace "randn" with "rand".

Chapter 3

1.  Page 118, line 10 below Eq. (3.4):  Replace "real" with "even".
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2.  Page 121, Line 5 below Eq. (3.9):   Replace " αn

n=0

∞
∑ " with " α n

n=0

∞
∑ ".

3.  Page 125, Eq. (3.16):  Delete the stray α.

4.  Page 138, line 2 below Eq. (3.48):  Replace "frequency response" with "discrete-time Fourier 
transform".

5.  Page 139, Eq. (3.53):  Replace "x(n + mN)" with "x[n + mN]".

6.  Page 139, lin2 2, Example 3.14: Replace "x[n] = 0 1 2 3 4 5{ }" with 

"{x[n]} = 0 1 2 3 4 5{ }".

7.  Page 139, line 3, Example 3.14:  Replace "x[n]" with "{x[n]}", and "πk/4" with "2πk/4".

8.  Page 139, line 6 from bottom:  Replace "y[n] = 4 6 2 3 4 6{ }" with 

"{y[n]} = 4 6 2 3{ }".

9.  Page 141, Table 3.5:  Replace "N[g < −k >N ]" with "N g[< −k >N ]".

10.  Page 142, Table 3.7:  Replace "argX[< −k >N ]" with "– argX[< −k >N ]".

11.  Page 147, Eq. (3.86):  Replace "

1 1 1 1

1 j −1 − j

1 −1 1 −1

1 − j −1 j

 

 

 
 
 
 

 

 

 
 
 
 
" with "

1 1 1 1

1 − j −1 j

1 −1 1 −1

1 j −1 − j

 

 

 
 
 
 

 

 

 
 
 
 
".

12.  Page 158, Eq.(3.112):  Replace " αn

n =−∞

−1

∑ z−n " with "− αn

n=−∞

−1

∑ z−n ".

13.  Page 165, line 4 above Eq. (3.125);  Replace "0.0667" with "0.6667".

14.  Page 165, line 3 above Eq. (3.125):  Replace "10.0000" with "1.000", and "20.0000" with 
"2.0000".

15.  Page 165, line above Eq. (3.125):  Replace "0.0667" with "0.6667", "10.0" with "1.0", and 
"20.0" with "2.0".

16.  Page 165, Eq. (3.125):  Replace "0.667" with "0.6667".

17.  Page 168, line below Eq. (3.132):  Replace "  z > λ l " with "  z > λ l ".

18.  Page 176, line below Eq. (3.143):  Replace "  R h " with "1/  R h ".

19.  Page 182, Problem 3.18:  Replace "X(e− jω /2 )" with "X(−e jω /2 )".
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20.  Page 186, Problem 3.42, Part (e):  Replace "argX[< −k >N ]" with "– argX[< −k >N ]".

21.  Page 187, Problem 3.53:  Replace "N-point DFT" with "MN-point DFT", replace 
"0 ≤ k ≤ N − 1"  with "0 ≤ k ≤ MN − 1", and replace "x[< n >M]" with "x[< n >N ]".

22.  Page 191, Problem 3.83:  Replace " lim
n→∞

" with " lim
z→∞

".

23.  Page 193, Problem 3.100:  Replace "
P(z)

D' (z)
" with "

  
−λ l

P(z)

D' (z)
".

24.  Page 194, Problem 3.106, Parts (b) and (d):  Replace " z < α " with " z > 1 / α ".

25.  page 199, Problem 3.128:  Replace "(0.6)µ[n]" with "(0.6)n µ[n]", and replace "(0.8)µ[n]" 

with "(0.8)n µ[n]".

26.  Page 199, Exercise M3.5:  Delete "following".

Chapter 4

1.  Page 217, first line:  Replace "ξN " with "ξM ".

2.  Page 230, line 2 below Eq. (4.88): Replace "θg(ω) " with "θ(ω)".

3.  Page 236, line 2 below Eq. (4.109):  Replace "decreases" with "increases".

4.  Page 246, line 4 below Eq. (4.132):  Replace "θc(e jω)" with "θc(ω)".

5.  Page 265, Eq. (4.202):  Replace "  1,2,K,3" with "1,2,3".

6.  Page 279, Problem 4.18:  Replace " H(e j0) " with " H(e jπ/ 4) ".

7.  Page 286, Problem 4.71:  Replace "z3 = − j 0.3" with "z3 = −0.3 ".

8.  Page 291, Problem 4.102:  Replace 

"H(z) =
0.4 + 0.5z−1 +1.2 z−2 +1.2z−3 + 0.5z−4 + 0.4 z−5

1 + 0.9z−2 + 0.2 z−4 " with 

"H(z) =
0.1 + 0.5z−1 + 0.45z−2 + 0.45z−3 + 0.5z−4 + 0.1z−5

1+ 0.9 z−2 + 0.2z−4 ".

9.  Page 295, Problem 4.125:  Insert a comma "," before "the autocorrelation".

Chapter 5

1.  Page 302, line 7 below Eq. (5.9):  Replace "response" with "spectrum".
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2.  Page 309, Example 5.2, line 4:  Replace "10 Hz to 20 Hz" with "5 Hz to 10 Hz". Line 6:  
Replace "5k + 15" with "5k + 5".  Line 7:  Replace "10k + 6" with "5k + 3", and replace 
"10k – 6" with "5(k+1) – 3".

3.  Page 311, Eq. (5.24):  Replace "Ga( jΩ − 2k(∆Ω)) " with "Ga( j(Ω − 2k(∆Ω))) ".

4.  Page 318, Eq. (5.40):  Replace "H(s)" with "Ha(s)", and replace "" with "".

5.  Page 321, Eq. (5.54):  Replace "" with "".

6.  Page 333, first line:  Replace "Ωp1" with " ˆ Ω p1", and " Ωp2 " with " ˆ Ω p2 ".

7.  Page 349, line 9 from bottom:  Replace "1/T" with "2π/T".

8.  Page 354, Problem 5.8:  Interchange "Ω1" and "Ω2".

9.  Page 355, Problem 5.23:  Replace "1 Hz" in the first line with "0.2 Hz".

10.  Page 355, Problem 5.24:  Replace "1 Hz" in the first line with "0.16 Hz".

Chapter 6

1.  Page 394, line 4 from bottom:  Replace "alpha1" with "fliplr(alpha1)".

2.  Page 413, Problem 6.16:  Replace 

"
  
H(z) = b0 + b1 z−1 + b2z−1 z−1 + b3z−1 1 +L+ bN−1z−1(1 + bNz−1)( )( ) 

 
 
 " with 

"
  
H(z) = b0 + b1z

−1 1 + b2z−1 z−1 + b3z−1 1 +L+ bN−1z
−1(1 + bNz−1)( )( ) 

 
 
 ".

3.  Page 415, Problem 6.27:  Replace "H(z) =
3z2 + 18.5z + 17.5

(2 z +1)(z + 2)
" with 

"H(z) =
3z2 + 18.5z + 17.5

(z + 0.5)(z + 2)
".

4.  Page 415, Problem 6.28:  Replace the multiplier value "0.4" in Figure P6.12 with "–9.75".

5.  Page 421, Exercise M6.1:  Replace "−7.6185z−3 " with "−71.6185z−3 ".

6.  Page 422, Exercise M6.4:  Replace "Program 6_3" with "Program 6_4".

7.  Page 422, Exercise M6.5:  Replace "Program 6_3" with "Program 6_4".

8.  Page 422, Exercise M6.6:  Replace "Program 6_4" with "Program 6_6".
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Chapter 7

1.  Page 426, Eq. (7.11):  Replace "h[n – N]" with "h[N – n]".

2.  Page 436, line 14 from top:  Replace "(5.32b)" with "(5.32a)".

3.  Page 438, line 17 from bottom:  Replace "(5.60)" with "(5.59)".

4.  Page 439, line 7 from bottom:  Replace "50" with "40".

5.  Page 442, line below Eq. (7.42):  Replace "F−1(ˆ z ) " with "1 / F(ˆ z ) ".

6.  Page 442, line above Eq. (7.43):  Replace "F−1(ˆ z ) " with "F(ˆ z ) ".

7.  Page 442, Eq. (7.43):  Replace it with "

  

F(ˆ z ) = ±
ˆ z − αl

1 − αl*ˆ z 

 

 
 

 

 
 

l=1

L

∏ ".

8.  Page 442, line below Eq. (7.43):  Replace "where    αl "  with "where    αl ".

9.  Page 446, Eq. (7.51):  Replace "β(1 − α)" with "β(1 + α)".

10.  Page 448, Eq. (7.58):  Replace "ωc < ω ≤ π " with "ωc < ω ≤ π".

11.  Page 453, line 6 from bottom:  Replace "ωp − ωs " with "ωs − ωp ".

12.  Page 457, line 8 from bottom:  Replace "length" with "order".

13.  Page 465, line 5 from top:  Add "at ω = ωi " before "or in".

14.  Page 500, Problem 7.15:  Replace "2 kHz" in the second line with "0.5 kHz".

15. Page 502, Problem 7.22:  Replace Eq. (7.158) with "Ha (s) =
Bs

s2 + Bs + Ω0
2 ".

16.  Page 502, Problem 7.25:  Replace "7.2" with "7.1".

17.  Page 504, Problem 7.41:  Replace "Hint (ejω) = e− jω " in Eq. (7.161) with 

"Hint (ejω) =
1

jω
".

18.  Page 505, Problem 7.46:  Replace "16" with "9" in the third line from bottom.

19.  Page 505, Problem 7.49:  Replace "16" with "9" in the second line.

20.  Page 510, Exercise M7.3:  Replace "Program 7_5" with "Program 7_3".

21.  Page 510, Exercise M7.4:  Replace "Program 7_7" with "M-file impinvar".

22.  Page 510, Exercise M7.6:  Replace "Program 7_4" with "Program 7_2".

23.  Page 511, Exercise M7.16:  Replace "length" with "order".
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24.  Page 512, Exercise M7.24:  Replace "length" with "order".

Chapter 8

1.  Page 518, line 4 below Eq. (6.7):  Delete "set" before "digital".

2.  Page 540, line 3 above Eq. (8.39):  Replace "G[k]" with " X0[k]" and " H[k]" with " X1[k]".

Chapter 9

1.   Page 595, line 2 below Eq. (9.30c):  Replace "this vector has" with "these vectors have".

2.  Page 601, line 2 below Eq. (9.63): Replace "2b" with "2−b ".

3.  Page 651, Problem 9.10, line 2 from bottom:  Replace "
akz +1

1 + akz

 
  

 
  " with "

akz +1

z + ak

 
  

 
  ".

4.  Page 653, Problem 9.15, line 7:  Replace "two cascade" with "four cascade".

5.  Page 653, Problem 9.17:  Replace "A2(z) =
d1d2 + d1z−1 + z−2

1 + d1z
−1 + d1d2z−2 " with 

"A2(z) =
d2 + d1z−1 + z−2

1 + d1z
−1 + d2z−2 ".

6.  Page 654, Problem 9.27:  Replace "structure" with "structures".

7.  Page 658, Exercise M9.9:  Replace "alpha" with "α".

Chapter 10

1.  Page 692, Eq. (10.57b):  Replace "P0(α1) = 0.2469" with "P0(α1) = 0.7407".

2.  Page 693, Eq. (10.58b):  Replace "P0(α 2) = –0.4321" with "P0(α 2) = –1.2963 ".

3.  Page 694, Figure 10.38(c):  Replace "P−2(α0 )" with "P1(α0) ",  "P−1(α0 )" with "P0(α 0)",  
"P0(α 0)" with "P−1(α0 )", "P1(α0) " with "P−2(α0 )", "P−2(α1)" with "P1(α1)",  
"P−1(α1)" with "P0(α1) ",  "P0(α1) " with "P−1(α1)",  "P1(α1)" with "P−2(α1)",  
"P−2(α2) " with "P1(α2) ",  "P−1(α2 )" with "P0(α 2)",  "P0(α 2)" with "P−1(α2 )", and 
"P−1(α2 )" with "P−2(α2) ".

4.  Page 741, Problem 10.13:  Replace "2.5 kHz" with "1.25 kHz".

5.  Page 741, Problem 10.20:  Replace " zi
i=0
N∑ " with " zi

i=0
N−1∑ ".
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6. Page 743, Problem 10.28:  Replace "half-band filter" with a "lowpass half-band filter with a 
zero at z = –1".

7.  Page 747, Problem 10.50:  Interchange "Y k " and "the output sequence y[n]".

8.  Page 747, Problem 10.51:  Replace the unit delays "z−1" on the right-hand side of the structure
of Figure P10.8 with unit advance operators "z".

9.  Page 749, Eq. (10.215):  Replace "3 H2 (z) − 2H2(z)" with "z−2 3H2(z) − 2H2 (z)[ ]".

10.  Page 751, Exercise M10.9:  Replace "60" with "61".

11.  Page 751, Exercise M10.10:  Replace the problem statement with  "Design a fifth-order IIR 
half-band Butterworth lowpass filter and realize it with 2 multipliers".

12.  Page 751, Exercise M10.11:  Replace the problem statement with  "Design a seventh-order 
IIR half-band Butterworth lowpass filter and realize it with 3 multipliers".

Chapter 11

1.  Page 758, line 4 below Figure 11.2 caption:  Replace "grid" with "grid;".

2.  age 830, Problem 11.5: Insert "ga (t) = cos(200πt) " after "signal" and delete 
"= cos(200πn) ".

3.  Page 831, Problem 11.11:  Replace "has to be a power-of-2" with "  = 2l ,  where   l  is an 
integer".
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Chapter 2 (2e)

2.1  (a)  u[n] = x[n]+ y[n]= {3 5 1 −2 8 14 0}

      (b)  v[n]= x[n]⋅w[n] = {−15 −8 0 6 −20 0 2}

      (c)   s[n] = y[n]− w[n] = {5 3 −2 −9 9 9 −3}

      (d)   r[n] = 4.5y[n] ={0 31.5 4.5 −13.5 18 40.5 −9}

2.2  (a)  From the figure shown below we obtain

x[n]

y[n]

v[n] v[n–1]
z
–1

α

β

γ

v[n]= x[n]+ α v[n −1]   and   y[n] = βv[n −1]+ γ v[n −1]= (β + γ )v[n −1].  Hence,

v[n −1]= x[n −1]+ αv[n − 2]  and   y[n −1]= (β + γ )v[n − 2].  Therefore,

y[n] = (β + γ )v[n −1] = (β + γ )x[n −1]+ α(β + γ )v[n − 2]  = (β + γ )x[n −1]+ α(β + γ )
y[n − 1]
(β+ γ )

= (β + γ )x[n −1]+ α y[n −1] .

(b) From the figure shown below we obtain

x[n]

y[n]

z
–1

α β γ

z
–1

z
–1

z
–1

x[n–1] x[n–2]

x[n–3]x[n–4]

y[n] = γ x[n − 2]+ β x[n −1]+ x[n − 3]( )+ α x[n]+ x[n − 4]( ) .

(c)  From the figure shown below we obtain

v[n]
x[n] y[n]

z
–1

z
–1 v[n–1]

–1

d1
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v[n]= x[n]− d1v[n − 1]  and y[n] = d1v[n] + v[n − 1] .  Therefore we can rewrite the second 

equation as  y[n] = d1 x[n]− d1v[n −1]( )+ v[n −1] = d1x[n]+ 1 − d1
2( )v[n −1]            (1)

 = d1x[n] + 1 − d1
2( ) x[n −1]− d1v[n − 2]( )  = d1x[n] + 1 − d1

2( )x[n −1]− d1 1− d1
2( )v[n − 2]

From Eq. (1),  y[n −1]= d1x[n − 1]+ 1 − d1
2( )v[n − 2] , or equivalently,  

   d1y[n −1] = d1
2x[n −1]+ d1 1 − d1

2( )v[n − 2].  Therefore, 

y[n]+ d1y[n −1] = d1x[n]+ 1− d1
2( )x[n − 1]− d1 1 − d1

2( )v[n − 2]+ d1
2x[n −1] + d1 1− d1

2( )v[n − 2]

= d1x[n] + x[n − 1] , or y[n] = d1x[n]+ x[n −1]− d1y[n −1].

(d) From the figure shown below we obtain

v[n]
x[n] y[n]

v[n–1]

–1
d1

z
–1

z
–1 v[n–2]

d 2

u[n]w[n]

v[n]= x[n]− w[n],   w[n] = d1v[n −1]+ d2u[n],  and u[n] = v[n − 2]+ x[n].  From these equations 

we get  w[n] = d 2x[n]+ d1x[n −1]+ d2x[n − 2] − d1w[n − 1]− d 2w[n − 2] .  From the figure we also 

obtain y[n] = v[n − 2] + w[n]= x[n − 2]+ w[n]− w[n − 2], which yields   

d1y[n −1] = d1x[n − 3]+ d1w[n −1]− d1w[n − 3],   and 

d2y[n − 2]= d2x[n − 4]+ d2w[n − 2]− d2w[n − 4],   Therefore, 

y[n]+ d1y[n −1]+ d2y[n − 2] = x[n − 2]+ d1x[n − 3]+ d2x[n − 4]    

+ w[n] + d1w[n − 1]+ d 2w[n − 2]( ) − w[n − 2]+ d1w[n − 3] + d2w[n − 4]( )
 = x[n − 2] + d2x[n] + d1x[n −1]  or equivalently, 

y[n] = d2x[n]+ d1x[n −1] + x[n − 2]− d1y[n −1] − d2y[n − 2].

2.3 (a)  x[n]= {3 −2 0 1 4 5 2},  Hence, x[−n] ={2 5 4 1 0 −2 3}, − 3 ≤ n ≤ 3.

Thus, xev [n] =
1

2
(x[n]+ x[−n]) = {5 / 2 3 / 2 2 1 2 3 / 2 5 / 2}, − 3 ≤ n ≤ 3,  and 

xod[n] =
1

2
(x[n] − x[−n]) = {1 / 2 −7 / 2 −2 0 2 7 / 2 −1 / 2}, − 3 ≤ n ≤ 3.

(b)  y[n] = {0 7 1 −3 4 9 −2}.  Hence, y[−n] ={−2 9 4 −3 1 7 0}, − 3 ≤ n ≤ 3.  

Thus, yev[n] =
1

2
(y[n]+ y[−n]) = {−1 8 5 / 2 −3 5 / 2 8 −1}, − 3 ≤ n ≤ 3,   and 

yod[n] =
1

2
(y[n] − y[−n]) = {1 −1 −3 / 2 0 1 3 / 2 −1}, − 3 ≤ n ≤ 3 .
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(c)  w[n]= {−5 4 3 6 −5 0 1},  Hence, w[−n] = {1 0 −5 6 3 4 −5}, − 3 ≤ n ≤ 3.   

Thus, wev[n]=
1

2
(w[n] + w[−n]) = {−2 2 −1 6 −1 2 −2}, − 3 ≤ n ≤ 3,   and 

wod[n] =
1

2
(w[n]− w[−n]) = {−3 2 4 0 −4 −2 3}, − 3 ≤ n ≤ 3,

2.4 (a)  x[n] = g[n]g[n] .  Hence x[−n] = g[−n]g[−n] .  Since g[n] is even, hence g[–n] = g[n]. 

Therefore  x[–n] = g[–n]g[–n] = g[n]g[n] = x[n].  Hence x[n] is even.

(b) u[n] = g[n]h[n].  Hence,  u[–n] = g[–n]h[–n] = g[n](–h[n]) = –g[n]h[n] = –u[n].  Hence 

u[n] is odd.

(c) v[n] = h[n]h[n].  Hence, v[–n] = h[n]h[n] = (–h[n])(–h[n]) = h[n]h[n] = v[n].  Hence 

v[n] is even.

2.5 Yes, a linear combination of any set of a periodic sequences is also a periodic sequence and 

the period of the new sequence is given by the least common multiple (lcm) of all periods.  

For our example, the period = lcm(N1,N2 ,N3 ) . For example, if N1 = 3,  N2 = 6,  and N3 =12,  

then N = lcm(3, 5, 12) = 60.

2.6 (a)  x pcs[n] =
1

2
{x[n] + x * [−n]} =

1

2
{Aαn + A *(α*)−n},  and 

x pca[n] =
1

2
{x[n]− x * [−n]} =

1

2
{Aαn − A *(α*)−n}, −N ≤ n ≤ N.

(b)  h[n]= {−2 + j5 4 − j3 5 + j6 3 + j −7 + j2}   −2 ≤ n ≤ 2  , and hence, 

h * [−n]= {−7 − j2 3 − j 5 − j6 4 + j3 −2 − j5}, −2 ≤ n ≤ 2 .  Therefore, 

h pcs[n] =
1

2
{h[n] + h * [−n]} ={−4.5 + j1.5 3.5 − j2 5 3.5 + j2 −4.5 − j1.5} and 

h pca[n] =
1

2
{h[n] − h * [−n]}= {2.5 + j3.5 0.5 − j j6 −0.5 − j −2.5 + j3.5} −2 ≤ n ≤ 2 .

2.7 (a) x[n]{ } = Aαn{ }     where A and α are complex numbers, with α < 1.

Since for n < 0, α n  can become arbitrarily large hence {x[n]} is not a bounded sequence.

(b) y[n]{ } = Aαnµ[n]     where A and α are complex numbers, with α <1.

In this case y[n] ≤ A     ∀n  hence {y[n]} is a bounded sequence.

(c) h[n]{ } = Cβnµ[n]     where C and β are complex numbers,with β > 1.

Since β n  becomes arbitrarily large as n increases hence {h[n]} is not a bounded sequence.
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(d)  {g[n]} = 4 sin(ω an).   Since − 4 ≤ g[n]≤ 4  for all values of n, {g[n]} is a bounded 

sequence.

(e)  {v[n]} = 3 cos2(ωbn2 ).   Since − 3≤ v[n] ≤ 3  for all values of n, {v[n]} is a bounded 

sequence.

2.8 (a)  Recall, xev[n] = 1

2
x[n]+ x[−n]( ).

Since  x[n] is a causal sequence, thus x[–n] = 0  ∀n > 0 .  Hence,
x[n] = xev[n]+ xev[−n]   = 2xev[n], ∀n > 0 .  For n = 0, x[0] = xev[0].

Thus x[n] can be completely recovered from its even part.

Likewise, xod[n]= 1

2
x[n]– x[−n]( ) =

1
2

x[n], n > 0,
0, n = 0.

 
 
 

  

Thus x[n] can be recovered from its odd part ∀n  except n = 0.

(b) 2yca[n] = y[n]− y * [−n] .  Since y[n] is a causal sequence y[n] = 2y ca[n]    ∀n > 0 .

For n = 0,  Im{y[0]} = yca[0] .  Hence real part of y[0] cannot be fully recovered from y ca[n] . 

Therefore y[n] cannot be fully recovered from y ca[n] .

2ycs[n] = y[n]+ y *[−n] .  Hence, y[n] = 2y cs[n]    ∀n > 0 .

For n = 0, Re{y[0]} = ycs[0].  Hence imaginary part of y[0] cannot be recovered from y cs[n] . 

Therefore y[n] cannot be fully recovered from y cs[n] .

2.9 xev[n] = 1

2
x[n]+ x[−n]( ).   This implies, xev[–n]= 1

2
x[–n]+ x[n]( ) = xev[n].

Hence even part of a real sequence is even.

xod[n]= 1

2
x[n]– x[–n]( ).   This implies, xod[–n]= 1

2
x[–n]– x[n]( ) = –xod[n].

Hence the odd part of a real sequence is odd.

2.10  RHS of Eq. (2.176a) is xcs[n]+ xcs[n − N] = 1

2
x[n] + x *[−n]( ) + 1

2
x[n − N] + x *[N − n]( ).

Since x[n] = 0 ∀n < 0 ,  Hence 

xcs[n]+ xcs[n − N] = 1

2
x[n] + x *[N − n]( ) = xpcs[n],     0 ≤ n ≤ N – 1.

RHS of Eq. (2.176b) is

xca[n]+ xca[n − N]= 1

2
x[n]− x * [−n]( )+ 1

2
x[n − N]− x * [n − N]( )

        = 1

2
x[n]− x *[N − n]( ) = xpca[n],   0 ≤ n ≤ N – 1.

9



2.11 x pcs[n]= 1

2
x[n]+ x * [< −n >N ]( )  for 0 ≤ n ≤ N – 1,   Since, x[< −n >N ] = x[N − n] , it follows

that  x pcs[n]= 1

2
x[n]+ x * [N − n]( ),    1≤ n ≤ N – 1.

For n = 0,  x pcs[0] = 1

2
x[0]+ x *[0]( ) = Re{x[0]}.

Similarly x pca[n] = 1

2
x[n]− x *[< −n >N ]( )  = 1

2
x[n]− x *[N − n]( ),    1≤ n ≤ N – 1.   Hence,

for n = 0,    xpca[0] = 1

2
x[0]− x * [0]( ) = jIm{x[0]}.

2.12  (a)  Given x[n]
n=−∞

∞∑ < ∞.   Therefore, by Schwartz inequality, 

x[n]2
n=−∞

∞∑ ≤ x[n]
n=−∞

∞∑ 
  

 
  x[n]

n=−∞

∞∑ 
  

 
  < ∞.

(b)  Consider x[n] = 1/ n, n ≥1,
0, otherwise.{   The convergence of an infinite series can be shown 

via the integral test.  Let an = f(x),  where f(x) is a continuous, positive and decreasing 

function for all x ≥ 1.  Then the series ann =1
∞∑  and the integral f(x)dx

1

∞
∫  both converge or 

both diverge.  For an = 1 / n , f(x) = 1/n.  But 
1

x
dx

1

∞
∫ = ln x( ) 1

∞ = ∞ − 0 = ∞.   Hence, 

x[n]n =−∞
∞∑ = 1

nn=1
∞∑  does not converge, and as a result, x[n] is not absolutely 

summable.  To show {x[n]} is square-summable, we observe here an =
1

n2 ,  and thus, 

f (x) =
1

x2 .   Now, 
1

x2 dx
1

∞
∫ = −

1

x
 
   

  
1

∞
= −

1

∞
+

1

1
= 1.  Hence, 

1

n2n =1
∞∑  converges, or in other 

words, x[n] = 1/n is square-summable.

2.13 See Problem 2.12, Part (b) solution.

2.14 x2[n] =
cosωcn

πn
, 1 ≤ n ≤ ∞.   Now, 

cosω cn

πn

 

 
 

 

 
 

2

n=1

∞∑ ≤ 1
π2n2n=1

∞∑ .   Since, 
1

n2n=1

∞∑ = π2

6
, 

cosω cn

πn

 

 
 

 

 
 

2

n=1

∞∑ ≤ 1
6

.   Therefore x2[n]  is square-summable.

Using integral test we now show that x2[n]  is not absolutely summable. 

cosωcx

πx1

∞

∫ dx = 1
π

⋅

cosωcx

x

cosωcx
x ⋅cos int(ω cx)

1

∞

 where cosint is the cosine integral function.

Since 
cosωcx

πx1

∞

∫ dx  diverges,  
cosω cn

πnn=1

∞∑   also diverges.
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2.15 x2[n]
n=−∞

∞
∑ = xev[n] + xod[n]( )2

n=−∞

∞
∑

= xev
2 [n]

n=−∞

∞
∑ + xod

2 [n]
n= −∞

∞
∑ + 2 xev[n]xod[n]

n=−∞

∞
∑ = xev

2 [n]
n= −∞

∞
∑ + xod

2 [n]
n=−∞

∞
∑

as xevn= –∞
∞∑ [n]xod[n] = 0  since xev [n]xod[n] is an odd sequence.

2.16  x[n] = cos(2πkn / N),            0 ≤ n ≤ N –1.   Hence,

            E x = cos2 (2πkn / N)
n=0

N−1

∑  = 1

2
1 + cos(4πkn / N)( )

n =0

N −1

∑  = N

2
+ 1

2
cos(4πkn / N)

n=0

N −1

∑ .

Let  C = cos(4πkn / N)
n=0

N−1

∑ ,  and S = sin(4πkn / N)
n =0

N−1

∑ .

Therefore  C + jS = e j4πkn/ N

n=0

N−1

∑ = e j4πk − 1

e j4πk / N − 1
= 0.  Thus, C = Re C + jS{ } = 0 .

As C = Re C + jS{ } = 0 , it follows that E x = N

2
.

2.17  (a)  x1[n] = µ[n].   Energy = µ2[n]n =−∞
∞∑ = 12

n=−∞
∞∑ = ∞.

Average power = lim
K→∞

1

2K + 1
(µ[n])2

n=−K
K∑ = lim

K→∞

1

2K +1
12

n =0
K∑ = lim

K→∞

K

2K + 1
=

1

2
.

(b)  x2 [n]= nµ[n].  Energy = nµ[n]( )n =−∞
∞∑

2
= n2

n=−∞
∞∑ = ∞.

Aveerage power = lim
K→∞

1

2K + 1
(nµ[n])2

n=−K
K∑ = lim

K→∞

1

2K + 1
n2

n=0
K∑ = ∞.

(c)  x3[n] = Aoe jωo n.   Energy = Aoe jωo n
n =−∞
∞

∫
2

= Ao
2

n =−∞
∞∑ = ∞.   Average power = 

lim
K→∞

1

2K + 1
Aoe jωon 2

n=−K
K∑ = lim

K→∞

1

2K +1
Aon =−K

K∑
2

= lim
K→∞

2K Ao
2

2K + 1
= Ao

2.

(d)  x[n]= Asin
2πn

M
+ φ 

   
  = Aoe jωon + A1e

− jωon ,  where ωo =
2π
M

, Ao = −
A

2
e jφ  and 

A1 =
A

2
e− jφ .   From Part (c), energy = ∞ and average power = Ao

2 + A1
2 + 4Ao

2A1
2 =

3

4
A2.

2.18 Now, µ[n] =
1, n ≥ 0,

0, n < 0.
 
 
 

  Hence, µ[−n − 1]=
1, n < 0,

0, n ≥ 0.
 
 
 

  Thus, x[n] = µ[n] + µ[−n −1].

2.19 (a)  Consider a sequence defined by x[n] = δ[k]
k =−∞

n

∑ .
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If n < 0 then k = 0 is not included in the sum and hence x[n] = 0, whereas for n ≥ 0 , k = 0 is 

included in the sum hence x[n] = 1 ∀ n ≥ 0 . Thus  x[n] = δ[k]
k =−∞

n

∑ =
1, n ≥ 0,

0, n < 0,

 
 
  = µ[n].

(b) Since µ[n]=
1, n ≥ 0,

0, n < 0,

 
 
   it follows that µ[n – 1] =

1, n ≥ 1,

0, n ≤ 0.

 
 
  

Hence,  µ[n] – µ[n −1]= 1, n = 0,
0, n ≠ 0,{ = δ[n].

2.20 Now x[n]= Asin ω0n + φ( ) .

(a)  Given x[n]= 0 − 2 −2 − 2 0 2 2 2{ } .  The fundamental period is N = 4, 

hence ωo = 2π / 8 = π / 4.   Next from x[0] = Asin(φ) = 0  we get φ = 0,  and solving 

x[1] = Asin(
π
4

+ φ) = Asin(π / 4) = − 2  we get A = –2.

(b)  Given x[n] = 2 2 − 2 − 2{ } .  The fundamental period is N = 4, hence 

ω0 =  2π/4 = π/2.  Next from x[0]= Asin(φ) = 2  and   x[1]= Asin(π / 2 + φ) = A cos(φ) = 2  it 

can be seen that  A = 2 and φ = π/4 is one solution satisfying the above equations. 

(c)  x[n] = 3 −3{ } .  Here the fundamental period is N = 2, hence ω0 = π . Next from x[0] 

= A sin(φ) = 3  and x[1]= Asin(φ + π) = −A sin(φ) = −3 observe that  A = 3 and φ = π/2  that A = 3

and φ = π/2 is one solution satisfying these two equations.

(d) Given x[n] = 0 1.5 0 −1.5{ } , it follows that the fundamental period of x[n]  is N = 

4. Hence ω0 = 2π / 4 = π / 2 .  Solving x[0]= Asin(φ) = 0  we get φ = 0,  and solving 

x[1] = Asin(π / 2) =1.5 , we get A = 1.5.

2.21 (a)  ˜ x 1[n] = e− j0.4πn .   Here, ωo = 0.4π.   From Eq. (2.44a), we thus get 

N =
2πr

ωo
=

2π r

0.4π
= 5 r = 5  for r =1.

(b)  ˜ x 2 [n]= sin(0.6πn + 0.6π).   Here, ωo = 0.6π.   From Eq. (2.44a), we thus get

N =
2πr

ωo
=

2π r

0.6π
=

10

3
r = 10  for r = 3.

(c)  ˜ x 3[n] = 2 cos(1.1πn − 0.5π) + 2 sin(0.7πn).   Here, ω1 = 1.1π  and ω2 = 0.7π .  From Eq. 

(2.44a), we thus get  N1 =
2π r1
ω1

=
2π r1
1.1π

=
20

11
r1  and N2 =

2πr2
ω2

=
2π r2
0.7π

=
20

7
r2 .  To be periodic 
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we must have N1 = N2.   This implies, 
20

11
r1 =

20

7
r2 . This equality holds for r1 = 11 and r2 = 7 , 

and hence N = N1 = N2 = 20.

(d)  N1 =
2π r1
1.3π

=
20

13
r1  and N2 =

2πr2
0.3π

=
20

3
r2 .  It follows from the results of Part (c), N = 20 

with r1 = 13 and r2 = 3.

(e)  N1 =
2π r1
1.2π

=
5

3
r1 , N2 =

2πr2
0.8π

=
5

2
r2  and N3 = N2.   Therefore, N = N1 = N2 = N2 = 5 for 

r1 = 3 and r2 = 2.

(f)  ˜ x 6[n]= n modulo 6.  Since  ˜ x 6[n + 6] =  (n+6) modulo 6 = n modulo 6 = ˜ x 6[n].

Hence N = 6 is the fundamental period of the sequence ˜ x 6[n].

2.22 (a) ωo = 0.14π.   Therefore, N =
2πr

ωo
=

2πr

0.14π
=

100

7
r =100  for r = 7.

(b)  ωo = 0.24π.   Therefore, N =
2πr

ωo
=

2πr

0.24π
=

25

3
r = 25  for r = 3.

(c)  ωo = 0.34π.   Therefore, N =
2πr

ωo
=

2πr

0.34π
=

100

17
r =100   for r = 17.

(d)  ωo = 0.75π.   Therefore, N =
2πr

ωo
=

2π r

0.75π
=

8

3
r = 8  for r = 3.

2.23  x[n]= xa(nT) = cos(ΩonT)  is a periodic sequence for all values of T satisfying ΩoT ⋅ N = 2πr  
for r and N taking integer values.  Since, ΩoT = 2πr / N  and r/N is a rational number, ΩoT  
must also be rational number.  For Ωo = 18 and T = π/6, we get N = 2r/3.  Hence, the smallest 
value of N = 3 for r = 3.

2.24 (a) x[n] = 3δ[n + 3]− 2 δ[n + 2]+ δ[n] + 4 δ[n −1]+ 5 δ[n − 2]+ 2 δ[n −3]

(b) y[n] = 7 δ[n + 2]+ δ[n +1]− 3δ[n]+ 4 δ[n − 1]+ 9 δ[n − 2]− 2 δ[n − 3]

(c)  w[n] = −5δ[n + 2] + 4 δ[n + 2]+ 3δ[n +1] + 6δ[n]− 5δ[n −1]+δ[n − 3]

2.25 (a)  For an input xi [n], i = 1, 2, the output is 
yi [n]= α1xi[n] + α2xi[n −1] + α3xi [n − 2] + α4xi[n − 4],  for i = 1, 2.  Then, for an input

     x[n]= Ax1[n] + B x2[n], the output is y[n] = α1 A x1[n]+ Bx2[n]( ) + α2 A x1[n −1] + Bx2[n −1]( )  

+α3 A x1[n − 2] + Bx2[n − 2]( ) + α4 Ax1[n − 3] + B x2[n − 3]( )  

= A α1x1[n]+ α2x1[n −1] + α3x1[n − 2]+ α4x1[n − 4]( )    

  + B α1x2[n] + α2x2[n − 1] + α3x2[n − 2] + α4x2[n − 4]( )  = A y1[n] + By2[n].
Hence, the system is linear.

13



(b) For an input xi [n], i = 1, 2, the output is  
yi [n]= b0xi[n] + b1xi [n − 1]+ b2xi[n − 2] + a1yi [n − 1] + a2yi [n − 2],  i = 1, 2.  Then, for an 
input x[n]= Ax1[n] + B x2[n], the output is 

y[n] = A b0x1[n] + b1x1[n − 1]+ b2x1[n − 2] + a1y1[n −1] + a2y1[n − 2]( )    

     + B b0x2[n] + b1x2 [n − 1] + b2x2[n − 2]+ a1y2[n −1] + a2y2[n − 2]( )  = A y1[n] + By2[n].  
Hence, the system is linear.

(c) For an input xi [n], i = 1, 2, the output is  
  
yi [n]=,

xi[n / L], n = 0,± L, ± 2L, K

0, otherwise,
 
 
 

Consider the input x[n]= Ax1[n] + B x2[n],  Then the output y[n] for   n = 0,± L, ± 2L, K  is 
given by y[n] = x[n / L] = Ax1[n / L] + B x2[n / L]= A y1[n] + By2[n] .  For all other values 
of n, y[n] = A ⋅0 + B ⋅ 0 = 0.   Hence, the system is linear.

(d) For an input xi [n], i = 1, 2, the output is  yi [n]= xi[n / M] .  Consider the input 
x[n]= Ax1[n] + B x2[n],  Then the output y[n] = Ax1[n / M] + B x2[n / M]= A y1[n] + B y2[n].
Hence, the system is linear.

(e)  For an input xi [n], i = 1, 2, the output is  yi [n]=
1

M
xi[n − k]k =0

M−1∑ .   Then, for an 

input x[n]= Ax1[n] + B x2[n], the output is yi [n]=
1

M
Ax1[n − k] + Bx2[n − k]( )k =0

M−1∑  

= A
1

M
x1[n − k]k =0

M−1∑ 
   

  + B
1

M
x2[n − k]k =0

M−1∑ 
   

  = A y1[n] + By2[n].   Hence, the system is 

linear.

(f)  The first term on the RHS of Eq. (2.58) is the output of an up-sampler.  The second 
term on the RHS of Eq. (2.58) is simply the output of an unit delay followed by an up-
sampler, whereas, the third term is the output of an unit adavance operator followed by an 
up-sampler  We have shown in Part (c) that the up-sampler is a linear system.  Moreover, 
the delay and the advance operators are linear systems.  A cascade of two linear systems is 
linear and a linear combination of linear systems is also linear.  Hence, the factor-of-2 
interpolator is a linear system.

(g)  Following thearguments given in Part (f),   it can be shown that the factor-of-3 
interpolator is a linear system.

2.26 (a)    y[n] = n2x[n].

For an input xi[n] the output is yi[n] = n2xi[n], i = 1, 2.  Thus, for an input x3[n] = Ax1[n] 

+ Bx2[n], the output y3[n] is given by y3[n] = n 2 A x1[n] + Bx2[n]( ) = A y1[n] + By2[n] .

Hence the system is linear.

Since there is no output before the input hence the system is causal.  However, y[n]  being 

proportional to n, it is possible that a bounded input can result in an unbounded output. Let 

x[n] = 1 ∀ n , then y[n] = n2. Hence y[n] → ∞   as n → ∞ , hence not BIBO stable.

Let y[n] be the output for an input x[n], and let y1[n] be the output for an input x1[n]. If 

x1[n]= x[n − n0 ] then  y1[n] = n2x1[n] = n2x[n − n0 ].  However, y[n − n0 ] = (n − n0 )2 x[n − n 0] .

Since  y1[n] ≠ y[n − n0 ], the system is not time-invariant.
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(b) y[n] = x4[n] .

For an input x1[n] the output is yi[n] = xi
4[n], i = 1, 2.  Thus, for an input x3[n] = Ax1[n] + 

Bx2[n], the output y3[n] is given by y3[n] = (A x1[n] + Bx2[n])4 ≠ A4x1
4[n]+ A4x2

4[n]

Hence the system is not linear.

Since there is no output before the input hence the system is causal.

Here, a bounded input produces bounded output hence the system is BIBO stable too.

Let y[n] be the output for an input x[n], and let y1[n] be the output for an input x1[n]. If 

x1[n]= x[n − n0 ] then y1[n] = x1
4[n]= x4[n − n 0] = y[n − n0 ].   Hence, the system is time-

invariant.

(c) 

  

y[n] = β + x[n − l]
l =0

3

∑ .

For an input xi[n] the output is 
  
yi [n]= β + xi[n − l ]

l =0

3

∑ , i = 1, 2.  Thus, for an input x3[n] = 

Ax1[n] + Bx2[n], the output y3[n] is given by 

  
y[n] = β + A x1[n − l ]+ Bx2[n − l ]( )

l =0

3

∑ = β + A x1[n − l]
l =0

3

∑ + Bx2[n − l ]
l =0

3

∑

≠ A y1[n] + By2[n].   Since  β ≠ 0  hence the system is not linear.

Since there is no output before the input hence the system is causal.

Here, a bounded input produces bounded output hence the system is BIBO stable too.

Also following an analysis similar to that in part (a) it is easy to show that the system is time-

invariant.

(d) 
  
y[n] = β + x[n − l ]

l =–3

3

∑

For an input xi[n] the output is 
  
yi [n]= β + xi [n − l]

l =–3

3

∑ , i = 1, 2.  Thus, for an input x3[n] = 

Ax1[n] + Bx2[n], the output y3[n] is given by 

  
y[n] = β + A x1[n − l ] + Bx2[n − l ]( )

l =−3

3

∑ = β + A x1[n − l ]
l =−3

3

∑ + Bx2[n − l ]
l =−3

3

∑

≠ A y1[n] + By2[n].   Since  β ≠ 0  hence the system is not linear.

Since there is output before the input hence the system is non-causal.

Here, a bounded input produces bounded output hence the system is BIBO stable.
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Let y[n] be the output for an input x[n], and let y1[n] be the output for an input x1[n]. If 

x1[n]= x[n − n0 ] then 
  
y1[n] = β + x1[n − l ]

l =–3

3

∑ = β + x1[n − n0 − l ]
l =–3

3

∑ = y[n − n 0].   Hence the 

system is time-invariant.

(e) y[n] = αx[−n]

The system is linear, stable, non causal.   Let y[n] be the output for an input x[n] and y1[n]  

be the output for an input x1[n]. Then y[n] = αx[−n]  and  y1[n] = α x1[−n] .

Let x1[n]= x[n − n0 ], then y1[n] = α x1[−n] = α x[−n − n0 ], whereas y[n − n0 ]= αx[n0 − n]. 

Hence the system is time-varying.

(f) y[n] = x[n – 5]

The given system is linear, causal, stable and time-invariant.

2.27 y[n] = x[n + 1] – 2x[n] + x[n – 1].
Let y1[n]  be the output for an input x1[n] and y2[n]  be the output  for an input  x2[n] . Then 

for an input x3[n] = αx1[n]+βx2[n]  the output y3[n]  is given by

y3[n] = x3[n +1]− 2x3[n]+ x3[n −1]

         = αx1[n +1]− 2αx1[n]+ αx1[n −1]+βx2[n +1]− 2βx2[n]+ βx2[n −1]

         = αy1[n]+ βy2[n] .

Hence the system is linear.  If  x1[n]= x[n − n0 ] then y1[n] = y[n − n0 ]. Hence the system is 

time-inavariant. Also the system's impulse response is given by

h[n] =
−2,
1,
0,

n = 0,
   n =1,-1,

      elsewhere.

 
 
 

  

Since h[n] ≠ 0  ∀ n < 0  the system is non-causal.

2.28 Median filtering is a nonlinear operation.  Consider the following sequences as the input to 
a median filter:  x1[n]= {3, 4, 5}  and  x2[n] ={2, − 2, − 2}.  The corresponding outputs of the

median filter are y1[n] = 4 and y2[n]= −2 . Now consider another input sequence  x3[n] = 

x1[n] + x2[n]. Then the corresponding output is y3[n]  = 3,  On the other hand, 

y1[n] + y2 [n] = 2 .  Hence median filtering is not a linear operation.  To test the time-

invariance property, let x[n] and x1[n]  be the two inputs to the system with correponding 

outputs y[n] and y1[n].  If x1[n]= x[n − n0 ] then 

y1[n] = median{x1[n − k],......., x1[n],.......x1[n + k]}

         = median{x[n − k − n 0],......., x[n − n0], .......x[n + k − n0 ]}= y[n − n0 ].

Hence the system is time invariant.
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2.29 y[n] = 1
2

y[n −1]+ x[n]
y[n −1]

 

 
  

 

 
  

Now for an input x[n] = α µ[n], the ouput y[n] converges to some constant K as n → ∞ . 

The above difference equation as n → ∞  reduces to  K = 1
2

K + α
K

 
  

 
   which is equivalent to

K2 = α   or in other words, K = α .

It is easy to show that the system is non-linear.  Now assume y1[n]  be the output for an 

input  x1[n].  Then  y1[n] = 1
2

y1[n −1]+
x1[n]

y1[n −1]

 

 
  

 

 
  

If x1[n]= x[n − n0 ].  Then,  y1[n] = 1
2

y1[n −1]+
x[n − n0 ]

y1[n −1]

 

 
  

 

 
  .

Thus y1[n] = y[n − n0 ].  Hence the above system is time invariant.

2.30 For an input xi [n], i = 1, 2, the input-output relation is given by 

yi [n]= xi[n] − yi
2[n − 1]+ yi[n −1].   Thus, for an input Ax1[n] + Bx2[n], if the output is 

Ay1[n] + By2[n], then the input-output relation is given by A y1[n]+ By2[n] =  

A x1[n]+ Bx2 [n] − A y1[n − 1]+ By2[n −1]( )2 + A y1[n −1] + By2[n − 1]  = A x1[n]+ Bx2 [n]  

− A2 y1
2[n − 1]− B2 y2

2 [n − 1] + 2AB y1[n − 1]y2[n − 1]+ A y1[n −1] + By2[n − 1]  

≠ A x1[n] − A2 y1
2 [n − 1] + Ay1[n − 1]+ B x2[n]− B2 y2

2[n −1] + By2[n − 1] .  Hence, the system 
is nonlinear.

Let y[n] be the output for an input x[n] which is related to x[n] through 

y[n] = x[n] − y2[n −1] + y[n − 1].  Then the input-output realtion for an input x[n − no ] is given

by y[n − no ]= x[n − no ] − y2 [n − no − 1] + y[n − no − 1], or in other words, the system is time-

invariant.

Now for an input x[n] = α µ[n], the ouput y[n] converges to some constant K as n → ∞ . 

The above difference equation as n → ∞  reduces to K = α − K2 + K , or K2 = α , i.e. 

K = α .

2.31 As δ[n] = µ[n] − µ[n −1] ,  Τ{δ[n]} = Τ{µ[n]}− Τ{µ[n −1]}⇒ h[n] = s[n] − s[n −1]

For a discrete LTI system

y[n] = h[k]x[n − k]
k =−∞

∞

∑  = s[k]−s[k −1]( )x[n − k]
k =−∞

∞

∑  = s[k]x[n − k]
k =−∞

∞

∑ − s[k −1]x[n − k]
k=−∞

∞

∑

2.32 y[n] = h[m] ˜ x [n − m]m=−∞
∞∑ .  Hence, y[n + kN]= h[m] ˜ x [n + kN − m]m=−∞

∞∑  

= h[m] ˜ x [n − m]m=−∞
∞∑ = y[n].   Thus, y[n] is also a periodic sequence with a period N.
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2.33 Now δ[n − r ] * δ[n − s]  = δ[m − r]δ[n − s − m]m=−∞
∞∑ = δ[n − r − s]

(a)  y1[n] =  x1[n] * h1[n]  = 2δ[n − 1]− 0.5δ[n − 3]( ) * 2δ[n]+ δ[n − 1]− 3δ[n − 3]( )
= 4δ[n −1] * δ[n]  – δ[n − 3] * δ[n]  + 2 δ[n −1] * δ[n −1]  – 0.5 δ[n − 3] * δ[n −1]

– 6δ[n −1] * δ[n − 3]  + 1.5 δ[n − 3] * δ[n − 3]  = 4 δ[n −1]  – δ[n − 3]  + 2 δ[n −1]

– 0.5 δ[n − 4]  – 6δ[n − 4]  + 1.5δ[n − 6]
= 4 δ[n −1]  + 2 δ[n −1]  – δ[n − 3]  – 6.5δ[n − 4]  + 1.5δ[n − 6]

(b)  y2 [n] =  x2 [n] * h 2[n] = −3δ[n −1] + δ[n + 2]( ) * −δ[n − 2] − 0.5δ[n −1] + 3δ[n − 3]( )
= − 0.5 δ[n + 1]− δ[n] + 3δ[n − 1] + 1.5δ[n − 2] + 3δ[n − 3]− 9δ[n − 4]

(c)  y3[n] =  x1[n] * h 2[n] = 

2δ[n − 1]− 0.5δ[n − 3]( ) * −δ[n − 2] − 0.5δ[n −1] + 3δ[n − 3]( )  = 

− δ[n − 2]− 2 δ[n − 3]− 6.25δ[n − 4] + 0.5δ[n − 5] – 1.5δ[n − 6]

(d)  y4 [n]=  x2 [n] * h1[n]  = −3δ[n −1] + δ[n + 2]( ) * 2δ[n]+ δ[n − 1]− 3δ[n − 3]( )  = 

2 δ[n + 2]+ δ[n +1] − δ[n −1] − 3δ[n − 2] – 9 δ[n − 4]

2.34 y[n] = g[m]h[n − m]m=N1

N2∑ .  Now, h[n – m] is defined for M1 ≤ n − m ≤ M2 .  Thus, for 

m = N1 , h[n–m] is defined for M1 ≤ n − N1 ≤ M2 , or equivalently, for 
M1 + N1 ≤ n ≤ M2 + N1.  Likewise, for m = N2 , h[n–m] is defined for M1 ≤ n − N2 ≤ M2 , or 
equivalently, for M1 + N2 ≤ n ≤ M2 + N2 .
(a)  The length of y[n] is M2 + N2 − M1 – N1 + 1.  

(b) The range of n for y[n] ≠ 0  is min M1 + N1,M1 + N2( ) ≤ n ≤ max M2 + N1,M2 + N2( ) , i.e.,  
M1 + N1 ≤ n ≤ M2 + N2 .

2.35 y[n] = x1[n] * x2[n] = x1[n − k]x2[k]
k =−∞

∞∑ .

Now, v[n] = x1[n – N1] * x2[n – N2] = x1[n − N1 − k]x2[k − N2 ]k =−∞
∞∑ .  Let 

k − N2 = m.   Then v[n] = x1[n − N1 − N2 − m]x2 [m]m=−∞
∞∑ = y[n − N1 − N2 ],

2.36 g[n] = x1[n] * x2[n] * x3[n] = y[n] * x3[n] where y[n] = x1[n] * x2[n].  Define v[n] = 

x1[n – N1] * x2[n – N2].  Then, h[n] = v[n] * x3[n – N3] .  From the results of Problem 

2.32, v[n] = y[n − N1 − N2 ] .  Hence, h[n] = y[n − N1 − N2 ] * x3[n – N3] .  Therefore, 
using the results of Problem 2.32 again we get h[n] = g[n– N1– N2– N3] .
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2.37  y[n] = x[n] * h[n] = x[n − k]h[k]
k =−∞

∞

∑ .  Substituting k by n-m in the above expression, we 

get  y[n] = x[m]h[n − m]
m=−∞

∞

∑  = h[n] * x[n].  Hence convolution operation is commutative.

Let y[n] = x[n] * h1[n]+ h2[n]( )  = = x[n − k] h1[k]+ h2[k]( )
k =−∞

∞

∑

= x[n − k]h1[k]+ x[n − k]h2[k]
k=−∞

k =∞

∑
k =−∞

∞

∑  = x[n] * h1[n] + x[n] * h2[n].  Hence convolution is

distributive.

2.38 x3[n] * x2[n] * x1[n] = x3[n] * (x2[n] * x1[n])

As x2[n] * x1[n] is an unbounded sequence hence the result of this convolution cannot be 

determined. But x2[n] * x3[n] * x1[n] = x2[n] * (x3[n] * x1[n]) . Now x3[n] * x1[n] =
0 for all values of n hence the overall result is zero. Hence for the given sequences 

x3[n] * x2[n] * x1[n] ≠ x2[n] * x3[n] * x1[n] .

2.39  w[n] = x[n] * h[n] * g[n].  Define y[n] = x[n] * h[n] = x[k]h[n − k]
k
∑  and f[n] =

h[n] * g[n] = g[k]h[n − k]
k
∑ .   Consider w1[n] = (x[n] * h[n]) * g[n] =  y[n] * g[n] 

= g[m] x[k]h[n − m − k].
k
∑

m
∑   Next consider w2[n] = x[n] * (h[n] * g[n]) = x[n] * f[n] 

= x[k] g[m]h[n − k − m].
m
∑

k
∑   Difference between the expressions for w1[n] and w2[n] is 

that the order of the summations is changed.

A)  Assumptions:  h[n] and g[n] are causal filters, and x[n] = 0 for n < 0.  This implies

y[m]=
0, form < 0,

x[k]h[m − k],
k =0

m∑ form ≥ 0.

 
 
 

  

Thus, w[n] = g[m]y[n − m]
m=0

n∑ = g[m] x[k]h[n − m − k]
k=0

n −m∑m=0

n∑ .

All sums have only a finite number of terms.  Hence, interchange of the order of summations 

is justified and will give correct results.

B)  Assumptions: h[n] and g[n] are stable filters, and x[n] is a bounded sequence with 

x[n] ≤ X.   Here, y[m]= h[k]x[m − k]
k=−∞

∞∑  = h[k]x[m − k]
k=k1

k2∑ + εk1,k2
[m]  with 

εk1,k2
[m] ≤ εnX.
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In this case all sums have effectively only a finite number of terms and the error can be 

reduced by choosing k1 and k2 sufficiently large.  Hence in this case the problem is again 

effectively reduced to that of the one-sided sequences.  Here, again an interchange of 

summations is justified and will give correct results.

Hence for the convolution to be associative, it is sufficient that the sequences be stable and 

single-sided.

2.40 y[n] = x[n − k]h[k]
k=−∞

∞∑ .   Since h[k] is of length M and defined for 0 ≤ k ≤ M – 1,  the 

convolution sum reduces to  y[n] = x[n − k]h[k]
k=0

(M−1)∑ . y[n] will be non-zero for all those 

values of n and k for which n – k satisfies 0 ≤ n − k ≤ N −1 .

Minimum value of n – k = 0 and occurs for lowest n at n = 0 and k = 0.  Maximum value 
of  n – k  = N–1 and occurs for maximum value of k at M – 1.  Thus n – k = M – 1 
⇒ n = N + M − 2 .   Hence the total number of non-zero samples = N + M – 1.

2.41  y[n] = x[n] * x[n] = x[n − k]x[k]
k =−∞

∞

∑ .

Since x[n – k] = 0 if n – k < 0 and x[k] = 0 if k < 0 hence the above summation reduces to

y[n] = x[n − k]x[k]
k =n

N −1

∑  =
n + 1, 0 ≤ n ≤ N −1,

2N − n, N ≤ n ≤ 2N − 2.

 
 
 

  

Hence the output is a triangular sequence with a maximum value of N.  Locations of the 

output samples with values N
4

 are n = N
4

 – 1 and 7N
4

 – 1.  Locations of the output samples 

with values N
2

 are n = N
2

 – 1 and 3N
2

 – 1.   Note:  It is tacitly assumed that N is divisible by 4 

otherwise N
4

 is not an integer.

2.42 y[n] = h[k]x[n − k]k=0
N−1∑ .  The maximum value of y[n] occurs at  n = N–1 when all terms 

in the convolution sum are non-zero and is given by 

y[N − 1]= h[k] = kk =1
N∑k =0

N−1∑ =
N(N + 1)

2
.

2.43 (a)  y[n] = gev[n] * hev[n] = h ev[n − k]gev[k]
k=−∞

∞

∑ .  Hence, y[–n] = h ev[−n − k]gev[k]
k=−∞

∞

∑ .

Replace k by – k.  Then above summation becomes

y[−n] = hev[−n + k]gev[−k]
k=−∞

∞

∑  = h ev[−(n − k)]gev[−k]
k=−∞

∞

∑  = h ev[(n − k)]gev[k]
k=−∞

∞

∑
           = y[n].

Hence  gev[n] * hev[n] is even.
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(b) y[n] = gev[n] * hod[n] =  hod[(n − k)]gev[k]
k=−∞

∞

∑ .  As a result,

y[–n] = hod[(−n − k)]gev[k]
k=−∞

∞

∑  = hod[−(n − k)]gev[−k]
k=−∞

∞

∑  =  − hod[(n − k)]gev[k]
k=−∞

∞

∑ .

Hence gev[n] * hod[n] is odd.

(c) y[n] = god[n] * hod[n] =  hod[n − k]god[k]
k=−∞

∞

∑ .  As a result,

y[–n] = hod[−n − k]god[k]
k=−∞

∞

∑  = hod[−(n − k)]god[−k]
k=−∞

∞

∑  = hod[(n − k)]god[k]
k=−∞

∞

∑ .

Hence  god[n] * hod[n] is even.

2.44 (a)  The length of x[n] is 7 – 4 + 1 = 4.  Using x[n]=
1

h[0]
y[n] − h[k]x[n − k]k =1

7∑{ },  

we arrive at x[n] = {1  3  –2  12}, 0 ≤ n ≤ 3

(b)  The length of x[n] is 9 – 5 + 1 = 5.  Using x[n]=
1

h[0]
y[n] − h[k]x[n − k]k =1

9∑{ },  we 

arrive at x[n] = {1    1     1     1     1}, 0 ≤ n ≤ 4.

(c)  The length of x[n] is 5 – 3 + 1 = 3.  Using x[n]=
1

h[0]
y[n] − h[k]x[n − k]k =1

5∑{ },  we get 

x[n] = −4 + j, −0.6923 + j0.4615, 3.4556 + j1.1065{ }, 0 ≤ n ≤ 2.

2.45 y[n] = ay[n – 1] + bx[n].  Hence, y[0] = ay[–1] + bx[0].  Next,

y[1] = ay[0] + bx[1]  = a2y[−1]+ a b x[0] + b x[1] .  Continuing further in similar way we 

obtain   y[n] = an+1y[−1]+ an−kb x[k]
k =0

n∑ .

(a) Let y1[n]  be the output due to an input x1[n].  Then y1[n] = an +1y[−1] + an−kb x1[k]
k=0

n

∑ .

If x1[n] = x[n – n 0 ] then

y1[n] = an +1y[−1] + an−k b x[k − n0 ]
k=n0

n

∑  = an+1y[−1]+ an −n 0 − rb x[r]
r=0

n −n 0

∑ .

However, y[n − n0 ] = an−n0 +1y[−1]+ an−n0 − rb x[r]
r=0

n−n0

∑ .

Hence y1[n] ≠ y[n − n0 ] unless y[–1] = 0.   For example, if y[–1] = 1 then the system is time 

variant. However if y[–1] = 0 then the system is time -invariant.

21



(b) Let y1[n] and y2[n] be the outputs due to the inputs x1[n] and x2[n].  Let y[n] be the output 

for an input α x1[n]+ βx2[n]. However,

αy1[n]+ βy2[n]= αan+1y[−1]+ βan+1y[−1]+ α an −k b x1[k]
k=0

n

∑ + β an −k b x2[k]
k =0

n

∑
whereas

y[n] = an+1y[−1]+ α an −k b x1[k]
k =0

n

∑ + β an −k b x2[k]
k =0

n

∑ .

Hence the system is not linear if y[–1] = 1 but is linear if y[–1] = 0.

(c) Generalizing the above result it can be shown that for an N-th order causal discrete time 

system to be linear and time invariant we require  y[–N] = y[–N+1] =   L = y[–1] = 0.

2.46 ystep[n] = h[k]µ[n − k]k=0
n∑ = h[k],k =0

n∑  n ≥ 0,  and ystep[n] = 0,  n < 0.  Since h[k] is 

nonnegative, ystep[n]  is a monotonically increasing function of n for  n ≥ 0,  and is not 
oscillatory.  Hence, no overshoot.

2.47 (a)  f[n] = f[n – 1] + f[n – 2].  Let f[n] = αr n , then the difference equation reduces to

αr n − αr n−1 − αrn −2 = 0  which reduces to r 2 − r −1 = 0  resulting in r =
1 ± 5

2
.

Thus,  f[n] = α1
1+ 5

2

 

 
  

 

 
  

n

+ α2
1− 5

2

 

 
  

 

 
  

n

.

Since f[0] = 0 hence α1 + α2 = 0 . Also f[1] = 1 hence 
α1 + α2

2
+ 5

α1 −α2

2
= 1.

Solving for α1 and α2 , we get  α1 = – α2 = 1
5

.   Hence, f[n] =
1
5

1 + 5
2

 

 
  

 

 
  

n

− 1
5

1 − 5
2

 

 
  

 

 
  

n

.

(b) y[n] = y[n – 1] + y[n – 2] + x[n – 1].  As system is LTI, the initial conditions are equal 

to zero.

Let x[n] = δ[n].  Then, y[n] = y[n – 1] + y[n – 2] + δ[n −1] .  Hence,

y[0] = y[– 1] + y[– 2] = 0 and  y[1] = 1.  For n > 1 the corresponding difference equation is 

y[n] = y[n – 1] + y[n – 2] with initial conditions y[0] = 0 and y[1] = 1, which are the same as 

those for the solution of Fibonacci's sequence. Hence the solution for n > 1 is given by

y[n] =
1
5

1 + 5
2

 

 
  

 

 
  

n

− 1
5

1 − 5
2

 

 
  

 

 
  

n

Thus f[n] denotes the impulse response of a causal LTI system described by the difference 

equation y[n] = y[n – 1] + y[n – 2] + x[n – 1].

2.48 y[n] = αy[n−1]+x[n] .  Denoting, y[n] = yre[n] + j yim[n], and α  = a + jb, we get,

y re[n]+ jyim[n] = (a + jb)(y re[n −1]+ jyim[n −1]) + x[n] .
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Equating the real and the imaginary parts , and noting that x[n] is real, we get
y re[n] = ay re[n −1]− b yim[n −1]+ x[n],                              (1)

yim [n] = b yre[n −1]+ ay im[n −1]

Therefore

yim [n −1] = 1
a

yim[n]− b
a

yre[n −1]

Hence a single input, two output difference equation is

y re[n] = ayre[n −1]− b
a

yim[n]+ b2

a
y re[n −1]+ x[n]

thus  b yim [n −1] = −ay re[n −1] +(a2 + b2)yre[n − 2]+ a x[n −1] .

Substituting the above in Eq. (1) we get

 y re[n] = 2a yre[n − 1]− (a2 + b2 )y re[n − 2] + x[n]− a x[n −1]

which is a second-order difference equation representing y re[n] in terms of x[n].

2.49 From Eq. (2.59), the output y[n] of the factor-of-3 interpolator is given by 

y[n] = xu[n] +
1

3
x u[n − 1]+ xu[n + 2]( ) +

2

3
xu[n − 2]+ xu[n +1]( )  where x u[n] is the output of 

the factor-of-3 up-sampler for an input x[n].  To compute the impulse response we set x[n] = 
δ[n] , in which case, x u[n]= δ[3n].   As a result, the impulse response is given by 

h[n]= δ[3n] +
1

3
δ[3n − 3] + δ[3n + 6]( )+

2

3
δ[3n − 6] + δ[3n + 3]( )  or  

=
1

3
δ[n + 2] +

2

3
δ[n +1] + δ[n] +

1

3
δ[n − 1]+

2

3
δ[n − 2].

2.50 The output y[n] of the factor-of-L interpolator is given by 

y[n] = xu[n] +
1

L
xu[n − 1]+ xu [n + L − 1]( ) +

2

L
xu[n − 2]+ xu[n + L − 2]( )    

  
+K +

L − 1

L
x u[n − L + 1] + xu [n + 1]( )  where x u[n] is the output of the factor-of-L up-

sampler for an input x[n].  To compute the impulse response we set x[n] = δ[n] , in which 
case, x u[n]= δ[Ln].  As a result, the impulse response is given by 

h[n]= δ[Ln]+
1

L
δ[Ln − L]+ δ[Ln + L(L − 1)]( ) +

2

L
δ[Ln − 2L] + δ[Ln + L(L − 2)]( )

  
+K +

L − 1

L
δ[Ln − L(L – 1)] + δ[Ln + L]( )  = 

  

1

L
δ[n + (L − 1)] +

2

L
δ[n + (L − 2)] +K    

+
L −1

L
δ[n +1] + δ[n] +

1

L
δ[n − 1]+

2

L
δ[n − 2] +

L − 1

L
δ[n − (L − 1)]

2.51 The first-order causal LTI system is characterized by the difference equation 
y[n] = p0 x[n]+ p1x[n −1]− d1y[n −1] .  Letting x[n] = δ[n]  we obtain the expression for its 

impulse response h[n]= p0δ[n] + p1δ[n −1] − d1h[n −1] .  Solving it for n = 0, 1, and 2, we get 

h[0] = p0 , h[1]= p1 − d1h[0] = p1 − d1p0,  and h[2] = −d1h[1] == −d1 p1 − d1p0( ).   Solving these 

equations we get p0 = h[0],  d1 = −
h[2]

h[1]
,  and p1 = h[1] −

h[2]h[0]

h[1]
.
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2.52  pkx[n − k] = dk y[n − k]
k=0

N

∑
k=0

M

∑ .

Let the input to the system be x[n] = δ[n] .  Then, pkδ[n − k] = dk h[n − k]
k=0

N

∑
k=0

M

∑ . Thus,

pr = dkh[r − k]
k =0

N

∑ .   Since the system is assumed to be causal, h[r – k] =  0  ∀ k >  r.

pr = dkh[r − k]
k =0

r

∑  = h[k]dr−k
k =0

r

∑ .

2.53 The impulse response of the cascade is given by h[n] = h1[n] * h2[n] where

h1[n]= αnµ[n]  and h 2[n] = βnµ[n] .  Hence, h[n] = αkβn−k

k=0

n

∑
 

 
 
 

 

 
 
 µ[n].

2.54  Now, h[n] = αnµ[n].  Therefore y[n] = h[k]x[n − k]
k =−∞

∞

∑  = αk

k =0

∞

∑ x[n − k]

        = x[n]+ αk

k =1

∞

∑ x[n − k] = x[n]+ α αk

k =0

∞

∑ x[n −1 − k]  = x[n]+ αy[n − 1] .

     Hence, x[n] = y[n] – αy[n −1] .  Thus the inverse system is given by  y[n]= x[n] – αx[n −1].

The impulse response of the inverse system is given by g[n]= 1
↑

−α
 
 
 

 
 
 

.

2.55  y[n] = y[n −1] + y[n − 2] + x[n −1] .  Hence,  x[n – 1] = y[n] – y[n – 1] – y[n – 2], i.e.

x[n] = y[n + 1] – y[n] – y[n – 1].  Hence the inverse system is characterised by

y[n] = x[n + 1] – x[n] – x[n – 1] with an impulse response given by g[n] = 1 –1
↑

–1
 
 
 

 
 
 
.

2.56  y[n] = p0 x[n]+ p1x[n −1]− d1y[n −1]  which leads to  x[n] = 1
p0

y[n]+
d1

p0
y[n −1]−

p1

p0
x[n − 1]

Hence the inverse system is characterised by the difference equation

y1[n] = 1
p0

x1[n]+
d1

p0
x1[n −1]−

p1

p0
y1[n −1].

2.57  (a)  From the figure shown below we observe

x[n] y[n]h1[n] h 2[n]

h3[n] h4 [n]

h 5[n]

v[n]

↓
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v[n] = (h1[n] + h3[n] * h5[n]) * x[n] and y[n] = h2[n] * v[n] + h3[n] * h4[n] * x[n].

Thus, y[n] = (h2[n] * h1[n] + h2[n] * h3[n] * h5[n] + h3[n] * h4[n]) * x[n].

Hence the impulse response is given by

h[n] = h2[n] * h1[n] + h2[n] * h3[n] * h5[n] + h3[n] * h4[n]

(b) From the figure shown below we observe

x[n] y[n]h1[n ] h2[n] h 3[n]

h4[n]

h5[n]

v[n]
↓

v[n] = h4[n] * x[n] + h1[n] * h2[n] * x[n].

Thus, y[n] = h3[n] * v[n] + h1[n] * h5[n] * x[n]

= h3[n] * h4[n] * x[n] + h3[n] * h1[n] * h2[n] * x[n] + h1[n] * h5[n] * x[n]

Hence the impulse response is given by

h[n] = h3[n] * h4[n] + h3[n] * h1[n] * h2[n] + h1[n] * h5[n]

2.58  h[n] = h1[n] * h 2[n]+ h3[n]

Now h1[n] * h 2[n] = 2 δ[n − 2] − 3 δ[n + 1]( ) * δ[n − 1]+ 2 δ[n + 2]( )
= 2 δ[n − 2] * δ[n −1]  – 3δ[n + 1] * δ[n −1]  + 2 δ[n − 2] * 2 δ[n + 2]

– 3δ[n + 1] * 2 δ[n + 2]  = 2 δ[n − 3]  – 3δ[n] + 4 δ[n]  – 6 δ[n + 3]

= 2 δ[n − 3]  + δ[n]  – 6 δ[n + 3] .  Therefore,
y[n] = 2 δ[n − 3]  + δ[n]  – 6 δ[n + 3]  + 5 δ[n − 5] + 7 δ[n − 3] + 2 δ[n −1] −δ[n] + 3 δ[n + 1]

= 5 δ[n − 5] + 9 δ[n − 3] + 2 δ[n −1] + 3δ[n + 1] − 6δ[n + 3]

2.59  For a filter with complex impulse response, the first part of the proof is same as that for a 

filter with real impulse response.   Since, y[n] = h[k]x[n − k]
k =−∞

∞

∑ ,

y[n] = h[k]x[n − k]
k=−∞

∞

∑  ≤ h[k]
k=−∞

∞

∑ x[n − k].

Since the input is bounded hence 0 ≤ x[n] ≤ Bx . Therefore, y[n] ≤ Bx h[k]
k=−∞

∞

∑ .

So if  h[k]
k=−∞

∞

∑ = S < ∞  then y[n] ≤ BxS  indicating that y[n] is also bounded.
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To proove the converse we need to show that if a bounded output is produced by a bounded 

input then S < ∞ .   Consider the following bounded input defined by x[n] = h *[−n]
h[−n]

.

Then y[0]= h * [k]h[k]
h[k]

k =−∞

∞

∑ = h[k]
k =−∞

∞

∑ = S.   Now since the output is bounded thus S < ∞ .

Thus for a filter with complex response too is BIBO stable if and only if  h[k]
k=−∞

∞

∑ = S < ∞ .

2.60  The impulse response of the cascade is g[n] = h1[n] * h2[n] or equivalently, 

g[k] = h1[k − r]h2[r]
r=–∞

∞

∑ .   Thus,

g[k]
k=–∞

∞

∑ = h1[k – r]
r=–∞

∞

∑
k=–∞

∞

∑ h 2[r]   ≤ h1[k]
k=–∞

∞

∑
 

 
 
 

 

 
 
 h2[r]

r=–∞

∞

∑
 

 
 
 

 

 
 
 .

Since h1[n] and h2[n] are stable,  h1[k]
k
∑ < ∞  and  h2[k]

k
∑ < ∞ . Hence,  g[k]

k
∑ < ∞ . 

Hence the cascade of two stable LTI systems is also stable.

2.61  The impulse response of the parallel structure g[n] = h1[n] + h2[n] . Now, 

g[k]
k
∑ = h1[k] + h2[k]

k
∑ ≤ h1[k]

k
∑ + h2[k]

k
∑ .   Since h1[n] and h2[n] are stable,  

h1[k]
k
∑ < ∞  and  h2[k]

k
∑ < ∞ . Hence,  g[k]

k
∑ < ∞ . Hence the parallel connection of 

two stable LTI systems is also stable.

2.62  Consider a cascade of two passive systems. Let y1[n] be the output of the first system which is 

the input to the second system in the cascade.  Let y[n] be the overall output of the cascade.   

The first system being passive we have y1[n]
2

n =−∞

∞

∑ ≤ x[n] 2

n=−∞

∞

∑ .

Likewise the second system being also passive we have  y[n] 2

n =−∞

∞

∑ ≤ y1[n]
2

n =−∞

∞

∑ ≤ x[n] 2

n=−∞

∞

∑ ,

indicating that cascade of two passive systems is also a passive system.  Similarly one can 
prove that cascade of two lossless systems is also a lossless system.

2.63  Consider a parallel connection of two passive systems with an input x[n] and output y[n].  
The outputs of the two systems are y1[n]  and y2 [n] , respectively.  Now, 

y1[n]
2

n =−∞
∞∑ ≤ x[n] 2

n=−∞
∞∑ ,  and y2[n]

2
n =−∞
∞∑ ≤ x[n] 2

n=−∞
∞∑ .

Let y1[n] = y2 [n]= x[n]  satisfying the above inequalities.  Then y[n] = y1[n]+ y2[n] = 2x[n]  

and as a result, y[n] 2
n =−∞
∞∑ = 4 x[n] 2

n =−∞
∞∑ > x[n] 2

n =−∞
∞∑ .   Hence, the parallel 

connection of two passive systems may not be passive.
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2.64  Let   pkx[n − k]
k=0

M

∑ = y[n]+ d ky[n − k]
k=1

N

∑  be the difference equation representing the causal 

IIR digital filter. For an input x[n] = δ[n] , the corresponding output is then y[n] = h[n], the 

impulse response of the filter.  As there are M+1 {pk} coefficients, and N {dk} coefficients, 

there are a total of N+M+1 unknowns.  To determine these coefficients from the impulse 

response samples, we compute only the first N+M+1 samples.  To illstrate the method, without 

any loss of generality, we assume N = M = 3.  Then , from the difference equation 

reprsentation we arrive at the following N+M+1 = 7 equations:
h[0]= p0 ,

h[1]+ h[0]d1 = p1,

h[2]+ h[1]d1 + h[0]d2 = p2,

h[3]+ h[2]d1 + h[1]d2 + h[0]d3 = p3,

h[4]+ h[3]d1 + h[2]d2 + h[1]d3 = 0,

h[5]+ h[4]d1 + h[3]d 2 + h[2]d3 = 0,

h[6]+ h[5]d1 + h[4]d2 + h[3]d3 = 0.

Writing the last three equations in matrix form we arrive at

h[4]
h[5]
h[6]

 

 
 
 

 

 
 
 +

h[3] h[2] h[1]
h[4] h[3] h[2]
h[5] h[4] h[3]

 

 
 
 

 

 
 
 

d1
d2
d3

 

 

 
 
 

 

 

 
 
 

=
0
0
0

 

 
 
 

 

 
 
 ,

and hence, 
d1
d2
d3

 

 

 
 
 

 

 

 
 
 

= –
h[3] h[2] h[1]
h[4] h[3] h[2]
h[5] h[4] h[3]

 

 
 
 

 

 
 
 

–1 h[4]
h[5]
h[6]

 

 
 
 

 

 
 
 .

Substituting these values of {di} in the first four equations written in matrix form we get
p0
p1
p2
p3

 

 

 
 
 
 

 

 

 
 
 
 

=
h[0] 0 0 0
h[1] h[0] 0 0
h[2] h[1] h[0] 0
h[3] h[2] h[1] h[0]

 

 

 
 
 

 

 

 
 
 

1
d1
d2
d3

 

 

 
 
 
 

 

 

 
 
 
 
.

2.65
  
y[n] = y[−1] + x[l ]l =0

n∑ = y[−1]+ l µ[l ]l =0
n∑ = y[−1] + ll =0

n∑ = y[−1]+
n(n + 1)

2
.

(a) For y[–1] = 0, y[n] = 
n(n +1)

2

(b)  For y[–1] = –2, y[n] = –2 + 
n(n +1)

2
 = 

n 2 + n − 4

2
.

2.66  y(nT) = y (n – 1)T( ) + x(τ)dτ
(n−1)T

nT
∫ = y (n – 1)T( ) + T ⋅x (n – 1)T( ).  Therefore, the difference 

equation representation is given by y[n] = y[n − 1]+ T ⋅ x[n − 1], where y[n] = y(nT)  and 
x[n]= x(nT).
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2.67  
  
y[n] =

1

n
x[l ]l =1

n∑ =
1

n
x[l ]l =1

n −1∑ +
1

n
x[n],  n ≥ 1.   

  
y[n − 1] =

1

n − 1
x[l ]l =1

n−1∑ ,  n ≥ 1.   Hence, 

  
x[l ]l =1

n −1∑ = (n − 1)y[n − 1].  Thus, the difference equation representation is given by 

y[n] =
n − 1

n
 
   

  y[n −1] +
1

n
x[n].  n ≥ 1.

2.68 y[n] + 0.5 y[n − 1]= 2 µ[n], n ≥ 0   with y[−1] = 2.   The total solution is given by 
y[n] = yc[n] + yp[n]  where yc[n]  is the complementary solution and y p[n] is the particular 
solution.

yc[n]  is obtained ny solving yc[n] + 0.5 yc[n − 1]= 0 .  To this end we set yc[n] = λn,  which 

yields λn + 0.5 λn−1 = 0  whose solution gives λ = −0.5.   Thus, the complementary solution is 

of the form yc[n] = α(−0.5)n .
For the particular solution we choose y p[n]= β.   Substituting this solution in the difference 

equation representation of the system we get β + 0.5β = 2 µ[n].  For  n = 0 we get 
β(1 + 0.5) = 2  or β = 4 / 3.

The total solution is therefore given by y[n] = yc[n] + yp[n]  = α(−0.5)n +
4

3
, n ≥ 0.

Therefore y[–1] = α(−0.5)−1 +
4

3
= 2  or α = –

1

3
.   Hence, the total solution is given by

y[n] = –
1

3
(−0.5)n +

4

3
, n ≥ 0.

2.69 y[n] + 0.1y[n −1] − 0.06y[n − 2]= 2n µ[n]  with y[–1] = 1 and y[–2] = 0.  The complementary 
solution yc[n]  is obtained by solving yc[n] + 0.1 yc[n −1] − 0.06yc[n − 2] = 0 .   To this end we 

set yc[n] = λn,  which yields λn + 0.1λn−1 – 0.06λn−2 = λn−2 (λ2 + 0.1λ – 0.06) = 0  whose 
solution gives  λ1 = –0.3  and λ2 = 0.2 .   Thus, the complementary solution is of the form 

yc[n] = α1(−0.3)n + α2(0.2)n .

For the particular solution we choose y p[n]= β(2)n .   ubstituting this solution in the difference 

equation representation of the system we get β2n + β(0.1)2n−1 – β(0.06)2n−2 = 2n µ[n].  For

n = 0 we get β+ β(0.1)2−1 – β(0.06)2−2 =1 or β = 200 / 207 = 0.9662 .

The total solution is therefore given by y[n] = yc[n] + yp[n]  = α1(−0.3)n + α2(0.2)n +
200

207
2n.

From the above y[−1] = α1(−0.3)−1 + α2 (0.2)−1 +
200

207
2−1 = 1 and 

y[−2] = α1(−0.3)−2 + α2 (0.2)−2 +
200

207
2−2 = 0  or equivalently, –

10

3
α1 + 5α2 =

107

207
 and 

100

9
α1 + 25α2 = –

50

207
 whose solution yields α1 = –0.1017 and α2 = 0.0356.   Hence, the total 

solution is given by y[n] = −0.1017(−0.3)n + 0.0356(0.2)n + 0.9662(2)n ,  for n ≥ 0.

2.70 y[n] + 0.1y[n −1] − 0.06y[n − 2]= x[n] − 2 x[n − 1] with x[n]= 2n µ[n] , and y[–1] = 1 and y[–2] 
= 0.    For the given input, the difference equation reduces to 

y[n] + 0.1y[n −1] − 0.06y[n − 2]= 2n µ[n] − 2 (2n −1)µ[n −1] = δ[n].   The solution of this 
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equation is thus the complementary solution with the constants determined from the given 
initial conditions y[–1] = 1 and y[–2] = 0.

From the solution of the previous problem we observe that the complementary is of the 

form yc[n] = α1(−0.3)n + α2(0.2)n .

For the given initial conditions we thus have

y[−1] = α1(−0.3)−1 + α2 (0.2)−1 = 1 and y[−2] = α1(−0.3)−2 + α2 (0.2)−2 = 0 .  Combining these 

two equations we get 
−1 / 0.3 1 / 0.2

1 / 0.09 1 / 0.04
 

 
 

 

 
 

α1

α2

 

 
 

 

 
 =

1

0
 

 
 

 

 
  which yields α1 = − 0.18 and α2 = 0.08.   

Therefore, y[n] = − 0.18(−0.3)n + 0.08(0.2)n .

2.71 The impulse response is given by the solution of the difference equation 
y[n] + 0.5 y[n − 1]= δ[n].   From the solution of Problem 2.68, the complementary solution is 

given by yc[n] = α(−0.5)n .   To determine the constant  we note y[0] = 1 as y[–1] = 0.  From

the complementary solution y[0] = α(–0.5)0 = α,  hence α  = 1.  Therefore, the impulse 

response is given by h[n]= (−0.5)n .

2.72 The impulse response is given by the solution of the difference equation 
y[n] + 0.1y[n −1] − 0.06y[n − 2]= δ[n] .  From the solution of Problem 2.69, the complementary

solution is given by yc[n] = α1(−0.3)n + α2(0.2)n .  To determine the constants α1 and α2 , we 
observe y[0] = 1 and y[1] + 0.1y[0] = 0 as y[–1] = y[–2] = 0.  From the complementary 

solution y[0] = α1(−0.3)0 + α2(0.2)0 = α1 + α2 = 1,  and 

y[1] = α1(−0.3)1 + α2 (0.2)1 = –0.3 α1 + 0.2α2 = −0.1.   Solution of these equations yield α1 = 0.6

and α2 = 0.4.   Therefore, the impulse response is given by h[n]= 0.6(−0.3)n + 0.4(0.2)n .

2.73 Let An = nK (λ i )
n .  Then 

An+1

An
=

n +1

n

K

λ i .  Now lim
n→∞

n + 1

n

K

= 1.   Since λ i < 1,  there exists

a positive integer No  such that for all n > No , 0 <
An +1

An
<

1 + λ i

2
< 1.   Hence Ann =0

∞∑  

converges.

2.74 (a) x[n]= 3 −2 0 1 4 5 2{ }, −3 ≤ n ≤ 3.
  
rxx[l ] = x[n]x[n − l ]n =−3

3∑ .  Note,

rxx[−6] = x[3]x[−3]= 2 × 3 = 6,   rxx[−5]= x[3]x[−2]+ x[2]x[−3] = 2 × (−2) + 5 × 3 =11,
rxx[−4] = x[3]x[−1] + x[2]x[−2] + x[1]x[−3] = 2 × 0 + 5 × (−2) + 4 × 3 = 2,
rxx[−3]= x[3]x[0]+ x[2]x[−1] + x[1]x[−2] + x[0]x[−3] = 2 ×1 + 5 × 0 + 4 × (−2) +1 × 3 = −3,
rxx[−2] = x[3]x[1] + x[2]x[0]+ x[1]x[−1]+ x[0]x[−2] + x[−1]x[−3] =11,
rxx[−1] = x[3]x[2] + x[2]x[1]+ x[1]x[0] + x[0]x[−1] + x[−1]x[−2] + x[−2]x[−3]= 28,
rxx[0] = x[3]x[3] + x[2]x[2]+ x[1]x[1] + x[0]x[0] + x[−1]x[−1] + x[−2]x[−2] + x[−3]x[−3] = 59.
The samples of   rxx[l ]  for   1 ≤ l ≤ 6  are determined using the property   rxx[l ] = rxx[−l ] . Thus,

  rxx[l ] = 6 11 2 −3 11 28 59 28 11 −3 2 11 6{ },     −6 ≤ l ≤ 6.

y[n] = 0 7 1 −3 4 9 −2{ } , −3 ≤ n ≤ 3.  Following the procedure outlined above we get
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  ryy[l ] = 0 −14 61 43 −52 10 160 10 −52 43 61 −14 0{ },    −6 ≤ l ≤ 6.

w[n]= −5 4 3 6 −5 0 1{ }, −3 ≤ n ≤ 3.   Thus,

  rww[l ] = −5 4 28 −44 −11 −20 112 −20 −11 −44 28 4 −5{ },    −6 ≤ l ≤ 6.

(b)  
  
rxy[l ] = x[n]y[n − l ]n =−3

3∑ .  Note, rxy[−6] = x[3]y[−3]= 0,  

rxy[−5]= x[3]y[−2]+ x[2]y[−3] =14,   rxy[−4] = x[3]y[−1] + x[2]y[−2] + x[1]y[−3] = 37,

rxy[−3]= x[3]y[0]+ x[2]y[−1] + x[1]y[−2] + x[0]y[−3] = 27,

rxy[−2] = x[3]y[1] + x[2]y[0]+ x[1]y[−1]+ x[0]y[−2] + x[−1]y[−3]= 4,

rxy[−1] = x[3]y[2] + x[2]y[1]+ x[1]y[0] + x[0]y[−1] + x[−1]y[−2] + x[−2]y[−3]= 27,

rxy[0] = x[3]y[3] + x[2]y[2]+ x[1]y[1] + x[0]y[0]+ x[−1]y[−1] + x[−2]y[−2]+ x[−3]y[−3]= 40,

rxy[1] = x[2]y[3]+ x[1]y[2] + x[0]y[1] + x[−1]y[0] + x[−2]y[−1] + x[−3]y[−2] = 49,

rxy[2] = x[1]y[3]+ x[0]y[2] + x[−1]y[1] + x[−2]y[0] + x[−3]y[−1]= 10,

rxy[3] = x[0]y[3] + x[−1]y[2]+ x[−2]y[1]+ x[−3]y[0] = −19,

rxy[4] = x[−1]y[3] + x[−2]y[2]+ x[−3]y[1] = −6,  rxy[5]= x[−2]y[3]+ x[−3]y[2]= 31,

rxy[6]= x[−3]y[3] = −6.   Hence,

  rxy[l ] = 0 14 37 27 4 27 40 49 10 −19 −6 31 −6,{ },    −6 ≤ l ≤ 6.

  
rxw[l ] = x[n]w[n − l ]n =−3

3∑  = −10 −17 6 38 36 12 −35 6 1 29 −15 −2 3{ },  

  −6 ≤ l ≤ 6.

2.75 (a)  x1[n] = αnµ[n].   
  
rxx[l ] = x1[n]x1[n − l ]n =−∞

∞∑ = αn
n=−∞
∞∑ µ[n] ⋅ αn −l µ[n − l ] 

  
= α2 n−l µ[n − l ]n=0

∞∑  

  

=
α2n− l

n=0
∞∑ = α−l

1 − α2 , for l < 0,

α2 n−l
n= l
∞∑ = α l

1 − α2 for l ≥ 0.

 

 
  

 
 
 

Note for   l ≥ 0,  
  
rxx[l ] =

α l

1 − α2 ,  and for   l < 0,  
  
rxx[l ] =

α−l

1 − α2 .   Replacing   l  with   − l  in the 

second expression we get 
  
rxx[− l ]=

α−(− l )

1 − α2 =
αl

1 − α2 = rxx[l ].   Hence,   rxx[l ]  is an even function 

of    l .

Maximum value of   rxx[l ]  occurs at   l = 0 since   α l  is a decaying function for increasing   l  
when α < 1.

(b)  x2 [n]=
1, 0 ≤ n ≤ N −1,

0, otherwise.
 
 
 

  
  
rxx[l ] = x2[n − l ]n =0

N −1∑ ,  where 
  
x2 [n − l] =

1, l ≤ n ≤ N −1 + l ,

0, otherwise.
 
 
 
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Therefore, 

  

rxx[l ] =

0, for l < −(N − 1),

N + l , for – (N – 1) ≤ l < 0,

N, for l = 0,

N − l , for 0 < l ≤ N − 1,

0, for l > N −1.

 

 

 
  

 

 
 
 

It follows from the above   rxx[l ]  is a trinagular function of   l , and hence is even with a 
maximum value of N at   l  = 0

2.76 (a)  x1[n] = cos
πn

M
 
   

   where M is a positive integer.  Period of x1[n]  is 2M, hence 

  
rxx[l ] =

1

2M
x1[n]n=0

2M−1∑ x1[n + l ] =
1

2M
cos

πn

M
 
   

  n=0
2M−1∑ cos

π(n + l )

M
 
   

   

  
=

1

2M
cos

πn

M
 
   

  n =0
2M−1∑ cos

πn

M
 
   

  cos
πl

M
 
   

  − sin
πn

M
 
   

  sin
πl

M
 
   

   
 
 

 
 
 

 
  
=

1

2M
cos

πl

M
 
   

  cos2 πn

M
 
   

  n=0
2M−1∑ .

From the solution of Problem 2.16 cos2 πn

M
 
   

  n =0
2M−1∑ =

2M

2
= M.   Therefore, 

  
rxx[l ] =

1

2
cos

πn

M
 
   

  .

(b)  x2 [n]= n mod ulo 6 = 0 1 2 3 4 5{ }, 0 ≤ n ≤ 5.    It is a peridic sequence with a period 

6.  Thus,, 
  
rxx[l ] =

1

6
x2[n]x2[n + l ]n =0

5∑ , 0 ≤ l ≤ 5.   It is also a peridic sequence with a period 6.

rxx[0] =
1

6
(x2[0]x2[0]+ x2[1]x2[1]+ x2[2]x2[2]+ x2[3]x2[3]+ x2[4]x2[4]+ x2[5]x2[5]) =

55

6
,

rxx[1] =
1

6
(x2[0]x2[1] + x2 [1]x2[2]+ x2[2]x2[3] + x2[3]x2[4] + x2 [4]x2[5] + x2 [5]x2[0]) =

40

6
,

rxx[2] =
1

6
(x2[0]x2[2]+ x2[1]x2 [3]+ x2[2]x2[4] + x2 [3]x2[5] + x2[4]x2[0]+ x2[5]x2[1]) =

32

6
,

rxx[3] =
1

6
(x2[0]x2 [3] + x2[1]x2[4] + x2 [2]x2[5] + x2 [3]x2[0]+ x2[4]x2 [1] + x2[5]x2 [2]) =

28

6
,

rxx[4] =
1

6
(x2[0]x2[4] + x2 [1]x2[5] + x2 [2]x2[0]+ x2[3]x2 [1] + x2[4]x2[2]+ x2[5]x2[3]) =

31

6
,

rxx[5]=
1

6
(x2[0]x2[5]+ x2[1]x2[0] + x2[2]x2[1] + x2[3]x2[2]+ x2[4]x2[3] + x2[5]x2[4]) =

40

6
.

(c)  x3[n] = (−1)n .  It is a periodic squence with a period 2.  Hence, 

  
rxx[l ] =

1

2
x3[n]x3[n + l ]n =0

1∑ , 0 ≤ l ≤ 1.  rxx[0] =
1

2
(x2[0]x2[0] + x2 [1]x2[1]) = 1,  and 

rxx[1] =
1

2
(x2[0]x2 [1] + x2[1]x2[0]) = −1.    It is also a periodic squence with a period 2.

2.77 E{X + Y} = (x + y)pXY(x,y)dxdy∫∫  = x pXY (x,y)dxdy∫∫ + y pXYy (x,y)dxdy∫∫
              = x pXY(x,y)dy∫( )∫ dx + y pXY(x,y)dx∫( )∫ dy  = x pX (x)dx + y pY(y)dy∫∫
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  = E{X} + E{Y}.
From the above result, E{2X} = E(X + X} = 2 E{X}.  Similarly, E{cX} = E{(c–1)X + X} 
= E{(c–1)X} + E{X}.  Hence, by induction, E{cX} = cE{x}.

2.78 C = E (X − κ)2{ }.  To find the value of  κ  that minimize the mean square error C, we 

differentiate C with respect to κ  and set it to zero.

Thus 
dC

dκ
= E{2(X − κ)} = E{2X} − E{2K} = 2 E{X} − 2K = 0.  which results in κ = E{X},  and 

the minimum value of C is σx
2 .

2.79 mean = mx = E{x} = xpX(x)dx
−∞

∞

∫
variance = σx

2 = E{(x − m x)2} = (x − mx)2 pX (x)dx
−∞

∞

∫

(a) pX(x) = α
π

1

x2 + α2

 

 
 

 

 
 .   Now, m x = α

π
xdx

x2 + α2−∞

∞

∫ .  Since  
x

x2 + α2  is odd hence the 

integral is zero.  Thus m x = 0 .

σ x
2 = α

π
x2dx

x2 + α2−∞

∞

∫ .  Since this integral does not converge hence variance is not defined for 

this density function.

(b) px(x) = α
2

e−α x .  Now,  m x = α
2

x
−∞

∞

∫ e−α x dx = 0 .  Next,

σ x
2 = α

2
x2e−α x dx

−∞

∞

∫ = α x2e−αxdx
0

∞

∫  = α x2e−αx

−α
0

∞

+ 2x
α

e−αxdx

0

∞

∫
 
 
 

  

 
 
 

  

      = α 0 + 2x
α

e−αx

−α
0

∞

+ 2

α2 e−αxdx
0

∞

∫
 
 
 

  

 
 
 

  
= 2

α2 .

(c) 

  

px(x) = n
l

 
   

  
l =0

n

∑ pl 1 − p( )n− l δ(x − l ) .  Now,

  

m x = x
−∞

∞

∫ n
l

 
   

  
l =0

n

∑ pl 1 − p( )n− l δ(x− l )dx= n
l

 
   

  
l =0

n

∑ pl 1− p( )n −l =np

  

σ x
2 = E{x2} − mx

2 = x2

−∞

∞

∫ n
l

 
   

  
l =0

n

∑ pl 1− p( )n− l δ(x − l )dx − (np)2

     

  

= l 2 n
l

 
   

  
l =0

n

∑ pl 1 − p( )n− l −n2p2 =n p(1−p) .

(d) 
  

px(x) = e−αα l

l!
l =0

∞

∑ δ(x − l) .  Now,

32



  

m x = x
−∞

∞

∫ e−αα l

l!
l =0

∞

∑ δ(x− l )dx = l
l =0

∞

∑ e−ααl

l!
= α.

  

σ x
2 = E{x2} − mx

2 = α
2

x2 e−ααl

l!
l =0

∞

∑ δ(x − l)
−∞

∞

∫ dx − α2  

  

= l 2 e−αα l

l!
l =0

∞

∑ − α2 = α .

(e) px(x) = x

α2 e−x2 / 2α2
µ(x) .  Now,

m x = 1

α2 x2

−∞

∞

∫ e−x2 /2α2
µ(x)dx = 1

α2 x2

0

∞

∫ e−x2 / 2α2
dx = α π / 2 .

σ x
2 = E{x2} − m x

2 = 1

α2 x3e−x2 / 2α2
µ(x)

−∞

∞

∫ dx − α2π
2

 = 2 − π
2

 
  

 
  α2.

2.80 Recall that random variables x and y are linearly independent if and only if

E a1x + a2y
2  

 
  
 

>0     ∀ a1,a2   except when  a1 = a2 = 0,   Now,

E a1
2

x 2  
 

  
 

+E a2
2

y 2  
 

  
 
+E (a1)* a2x y *{ }+E a1(a2 )* x * y{ }  = a1

2
E x 2{ } + a2

2
E y 2{ }  > 0  

∀ a1 and a2  except when  a1 = a2 = 0.
Hence if x,y are statistically independent they are also linearly independent.

2.81 σ x
2 = E (x − m x)2{ }  = E x2 + mx

2 − 2xmx{ } = E{x2} + E{m x
2} − 2E{xmx}.

Since m x is a constant,  hence E{mx
2} = mx

2 and E{xmx} = mxE{x} = m x
2 .  Thus,

σ x
2 = E{x2} + mx

2 − 2mx
2 = E{x2} − mx

2 .

2.82 V = aX + bY.  Therefore,  E{V} = a E{X} + b E{Y} = a mx + b my.  and

σ v
2 = E{(V − mv )2} = E{(a(X − m x) + b(Y − my ))2}.

Since X,Y are statistically independent hence σ v
2 = a2σx

2 + b2σy
2.

2.83 v[n] = ax[n] + b y[n].   Thus φ vv[n] = E{v[m + n}v[m]}  

= E a2 x[m + n}x[m]+ b2 y[m + n}y[m] + ab x[m + n]y[m] + ab x[m]y[m + n]{ } .  Since x[n] and 

y[n] are independent, 

φ vv[n] = E a2x[m + n}x[m]{ } + E b2 y[m + n}y[m]{ } = a2φxx[n] + b2φ yy[n] .

φ vx[n] = E{v[m + n]x[m]} = E a x[m + n]x[m]+ b y[m + n]x[m]{ } = a E x[m + n]x[m]{ } = a φxx[n].

Likewise, φ vy[n] = b φyy[n].

2.84
  
φxy[l]=E x[n + l ]y * [n]{ },     

  
φxy[–l]=E x[n – l ]y *[n]{ },       φyx[l]=E y[n + l ]x * [n]{ }.

Therefore, 
  
φyx *[l ]=E y *[n + l ]x[n]{ }  

  
=E x[n – l ]y *[n]{ }=φxy[–l].
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Hence  
  
φxy[−l ] = φyx*[l l] .

Since  
  
γ xy[l ] = φxy[l ]−m x(my )* .  Thus, 

  
γ xy[l ] = φxy[l ] − m x(my )* .  Hence,

  
γ xy[l ] = φxy[l ] − m x(my )* .  As a result, 

  
γ xy*[l ] = φxy *[l ] − (mx )*my.

Hence, 
  
γ xy[−l ] = γ yx*[l ].

The remaining two properties can be proved in a similar way by letting x = y.

2.85
  
E x[n]− x[n − l] 2{ } ≥ 0 .

  
E x[n]2{ } + E x[n − l ]2{ } − E x[n]x * [n − l ]{ } − E x * [n]x[n − l ]{ } ≥ 0

  2φxx[0] − 2φxx[l ] ≥ 0

  φxx[0] ≥ φxx[l]

Using Cauchy's inequality E x 2{ }E y 2{ } ≤ E 2 xy{ } .  Hence, 
  
φxx[0]φyy[0] ≤ φxy[l ]

2
.

One can show similarly 
  
γ xx[0] γ yy[0] ≤ γ xy[l ]

2
.

2.86 Since there are no periodicities in {x[n]} hence x[n], x[n+  l ] become uncorrelated as   l → ∞. . 

Thus  
  
lim

l →∞
 γ xx[l ] = lim

l →∞
 φxx[l ]− m x

2
→ 0.    Hence  

  
lim

l →∞
 φxx[l ] = mx

2
.

2.87
  
φ XX[l ] =

9 + 11l 2 +14 l 4

1 + 3 l 2 + 2 l 4 .   Now, 
  
m X[n]

2
= lim

l →∞
φ XX[l ] = lim

l →∞

9 +11l 2 +14l 4

1 + 3l 2 + 2 l 4 = 7.

Hence,    m X[n] = m 7.   E X[n] 2( ) = φXX[0] = 9.   Therefore, σ X
2 = φ XX[0] − m X

2 = 9 − 7 = 2.

M2.1    L = input('Desired length = '); n = 1:L;
FT = input('Sampling frequency = ');T = 1/FT;
imp = [1 zeros(1,L-1)];step = ones(1,L);
ramp = (n-1).*step;
subplot(3,1,1);
stem(n-1,imp);
xlabel(['Time in ',num2str(T), ' sec']);ylabel('Amplitude');
subplot(3,1,2);
stem(n-1,step);
xlabel(['Time in ',num2str(T), ' sec']);ylabel('Amplitude');
subplot(3,1,3);
stem(n-1,ramp);
xlabel(['Time in ',num2str(T), ' sec']);ylabel('Amplitude');

M2.2 % Get user inputs
A = input('The peak value =');
L = input('Length of sequence =');
N = input('The period of sequence =');
FT = input('The desired sampling frequency =');
DC = input('The square wave duty cycle = ');
% Create signals
T = 1/FT;
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t = 0:L-1;
x = A*sawtooth(2*pi*t/N);
y = A*square(2*pi*(t/N),DC);
% Plot
subplot(211)
stem(t,x);
ylabel('Amplitude');
xlabel(['Time in ',num2str(T),'sec']);
subplot(212)
stem(t,y);
ylabel('Amplitude');
xlabel(['Time in ',num2str(T),'sec']);

0 20 40 60 80 100
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5

10

Time in 5e-05 sec

0 20 40 60 80 100
-10

-5

0

5

10

Time in 5e-05 sec

M2.3 (a)  The input data entered during the execution of Program 2_1 are

Type in real exponent = -1/12
Type in imaginary exponent = pi/6
Type in the gain constant = 1
Type in length of sequence = 41
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(b)  The input data entered during the execution of Program 2_1 are

Type in real exponent = -0.4
Type in imaginary exponent = pi/5
Type in the gain constant = 2.5
Type in length of sequence = 101

0 10 20 30 40
-0.5

0

0.5

1

1.5
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0 10 20 30 40
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M2.4 (a) L = input('Desired length = ');
A = input('Amplitude = ');
omega = input('Angular frequency = ');
phi = input('Phase = ');
n = 0:L-1;
x = A*cos(omega*n + phi);
stem(n,x);
xlabel('Time index');ylabel('Amplitude');
title(['\omega_{o} =  ',num2str(omega)]);

(b)
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M2.5   (a)  Using Program 2_1 we generate the sequence ˜ x 1[n] = e− j 0.4πn  shown below
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Time index  n

Imaginary part

(b)    Code fragment used to generate ˜ x 2 [n]= sin(0.6πn + 0.6π)  is:

x = sin(0.6*pi*n + 0.6*pi);

38
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(c)   Code fragment used to generate ˜ x 3[n] = 2 cos(1.1πn − 0.5π) + 2 sin(0.7πn)  is

x = 2*cos(1.1*pi*n - 0.5*pi) + 2*sin(0.7*pi*n);

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

Time index  n

(d)  Code fragment used to generate ˜ x 4[n]= 3sin(1.3πn) − 4 cos(0.3πn + 0.45π)   is:

x = 3*sin(1.3*pi*n) - 4*cos(0.3*pi*n+0.45*pi);

0 5 10 15 20 25 30 35 40

-6
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-2

0

2

4

6

Time index  n

(e)    Code fragment used to generate 
          ˜ x 5[n] = 5 sin(1.2πn + 0.65π) + 4 sin(0.8πn) − cos(0.8πn)  is:

x = 5*sin(1.2*pi*n+0.65*pi)+4*sin(0.8*pi*n)-cos(0.8*pi*n);
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(f)    Code fragment used to generate ˜ x 6[n] = n mod ulo 6  is:  x = rem(n,6);
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M2.6   t = 0:0.001:1;
fo = input('Frequency of sinusoid in Hz = ');
FT = input('Samplig frequency in Hz = ');
g1 = cos(2*pi*fo*t);
plot(t,g1,'-')
xlabel('time');ylabel('Amplitude')
hold
n = 0:1:FT;
gs = cos(2*pi*fo*n/FT);
plot(n/FT,gs,'o');hold off

M2.7    t = 0:0.001:0.85;
g1 = cos(6*pi*t);g2 = cos(14*pi*t);g3 = cos(26*pi*t);
plot(t/0.85,g1,'-',t/0.85,g2,'--',t/0.85,g3,':')
xlabel('time');ylabel('Amplitude')
hold
n = 0:1:8;
gs = cos(0.6*pi*n);
plot(n/8.5,gs,'o');hold off

M2.8 As the length of the moving average filter is increased, the output of the filter gets more 
smoother.  However, the delay between the input and the output sequences also increases 
(This can be seen from the plots generated by Program 2_4 for various values of the filter 
length.)
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M2.9   alpha = input('Alpha = ');
yo = 1;y1 = 0.5*(yo + (alpha/yo));
while abs(y1 - yo) > 0.00001
   y2 = 0.5*(y1 + (alpha/y1));
   yo = y1; y1 = y2;
end
disp('Square root of alpha is'); disp(y1)

M2.10     alpha = input('Alpha = ');
yo = 0.3; y = zeros(1,61);
L = length(y)-1;
y(1) = alpha - yo*yo + yo;
n = 2;
while abs(y(n-1) - yo) > 0.00001
y2 = alpha - y(n-1)*y(n-1) + y(n-1);
yo = y(n-1); y(n) = y2;
n = n+1;
end
disp('Square root of alpha is'); disp(y(n-1))
m=0:n-2;
err = y(1:n-1) - sqrt(alpha);
stem(m,err);
axis([0 n-2 min(err) max(err)]);
xlabel('Time index  n');
ylabel('Error');
title(['\alpha = ',num2str(alpha)])

The displayed output is

Square root of alpha is
   0.84000349056114
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-0.04

-0.02

0

0.02

0.04

0.06

Time index  n

α = 0.7056

M2.11   N = input('Desired impulse response length = ');
p = input('Type in the vector p = ');
d = input('Type in the vector d = ');
[h,t] = impz(p,d,N);
n = 0:N-1;
stem(n,h);
xlabel('Time index  n');ylabel('Amplitude');
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M2.12   x = 3 −2 0 1 4 5 2[ ]   y = 0 7 1 −3 4 9 −2[ ],  w = −5 4 3 6 −5 0 1[ ].

(a)   rxx[n] =  [6    11     2    -3    11    28    59    28    11    -3     2    11   6],

      ryy[n] =  [0   -14    61    43   -52    10   160    10   -52    43    61   -14   0],

      rww[n] =   [–5     4    28   –44   –11   –20   112   –20   –11   –44    28     4   –5].
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(b) rxy[n] =  [ –6    31    –6   –19    10    49    40    27     4    27    37    14   0].
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rxw[n] =  [3   –2   –15    29     1     6   –35    12    36    38     6   –17  –10].
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M2.13    N = input('Length of sequence = ');
n = 0:N-1;
x = exp(-0.8*n);
y = randn(1,N)+x;
n1 = length(x)-1;
r = conv(y,fliplr(y));
k = (-n1):n1;
stem(k,r);
xlabel('Lag index');ylabel('Amplitude');
gtext('r_{yy}[n]');
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M2.14  (a)  n=0:10000;
phi = 2*pi*rand(1,length(n));
A = 4*rand(1,length(n));
x = A.*cos(0.06*pi*n + phi);
stem(n(1:100),x(1:100));%axis([0 50 -4 4]);
xlabel('Time index  n');ylabel('Amplitude');
mean = sum(x)/length(x)
var = sum((x - mean).^2)/length(x)
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Time index  n
mean =
0.00491782302432

var =
2.68081196077671

From Example 2.44, we note that the mean = 0 and variance = 8/3 = 2.66667.

M2.15   n=0:1000;
z = 2*rand(1,length(n));
y = ones(1,length(n));x=z-y;
mean = mean(x)
var = sum((x - mean).^2)/length(x)

mean =
   0.00102235365812

var =
   0.34210530830959

Using Eqs. (2. 129) and (2.130) we get  m X =
1 −1

2
= 0, and σ X

2 =
(1 + 1)2

22
=

1

3
.  It should 

be noted that the values of the mean and the variance computed using the above MATLAB 
program get closer to the theoretical values if the length is increased.  For example, for a length
100001, the values are

mean =
     9.122420593670135e-04
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var =
   0.33486888516819
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Chapter 3 (2e)

3.1  X( e jω ) = x[n]e− jωn

n =−∞

∞

∑  where x[n] is a real sequence.  Therefore, 

X re(e jω) = Re x[n]e− jωn

n =−∞

∞
∑

 

 
 

 

 
 = x[n]Re e− jωn( )

n =−∞

∞
∑ = x[n]cos(ωn)

n =−∞

∞
∑ ,  and 

X im (e jω ) = Im x[n]e− jωn

n=−∞

∞
∑

 

 
 

 

 
 = x[n] Im e− jωn( )

n=−∞

∞
∑ = − x[n]sin(ωn)

n=−∞

∞
∑ .   Since cos (ωn)  and 

sin(ωn)  are, respectively, even and odd functions of ω , X re(e jω)  is an even function of ω , 

and X im (e jω )  is an odd function of ω .

X(e jω ) = Xre
2 (e jω ) + Xim

2 (e jω) .  Now, X re
2 (e jω)  is the square of an even function and 

X im
2 (e jω )  is the square of an odd function, they are both even functions of ω .   Hence, 

X(e jω )  is an even function of ω .

arg X(e jω ){ } = tan−1 Xim (e jω )

Xre (e jω )

 

 
 

 

 
 .  The argument is the quotient of an odd function and an even 

function, and is therefore an odd function.  Hence, arg X(e jω ){ } is an odd function of ω .

3.2 X(e jω ) =
1

1 − α e– jω =
1

1 − α e– jω ⋅
1 − αe–ω

1 − αe–ω =
1 − α e–ω

1 − 2 α cosω + α2 =
1 − α cosω − jα sinω

1 − 2 αcosω + α2

Therefore, X re(e jω) =
1 − α cosω

1 − 2 αcosω + α2  and X im (e jω ) = –
αsinω

1 − 2 αcosω + α2 .

X(e jω )
2

= X(e jω ) ⋅ X * (e jω) =
1

1 − αe– jω ⋅
1

1 − α e jω =
1

1 − 2α cosω + α2 .

Therefore, X(e jω ) =
1

1 − 2 α cosω + α2
.

tan θ(ω) =
X im (e jω )

Xre (e jω )
= –

α sinω
1 − α cosω

.   Therefore, θ(ω ) == tan −1 –
αsinω

1 − α cosω
 
  

 
  .

3.3 (a)   y[n] = µ[n]= yev[n]+ yod[n],   where yev[n]= 1

2
y[n]+ y[−n]( ) = 1

2
µ[n]+ µ[−n]( )  = 1

2
+

1

2
δ[n],

and  yod[n]= 1

2
y[n]− y[−n]( ) = 1

2
µ[n]− µ[−n]( ) = µ[n]− 1

2
–

1

2
δ[n].  

Now, Yev (e jω ) = 1

2
2π δ(ω + 2πk)

k=–∞

∞

∑
 

 
 
 

 

 
 
 +

1

2
= π δ(ω + 2πk) + 1

2
k=–∞

∞

∑ .

Since yod[n]= µ[n]− 1

2
+ 1

2
δ[n],  yod[n]= µ[n − 1]− 1

2
+ 1

2
δ[n −1].  As a result,
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yod[n]− yod[n −1] = µ[n]− µ[n − 1]+ 1

2
δ[n −1]− 1

2
δ[n] = 1

2
δ[n]+ 1

2
δ[n −1].  Taking the DTFT of 

both sides we then get Yod(e jω) − e− jω Yod(e jω ) = 1

2
1 + e–jω( ).  or 

Yod(e jω) = 1

2

1 + e− jω

1 − e− jω = 1
1− e− jω − 1

2
.   Hence,

Y(e jω) = Yev(e jω) + Yod(e jω ) = 1
1− e− jω + π δ(ω + 2πk)

k=−∞

∞

∑ .

(b) Let x[n] be the sequence with the DTFT X(e jω) = 2πδ(ω −ω o + 2πk)
k =−∞

∞

∑ .  Its inverse 

DTFT is then given by x[n] = 1
2π

2πδ(ω − ωo )e jωndω
−π

π

∫ = e jωon .

3.4   Let X(e jω ) = 2π δ(ω + 2πk)k=−∞
∞∑ .   Its inverse DTFT is then given by 

x[n]=
1

2π
2π δ(ω)

–π
π

∫ e jωndω =
2π
2π

= 1.

3.5  (a) Let y[n] = g[n – no],  Then Y(e jω) = y[n]e− jωn

n=−∞

∞

∑  = g[n − no] e− jωn

n =−∞

∞

∑

= e− jωno g[n]e− jωn

n=−∞

∞

∑  = e− jωn oG(e jω ) .

(b) Let h[n] = e jωong[n] , then H(e jω) = h[n]e− jωn

n=−∞

∞

∑ = e jωong[n]e− jωn

n =−∞

∞

∑

= g[n]e− j(ω−ωo )n

n =−∞

∞

∑  = G(e j(ω−ωo )) .

(c) G(e jω) = g[n]e− jωn

n=−∞

∞

∑ .   Hence 
d G(e jω)( )

dω
= − jng[n]e− jωn

n =−∞

∞

∑ .

Therefore, j
d G(e jω)( )

dω
= ng[n]e− jωn

n =−∞

∞

∑ .  Thus the DTFT of ng[n] is j
d G(e jω)( )

dω
.

(d)  y[n] = g[n] * h[n] = g[k]h[n − k]
k=−∞

∞

∑ .  Hence Y(e jω) = g[k]h[n − k]e− jωn

k=−∞

∞

∑
n=−∞

∞

∑

= g[k]H(e jω ) e− jωk

k =−∞

∞

∑ = H(e jω ) g[k]e− jωk

k=−∞

∞

∑  = H(e jω)G(e jω) .

(e) y[n] = g[n]h[n].  Hence Y(e jω) = g[n]h[n]e− jωn

n=−∞

∞

∑
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Since g[n]= 1
2π

G(e jθ ) e jθndθ
−π

π

∫   we can rewrite the above DTFT as

Y(e jω) = 1
2π

h[n]e− jωnG(e jθ ) e jθndθ
−π

π

∫
n =−∞

∞

∑  = 1
2π

G(e jθ) h[n]e− j(ω−θ)n

n=−∞

∞

∑ dθ
−π

π

∫

             = 1
2π

G(e jθ)H(e j(ω−θ))dθ
−π

π

∫ .

(f) y[n] = g[n]h * [n]
n =−∞

∞

∑ = g[n]
n=−∞

∞

∑ 1
2π

H* (e jω ) e− jωndω
−π

π

∫
 

 

 
  

 

 

 
  

= 
1

2π
H* (e jω ) g[n]

n=−∞

∞

∑ e− jωn
 

 
 
 

 

 
 
 dω

−π

π

∫    =  
1

2π
H* (e jω )G(e jω)dω

−π

π

∫  .

3.6  DTFT{x[n]} = X(e jω) = x[n]e− jωn

n=−∞

∞

∑ .

(a)  DTFT{x[–n]} = x[−n]e− jωn

n =−∞

∞
∑ = x[m]e jωm

m=−∞

∞
∑ = X(e− jω ).

(b) DTFT{x*[-n]} = x * [−n]e− jωn

n =−∞

∞
∑ = x[−n]e jωn

n =−∞

∞
∑

 

 
 

 

 
  using the result of Part (a).

Therefore DTFT{x*[-n]} = X * (e jω ).

(c) DTFT{Re(x[n])} = DTFT
x[n] + x * [n]

2
  
 

  
 

=
1

2
X(e jω ) + X * (e− jω ){ } using the result of Part

(b).

(d)  DTFT{j Im(x[n])} = DTFT j
x[n] − x * [n]

2 j

 
 
 

 
 
 

=
1

2
X(e jω) − X * (e− jω){ }.

(e)  DTFT xcs[n]{ } = DTFT
x[n]+ x * [−n]

2
  
 

  
 

=
1

2
X(e jω ) + X * (e jω ){ } = Re X(e jω ){ } = Xre(e jω ).

(f)  DTFT xca[n]{ } = DTFT
x[n] − x * [−n]

2
  
 

  
 

=
1

2
X(e jω ) − X * (e jω ){ } = jX im(e jω ).

3.7 X(e jω) = x[n]e− jωn

n=−∞

∞

∑  where x[n] is a real sequence.  For a real sequence,  

X(e jω ) = X * (e– jω ),  and IDFT X * (e– jω ),{ } = x * [−n].
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(a)  X re(e jω) =
1

2
X(e jω ) + X * (e– jω ){ }.   Therefore,  IDFT X re(e jω ){ }

=
1

2
IDFT X(e jω ) + X * (e– jω ){ } =

1

2
x[n] + x * [−n]{ } =

1

2
x[n] + x[−n]{ } = xev[n].

(b)  jX im (e jω ) =
1

2
X(e jω ) − X * (e– jω){ }.  Therefore,  IDFT jXim (e jω){ }

=
1

2
IDFT X(e jω ) − X * (e– jω ){ } =

1

2
x[n] − x * [−n]{ } =

1

2
x[n] − x[−n]{ } = xod[n].

3.8 (a)  X(e jω) = x[n]e− jωn

n=−∞

∞

∑ .  Therefore, X * (e jω ) = x[n]e jωn

n=−∞

∞
∑ = X(e– jω ), and hence, 

X * (e– jω ) = x[n]e– jωn

n =−∞

∞
∑ = X(e jω ).

(b)  From Part (a), X(e jω ) = X * (e– jω ).  Therefore, X re(e jω) = X re(e– jω ).

(c)   From Part (a), X(e jω ) = X * (e– jω ).  Therefore, X im (e jω ) = −X im (e– jω ).

(d)  X(e jω) = Xre
2 (e jω) + X im

2 (e jω )  = X re
2 (e–jω) + X im

2 (e–jω) = X(e− jω ) .

(e)  arg X(e jω) = tan−1 Xim (e jω )

X re(e jω )
= − tan −1 Xim (e− jω)

X re(e− jω)
= − argX(e jω )

3.9  x[n] = 
1

2π
X(e jω) e jωndω

−π

π

∫ .  Hence, x * [n] = 1
2π

X *(e jω) e–jωndω
−π

π

∫ .

 (a)  Since x[n] is real and even, hence X(e jω) = X *(e jω) .  Thus,

    x[– n] = 
1

2π
X(e jω) e− jωn dω

−π

π

∫ ,

Therefore, x[n] = 1
2

x[n]+ x[−n]( ) = 1
2π

X(e jω) cos(ωn)dω
−π

π

∫ .

Now x[n] being even, X(e jω) = X(e– jω) .  As a result, the term inside the above integral is even, 

and hence  x[n] = 1
π

X(e jω )cos(ωn)dω
0

π

∫

(b) Since x[n] is odd hence x[n] = – x[– n].

     Thus x[n] = 
1

2
x[n] − x[−n]( )  = 

j
2π

X(e jω) sin(ωn)dω
−π

π

∫ .  Again, since x[n] = – x[– n],
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X(e jω) = −X(e– jω ) . The term inside the integral is even, hence x[n] = j
π

X(e jω )sin(ωn)dω
0

π

∫

3.10  x[n] = αn cos(ωo n + φ)µ[n] = Aαn e jω0n e jφ + e− jω0ne−jφ

2

 

 
  

 

 
  µ[n]

           = 
A
2

e jφ αe jωo( )n
µ[n]+ A

2
e− jφ αe− jωo( )µ[n] .  Therefore,

   X(e jω) = A
2

e jφ 1
1 − αe− jωe jωo

+ A
2

e− jφ 1
1 − αe−jωe− jωo

.

3.11  Let x[n] = αnµ[n], α <1.  From Table 3.1, DTFT{x[n]} = X(e jω ) =
1

1 − α e– jω .

(a)  X1(e jω) = αn µ[n + 1]e− jωn

n=−∞

∞
∑ = αne− jωn

n=−1

∞
∑ = α−1e jω + αne− jωn

n =0

∞
∑

= α−1e jω +
1

1 − αe– jω =
1

α
e jω − α

1 − αe– jω
 

 
 

 

 
 .

(b)  x2 [n]= nαnµ[n].   Note that  x2 [n]= n x[n].   Hence, using the differentiation-in-frequency 

property in Table 3.2, we get X2(e jω ) = j
dX(e jω )

dω
=

αe− jω

(1 − αe− jω )2 .

(c)  x3[n] = α n , n ≤ M,

0, otherwise.

 
 
 

  
  Then, X3(e jω ) = αne− jωn +

n=0

M

∑ α−ne− jωn

n=−M

−1

∑

 = 
1 − αM+1e− jω(M+1)

1 − αe− jω + αMe jωM 1 − α−Me− jωM

1− α−1e− jω .

(d)  X4 (e jω ) = αn

n=3

∞
∑ e– jωn = αn

n =0

∞
∑ e– jωn −1 − α e− jω − α2 e− j2ω

=
1

1 − αe− jω −1 − αe− jω − α2 e− j2ω .

(e)  X5(e jω) = n αn

n =−2

∞
∑ e– jωn = n αn

n=0

∞
∑ e– jωn − 2α−2 e j2ω − α−1 e jω

=
αe− jω

(1 − αe− jω)2 − 2α−2 e j2ω − α−1 e jω .

(f)  X6(e jω ) = αn

n =−∞

−1

∑ e– jωn = α−m

m=1

∞
∑ e jωm = α−m

m=0

∞
∑ e jωm − 1 =

1

1 − α−1e jω − 1 =
e jω

α − e jω .
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3.12  (a) y1[n] =
1, –N ≤ n ≤ N,

0, otherwise.

 
 
 

  
  Then Y1(e

jω) = e− jωn

n=−N

N

∑ = e jωN (1− e− jω(2N+1))
(1 − e− jω )

=
sin(ω N + 1

2[ ])
sin(ω / 2)

(b)       y2[n] =
1− n

N
, −N ≤ n ≤ N,

0, otherwise.

 
 
 

  
  Now y2[n] = y0[n] * y0[n] where

y0[n] =
1, −N / 2 ≤ n ≤ N / 2,

0, otherwise.

 
 
 

  
  Thus Y2 (e jω ) = Y0

2(e jω) =
sin2 ω N +1

2

 
  

 
  

 
  

 
  

sin2(ω / 2)
.

(c)        y3[n] =
cos(πn / 2N), −N ≤ n ≤ N,

0, otherwise.

 
 
 

  
  Then,

Y3(e jω) = 1
2

e−j(πn / 2N)e− jωn

n=−N

N

∑ + 1
2

e j(πn / 2N)e− jωn

n=−N

N

∑

= 1
2

e− j ω− π
2N

 
 

 
 n

n=−N

N

∑ + 1
2

e– j ω+ π
2N

 
 

 
 n

n =−N

N

∑

= 1
2

sin (ω − π
2N

)(N + 1
2
)( )

sin (ω − π
2N

) / 2( ) + 1
2

sin (ω + π
2N

)(N + 1
2
)( )

sin (ω + π
2N

) / 2( ) .

3.13  Denote x m[n] =
(n + m −1)!

n!(m − 1)!
αnµ[n], α <1.   We shall prove by induction that

DTFT xm[n]{ } = Xm(e jω ) =
1

(1 − αe– jω )m .   From Table 3.1, it follows that it holds for m = 1.

Let m = 2.  Then x2 [n]=
(n + 1)!

n!(
αnµ[n] = (n + 1)x1[n]= n x1[n]+ x1[n].   Therefore, 

X2(e jω ) =
α e– jω

(1 − αe– jω)2 +
1

1 − αe– jω =
1

(1 − αe– jω )2  using the differentiation-in-frequency 

property of Table 3.2.

Now asuume, the it holds for m.  Consider next x m+1[n]=
(n + m)!

n!(m)!
αnµ[n]

=
n + m

m
 
   

  
(n + m − 1)!

n!(m − 1)!
αnµ[n], =

n + m

m
 
   

  x m[n] =
1

m
⋅ n ⋅x m[n] + xm[n].  Hence,

Xm+1(e jω ) =
1

m
j

d

dω
1

(1 − α e– jω )m

 
 
 

  
 
 
 

  
+

1

(1 − α e– jω )m =
α e– jω

(1 − αe– jω )m+1 +
1

(1 − α e– jω )m

=
1

(1 − α e– jω )m+1 .

50



3.14  (a)  Xa(e jω ) = δ(ω + 2πk)
k=−∞

∞

∑ .  Hence, x[n] =
1

2π
δ(ω)

−π

π

∫  e jωndω = 1.

(b)  Xb(e jω) = 1 − e jω(N +1)

1− e− jω = e− jωn

n=0

N

∑ .   Hence,   x[n] = 
1, 0 ≤ n ≤ N,

0, otherwise.

 
 
  

(c)  

  

Xc(e jω ) =1 + 2 cos(ωl )
l =0

N

∑ = e− jωl

l =−N

N

∑ .   Hence  x[n] = 
1, −N ≤ n ≤ N,

0, otherwise.

 
 
  

(d)  Xd(e jω) = − jαe− jω

(1− αe− jω )2 ,      α < 1.  Now we can rewrite Xd(e jω)  as

         Xd(e jω) = d
dω

1
(1 − αe− jω)

= d
dω

Xo(e jω)( )   where Xo(e jω) = 1
1 − αe− jω .

Now xo[n] = αnµ[n] .  Hence, from Table 3.2,  xd [n] = − jnαnµ[n].

3.15  (a)  H1(e jω) = 1 + 2
e jω + e– jω

2

 

 
 

 

 
 + 3

e j2ω + e– j2ω

2

 

 
 

 

 
 = 1 + e jω + e– jω +

3

2
e j2ω +

3

2
e– j2ω .

Hence, the inverse of H1(e jω)  is a length-5 sequence given by 

h1[n] = 1.5 1 1 1 1.5[ ], − 2 ≤ n ≤ 2.

(b)  H2(e jω ) = 3 + 2
e jω + e– jω

2

 

 
 

 

 
 + 4

e j2ω + e– j2ω

2

 

 
 

 

 
 

 

 
 
 

 

 
 
 

⋅
e jω /2 + e– jω / 2

2

 

 
 

 

 
 ⋅ e– jω /2

=
1

2
2 e j2ω + 3 e jω + 4 + 4 e– jω + 3e– j2ω + 2e– j3ω( ).   Hence, the inverse of H2(e jω )  is a length-6 

sequence given by  h 2[n]= 1 1.5 2 2 1.5 1[ ], − 2 ≤ n ≤ 3.

(c)  H3(e jω ) = j 3 + 4
e jω + e– jω

2

 

 
 

 

 
 + 2

e j2ω + e– j2ω

2

 

 
 

 

 
 

 

 
 
 

 

 
 
 

⋅
e jω /2 − e– jω /2

2 j

 

 
 

 

 
 

=
1

2
e j3ω + 2 e j2ω + 2 e jω + 0 − 2 e– jω − 2e– j2ω − e– j3ω( ).   Hence, the inverse of H3(e jω )  is a 

length-7 sequence given by h3[n] = 0.5 1 1 0 –1 –1 − 0.5[ ], − 3 ≤ n ≤ 3.

(d)  H4(e jω ) = j 4 + 2
e jω + e– jω

2

 

 
 

 

 
 + 3

e j2ω + e– j2ω

2

 

 
 

 

 
 

 

 
 
 

 

 
 
 

⋅
e jω /2 − e– jω / 2

2 j

 

 
 

 

 
 ⋅ e jω /2

=
1

2

3

2
e j3ω −

1

2
e j2ω + 3 e jω − 3 +

1

2
e– jω −

3

2
e– j2ω 

   
  .  Hence, the inverse of H4(e jω )  is a length-6

sequence given by h 4[n]= 0.75 −0.25 1.5 −1.5 0.25 −0.75[ ], − 3 ≤ n ≤ 2.

3.16  (a)  H2(e jω ) =1 + 2 cosω +
3

2
(1 + cos2ω) =

3

4
e j2ω + e jω +

5

2
+ e– jω +

3

4
e– j2ω .
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Hence, the inverse of H1(e jω)  is a length-5 sequence given by 

h1[n] = 0.75 1 2.5 1 0.75[ ], − 2 ≤ n ≤ 2.

(b)  H2(e jω ) = 1 + 3cosω +
4

2
(1 + cos2ω) 

  
 
  cos(ω / 2) e jω / 2  

=
1

2
e j3ω +

5

4
e j2ω +

11

4
e jω +

11

4
+

5

4
e– jω +

1

2
e– j2ω .   Hence, the inverse of H2(e jω )  is a length-6

sequence given by h 2[n]= 0.5 1.25 2.75 2.75 1.25 0.5[ ], − 3 ≤ n ≤ 2.

(c)  H3(e jω ) = j 3 + 4 cosω + (1 + cos2ω)[ ]sin(ω)

=
1

4
e j3ω + e j2ω +

7

4
e jω + 0 −

7

4
e– jω − e– j2ω −

1

4
e– j3ω .   Hence, the inverse of H3(e jω )  is a 

length-7 sequence given by h3[n] = 0.25 1 1.75 0 −1.75 −1 −0.25[ ], − 3 ≤ n ≤ 3.

(d)  H4(e jω ) = j 4 + 2 cosω +
3

2
(1 + cos2ω) 

  
 
  sin(ω / 2) e– jω / 2

=
1

2

3

4
e j2ω +

1

4
e jω +

9

2
−

9

2
e– jω +

1

4
e– j2ω −

3

4
e– j3ω 

   
  .   Hence, the inverse of H4(e jω )  is a 

length-6 sequence given by h 4[n]=
3

8

1

8

9

4
−

9

4
−

1

8
−

3

8
 
  

 
  , − 2 ≤ n ≤ 3.

3.17  Y(e jω) = X(e j3ω ) = X (e jω )3( ).   Now, X(e jω) = x[n]e− jωn
n=−∞

∞∑ .   Hence,

Y(e jω) = y[n]e− jωn
n=−∞

∞∑ = X (e jω)3( ) = x[n](e−jωn )3 = x[m / 3]e− jωm
m=−∞

∞∑n =−∞

∞∑ .

Therefore, 
  
y[n] = x[n], n = 0,± 3,± 6,K

0, otherwise.{
3.18   X(e jω) = x[n]e− jωn

n=−∞

∞

∑ .

X(e jω / 2 ) = x[n]e− j(ω / 2)n

n=−∞

∞

∑ ,   and X(−e jω / 2) = x[n](−1)n e− j(ω / 2)n

n =−∞

∞

∑ .   Thus, 

Y(e jω) = y[n]e−ωn

n=−∞

∞

∑ = 1
2

X(e jω / 2 )+ X(−e jω / 2){ } = 1
2

x[n]+ x[n](−1)n( )e− j(ω / 2)n

n=−∞

∞

∑ .   Thus,

y[n] = 1
2

x[n]+ x[n](−1)n( ) = x[n], for n even
0. for n odd{ .

3.19  From Table 3.3, we observe that even sequences have real-valued DTFTs and odd sequences 
have imaginary-valued DTFTs.

(a)   Since −n = n, , x1[n] is an even sequence with a real-valued DTFT.

(b)  Since (−n)3 = −n3, x2[n]  is an odd sequence with an imaginary-valued DTFT.
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(c)  Since sin(−ωcn) = − sin(ωcn)  and ωc(−n) = −ω cn, , x3[n]  is an even sequence with a real-
valued DTFT.

(d) Since x 4[n]  is an odd sequence it has an imaginary-valued DTFT.

(e)  Since x5[n] is an odd sequence it has an imaginary-valued DTFT.

3.20  (a)  Since Y1(e
jω)  is a real-valued function of ω , its  inverse is an even sequence.

(b)  Since Y2 (e jω )  is an imaginary-valued function of ω , its  inverse is an odd sequence.

(c)  Since Y3(e jω)  is an imaginary-valued function of ω , its  inverse is an odd sequence.

3.21  (a)  HLLP(e jω )  is a real-valued function of ω .  Hence, its  inverse is an even sequence.

(b)  HBLDIF(e jω )  is a real-valued function of ω .  Hence, its  inverse is an even sequence.

3.22  Let u[n] = x[–n], and let X(e jω)  and U(e jω)denote the DTFTs of x[n] and  u[n], respectively.

From the convolution property of the DTFT given in Table 3.2, the DTFT of  y[n] = x[n] * u[n]

is given by Y(e jω)  = X(e jω) U(e jω) .  From Table 3.3, U(e jω) = X(e− jω).   But from Table 3.4, 

X(e− jω ) = X * (e jω ).  Hence, Y(e jω)  = X(e jω) X * (e jω )= X(e jω)
2

 which is real-valued function
of ω .

3.23  From the frequency-shifting property of the DTFT given in Table 3.2, the DTFT of 

x[n]e− jπn / 3  is given by X(e j(ω+π /3)) .  A sketch of this DTFT is shown below.

ω
0 π/3 2π/3 π

1

–π –2π/3 –π/3

X(e j(ω+π /3) )

3.24  The DTFT of x[n] = – αnµ[–n – 1] is given by 

X(e jω) = −αn

n=–∞

−1

∑ e– jωn = − α–n

n=1

∞

∑ e jωn = −α–1e jω e jω

α

 

 
  

 

 
  

n=0

∞

∑
n

.

For α > 1,  X(e jω) = −α–1e jω 1
1 − (e jω /α)

= 1
1 − α e− jω .   X(e jω)

2
= 1

1 + α2 − 2αcosω
.

From Parseval's relation,  
1

2π
X(e jω)

2

−π

π

∫ dω = x[n]2

n=−∞

∞

∑ .
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(a)  X(e jω)
2

= 1
5 + 4 cosω

.   Hence, α = −2.   Therefoe, x[n] = −(−2)n µ[−n −1].

Now, 4 X(e jω )
2

0

π

∫ dω = 2 X(e jω )
2

−π

π

∫ dω = 4π x[n] 2

n=−∞

∞

∑ = 4π (−2)n 2

n =−∞

−1

∑

= 4π 1
4

 
  

 
  

n

n =1

∞

∑ = π 1
4

 
  

 
  

n

n=0

∞

∑ = 4π
3

.

(b)  X(e jω)
2

= 1
3.25 − 3cosω

.   Hence, α =1.5  and therefore, x[n] = −(1.5)nµ[−n −1].   Now, 

X(e jω)
2

0

π

∫ dω = 1
2

X(e jω)
2

−π

π

∫ dω = π x[n] 2

n=−∞

∞

∑ = π (1.5) n 2

n=−∞

−1

∑ = π 4
9

 
  

 
  

n

n=1

∞

∑

= 4π
9

4
9

 
  

 
  

n

n=0

∞

∑ = 4π
9

⋅ 9
5

= 4π
5

.

(c)  Using the differentiation-in-frequency property of the DTFT, the inverse DTFT of 

X(e jω) = j
d

dω
1

1− α e− jω
 

 
  

 

 
  = αe− jω

(1 − αe− jω )2  is x[n] = −n αnµ[−n −1].   Hence, the inverse DTFT of 

1
(1 −α e− jω )2

 is −(n +1)αn µ[−n −1].

Y(e jω)
2

= 1
(5 − 4 cosω)2

.   Hence, α = 2  and y[n] = −(n +1)2n µ[−n −1]. Now, 

4 X(e jω )
2

0

π

∫ dω = 2 X(e jω )
2

−π

π

∫ dω = 4π x[n] 2

n=−∞

∞

∑ = 4π (n +1)2 ⋅22n

n =−∞

−1

∑

= π 1
4

 
  

 
  

n

n=0

∞

∑ ⋅ n2 = π 9 / 4
9 /16

= 4π. .

3.25  (a)  X(e j0) = x[n]
n=−∞

∞

∑ = 3 +1 − 2 − 3 + 4 +1 −1 = 3.

(b)  X(e jπ) = x[n]
n=−∞

∞

∑ e jπn = −3 −1 − 2 + 3 − 4 −1 +1 = −7.

(c)  X(e jω )
−π

π

∫ dω = 2πx[0]= −4π.

(d)  X(e jω )
2

−π

π

∫ dω = 2π x[n] 2

n=−∞

∞

∑ = 82π.  (Using Parseval's relation)
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(e)  
dX(e jω)

dω

2

−π

π

∫ dω = 2π n ⋅x[n] 2

n=−∞

∞

∑ = 378π. (Using Parseval's relation with differentiation-in-

frequency property)

3.26 (a)  X(e j0) = x[n]
n=−∞

∞

∑ = −2 + 4 − 1+ 5 −3 − 2 + 4 + 3 = 8.

(b)  X(e jπ) = x[n](−1)n

n=−∞

∞

∑ = 2 + 4 +1 + 5 + 3 − 2 − 4 +3 = 14.

(c)  X(e jω )
−π

π

∫ dω = 2πx[0]= −4π.

(d)  X(e jω )
2

−π

π

∫ dω = 2π x[n] 2

n=−∞

∞

∑ = 168π.    (Using Parseval's relation)

(e)  
dX(e jω)

dω

2

−π

π

∫ dω = 2π n ⋅x[n] 2

n=−∞

∞

∑ = 1238π.

3.27  Let G1(e jω )  denote the DTFT of g1[n].

(b)  g2[n]= g1[n]+ g1[n − 4].   Hence, the DTFT of g2[n] is given by 

G2(e jω) = G1(e jω )+ e− j4ωG1(e
jω) = (1+ e− j4ω )G1(e

jω).

(c)  g3[n] = g1[−(n −3)]+ g1[n − 4].   Now, the DTFT of g1[−n] is given by G1(e− jω ) .

Hence, the DTFT of g3[n]  is given by G3(e jω ) = e− j3ωG1(e
− jω )+ e− j4ωG1(e

jω).

(d)  g4[n]= g1[n]+ g1[−(n − 7)].  Hence, the DTFT of g4[n]  is given by 

G4(e jω) = G1(e
jω) + e− j7ωG1(e

− jω ).

3.28   Y(e jω) = X1(e
jω) ⋅X2(e jω) ⋅X3(e jω), i.e., 

y[n]
n =−∞

∞

∑ e− jωn = x1[n]
n=−∞

∞

∑ e− jωn
 

 
 
 

 

 
 
 x2[n]

n =−∞

∞

∑ e− jωn
 

 
 
 

 

 
 
 x3[n]

n =−∞

∞

∑ e− jωn
 

 
 
 

 

 
 
 

(a)  Therefore, setting  ω = 0  we get y[n]
n =−∞

∞

∑ = x1[n]
n =−∞

∞

∑
 

 
 
 

 

 
 
 x2[n]

n=−∞

∞

∑
 

 
 
 

 

 
 
 x3[n]

n =−∞

∞

∑
 

 
 
 

 

 
 
 .

(b)  Setting ω = π  we get (−1) ny[n]
n =−∞

∞

∑ = (−1)nx1[n]
n =−∞

∞

∑
 

 
 
 

 

 
 
 (−1)n x2[n]

n=−∞

∞

∑
 

 
 
 

 

 
 
 (−1)n x3[n]

n=−∞

∞

∑
 

 
 
 

 

 
 
 .
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3.29  (a) x[n] = xev[n]+ xod[n].   Now, for a causal x[n], from the results of Problem 2.4(??), we 
observe

x[n] = 2 xev[n]µ[n]− x[0]δ[n] = h[n]− x[0]δ[n], (1)

x[n] = 2 xod[n]µ[n]+ x[0]δ[n]. (2)
Taking the DTFT of both sides of Eq. (2) we get

X(e jω) = H(e jω )− x[0], (3)

where H(e jω) = DTFT 2 xev[n]µ[n]{ } = 1
π

X re(e jθ )

–π

π

∫ m(e j(ω−θ))dθ, (4)

Note:  The DTFT of xev[n] is X re(e jω ) , and the DTFT of  µ[n] is  m(e jω ) .

Now, from Table 3.1, m(e jω )  = 1
1 − e−jω + π δ(ω + 2πk)

k =−∞

∞

∑ = 1
2

− j
2

cot
ω
2

 
  

 
  + π δ(ω + 2πk)

k =−∞

∞

∑ .

Substituting the above in Eq. (4) we get

H(e jω) = 1
π

X re(e jθ)

–π

π

∫ 1
2

− j
2

cot
θ
2

 
  

 
  + π δ(θ+ 2πk)

k=−∞

∞

∑
 
 
 

  

 
 
 

  
dθ

= X re(e jω )+ 1
2π

Xre(e jθ)

–π

π

∫ dθ− j
2π

X re(e jθ)

–π

π

∫ cot
ω − θ

2

 
  

 
  dθ .

Substituting the above in Eq. (3) we get

X(e jω) = X re(e jω )+ jX im(e jω) = H(e jω )− x[0]

= X re(e jω )+ 1
2π

Xre(e jθ)

–π

π

∫ dθ− j
2π

X re(e jθ)

–π

π

∫ cot
ω − θ

2

 
  

 
  dθ − x[0]

= X re(e jω )− j
2π

X re(e jθ )

– π

π

∫ cot
ω − θ

2

 
  

 
  dθ , (5)

since 
1

2π
Xre(e jθ)

–π

π

∫ dθ= x[0], as x[n] is real.  Comparing the imaginary part of both sides of 

Eq. (5) we therefore get  X im(e jω)= –
1

2π
X re(e jθ )

–π

π

∫ cot
ω − θ

2

 
  

 
  dθ.

(b)  Taking the DTFT of both sides of Eq. (2) we get

X(e jω) = G(e jω )+ x[0], (6)

where, G(e jω) = DTFT 2 xod[n]µ[n]{ } = j
π

X im (e jθ )

–π

π

∫ m(e j(ω−θ))dθ, (7)

as jX im(e jω)  is the DTFT of xod[n].  Substituting the expression for m(e jω )  given above in 

Eq. (7) we get G(e jω) = j
π

X im (e jθ )

–π

π

∫ 1
2

− j
2

cot
θ
2

 
  

 
  + π δ(θ + 2πk)

k =−∞

∞

∑
 
 
 

  

 
 
 

  
dθ
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= jX im(e jω )+ j
2π

X im(e jθ )

–π

π

∫ dθ + 1
2π

X im(e jθ)

– π

π

∫ cot
ω − θ

2

 
  

 
  dθ

Substituting the above in Eq. (6) we get

X(e jω) = X re(e jω )+ jX im(e jω) = G(e jω )+ x[0]

= jX im(e jω )+ j
2π

X im(e jθ )

–π

π

∫ dθ + 1
2π

X im(e jθ)

– π

π

∫ cot
ω − θ

2

 
  

 
  dθ + x[0]

= jX im(e jω )+ 1
2π

X im (e jθ )

–π

π

∫ cot
ω − θ

2

 
  

 
  dθ+ x[0] (8)

as 
1

2π
Xim (e jθ )

–π

π

∫ dθ = 0  since X im(e jω)  is an odd function of ω.   Comparing the real parts of 

both sides of Eq. (8) we finally arrive at X re(e jω )= 1
2π

Xim (e jθ )

–π

π

∫ cot
ω − θ

2

 
  

 
  dθ + x[0].

3.30  S = WN
−(k −l)n

n =0

N−1

∑ = e j2πn(k −l) / N

n=0

N−1

∑

If k – l ≠  rN then S = 
1 − e j2πn(k− l)

1 − e j2πn(k − l) / N = 1− 1
1 − e j2πn(k− l) / N = 0 .

If k – l = rN then S = WN
− rnN

n=0

N −1

∑ = e− j2πnr

n =0

N −1

∑ = 1
n=0

N−1

∑ = N .

Hence, WN
−(k− l)n

n=0

N −1

∑ = N, for  k – l = rN,  r an integer,
0, otherwise.

 
  

3.31  ˜ y [n] = ˜ x [r] ˜ h [n − r]
r=0

N −1

∑ .  Then ˜ y [n + kN] = ˜ x [r] ˜ h [n + kN − r]
r=0

N −1

∑ .   Since ˜ h [n] is periodic in  n

with a  period N, ˜ h [n + kN − r]  = ˜ h [n − r] .   Therefore ˜ y [n + kN] = ˜ x [r] ˜ h [n − r]
r=0

N −1

∑  = ˜ y [n] , hence 

˜ y [n]  is  also periodic in  n  with a period N.

3.32  ˜ x [n] = 0 1 0 −2 3{ }  and ˜ h [n] = 2 0 1 0 −2{ }.

Now, ˜ y [0]= ˜ x [r] ˜ h [0 − r]
r=0

4

∑ = ˜ x [0] ˜ h [0]+ ˜ x [1] ˜ h [4] + ˜ x [2] ˜ h [3]+ ˜ x [3] ˜ h [2]+ ˜ x [4] ˜ h [1]  = –4.

Similarly ˜ y [1]= ˜ x [r] ˜ h [1 − r]
r=0

3

∑ = ˜ x [0] ˜ h [1]+ ˜ x [1] ˜ h [0]+ ˜ x [2] ˜ h [3]+ ˜ x [3] ˜ h [2]  = 5.

Continuing the process we can show that  ˜ y [2]= 4,  ˜ y [3]= −9,  and ˜ y [4]= 6.
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3.33  ˜ x [n] = 2 −1 2 3 −2{ }   and  ˜ h [n] = 1 2 −3 0 −3{ }.

Now, ˜ y [0]= ˜ x [r] ˜ h [0 − r]
r=0

4

∑ = ˜ x [0] ˜ h [0]+ ˜ x [1] ˜ h [4] + ˜ x [2] ˜ h [3]+ ˜ x [3] ˜ h [2]+ ˜ x [4] ˜ h [1]  = –8.

Similarly ˜ y [1]= ˜ x [r] ˜ h [1 − r]
r=0

3

∑ = ˜ x [0] ˜ h [1]+ ˜ x [1] ˜ h [0]+ ˜ x [2] ˜ h [3]+ ˜ x [3] ˜ h [2]  = 3.

Continuing the process we can show that  ˜ y [2]= −15,  ˜ y [3]= 16,   and  ˜ y [4]= −8. \

3.34  Since ˜ ψ k[n + rN] = ˜ ψ k[n] ,  hence all the terms which are not in the range 0,1,....N-1 can be 

accumulated to ˜ ψ k[n],   where 0 ≤ k ≤ N – 1.  Hence in this case the Fourier series representation 
involves only N complex exponential sequences.  Let

 ˜ x [n] = 1
N

˜ X [k]e j2πkn/ N

k =0

N−1

∑  then

˜ x [n]
n=0

N −1

∑ e− j2πrn / N = 1
N

˜ X [k]e j2π(k −r )n / N

k =0

N−1

∑
n=0

N −1

∑  = 
1
N

˜ X [k] e j2π(k − r)n / N

n =0

N −1

∑
k =0

N−1

∑ .

Now from Eq. (3.28), the inner summation is equal to N if k = r, otherwise it is equal to 0.  

Thus ˜ x [n]
n=0

N −1

∑ e− j2πrn / N = ˜ X [r] .

  

˜ X [k + l N]= ˜ x [n]
n =0

N−1

∑ e− j2π(k+ l N)n / N = ˜ x [n]
n =0

N−1

∑ e− j2πkn / Ne− j2πl n = ˜ x [n]
n=0

N−1

∑ e− j2πkn/ N = ˜ X [k].

3.35  (a)  ˜ x 1[n]= cos
πn
4

 
  

 
  = 1

2
e jπn / 4 + e− jπn / 4{ }.   The period of ˜ x 1[n] is N = 8.  

˜ X 1[k] = 1
2

e j2πn / 8

n=0

7

∑ e− j2πkn/ 8 + e− j2πn / 8

n=0

7

∑ e− j2πkn/ 8
 
 
 

  

 
 
 

  
  

= 1
2

e− j2πn(k −1) / 8

n=0

7

∑ + e−j2πn(k+1) / 8

n=0

7

∑
 
 
 

  

 
 
 

  
.   Now, from Eq. (3.28) we observe 

e− j2πn(k −1) /8

n =0

7

∑ = 8, for k = 1,
0, otherwise,{  and  e− j2πn(k +1) / 8

n =0

7

∑ = 8, for k = 7,
0, otherwise.{   Hence, 

˜ X 1[k] = 4, k = 1,7,
0, otherwise.{

(b)  ˜ x 2[n] = sin
πn
3

 
  

 
  + 3cos

πn
4

 
  

 
  = 1

2 j
e jπn / 3 − e−jπn / 3{ } + 3

2
e jπn / 4 + e− jπn / 4{ }.   The period of

sin
πn
3

 
  

 
   is 6 and the period of cos

πn
4

 
  

 
   is 8.  Hence, the period of ˜ x 2[n]  is the gcm of 

(6,8) and is 24.  ˜ X 2[k]= 1
2j

e j8πn / 24

n=0

23

∑ e− j2πkn / 24 − e− j8πn / 24

n=0

23

∑ e− j2πkn / 24
 
 
 

  

 
 
 

  
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+ 3
2

e j6πn / 24

n=0

23

∑ e− j2πkn/ 24 + e− j6πn / 24

n=0

23

∑ e− j2πkn/ 24
 
 
 

  

 
 
 

  

= 1
2 j

e− j2πn(k−3) / 24

n=0

23

∑ − e− j2πn(k +3) /24

n =0

23

∑
 
 
 

  

 
 
 

  
+ 3

2
e− j2πn(k−4) / 24

n=0

23

∑ + e− j2πn(k +4) / 24

n =0

23

∑
 
 
 

  

 
 
 

  
.

Hence ˜ X 2[k]=

− j12, k = 3,
j12, k = 21,
36, k = 4,20,
0, otherwise.

 

 
 

 
 

3.36  Since ˜ p [n]  is periodic with period N, then from Eq. (3.168a) 0f Problem 3.34, 

˜ p [n] = 1
N

˜ P [k]e− j2πkn / N

k =0

N−1

∑  where using Eq. (3.168b) we get ˜ P [k] = ˜ p [n]e− j2πkn / N

n=0

N −1

∑  = 1.   

Hence ˜ p [n] = 1
N

e− j2πkn / N

k =0

N−1

∑ .

3.37  ˜ X [k] = X(e jω )
ω=2πk /N

= X(e j2πk /N ) = x[n]e− j2πkn/ N

n=−∞

∞
∑ , – ∞ < k < ∞.

(a)   ̃  X [k + l N]= X(e j2π(k+ l N) / N) = X(e j2πk / Ne j2πl ) = X(e j2πk / N) = ˜ X [k].

(b)  ˜ x [n] = 1
N

˜ X [k]e j2πkn/ N

k =0

N−1

∑ = 

  

1

N
x[l ]e− j2πkl /N

l =−∞

∞
∑

 

 
 

 

 
 e j2πkn/ N

k =0

N−1

∑  

  
=

1

N
x[l] e j2πk(n− l ) /N

l =−∞

∞
∑

k =0

N−1

∑ .  Let   l = n + r ⋅ N .  Then ˜ x [n]=
1

N
x[n + r ⋅N] e− j2πkr

k=0

N −1

∑
 

 
 

 

 
 

r=−∞

∞
∑ .

But e− j2πkr

k=0

N −1

∑ = N.   Hence, ˜ x [n]= x[n + r ⋅ N].
r=−∞

∞
∑

3.38  (a)  ˜ G [k]= ˜ g [n]e− j2πkn/ N

n=0

N−1

∑ = ˜ x [n] ˜ y [n]e− j2πkn/ N

n=0

N−1

∑ .  Now, ˜ x [n] = 1
N

˜ X [r]e j2πrn / N

r=0

N−1

∑

Therefore, ˜ G [k]= 1
N

˜ X [r] ˜ y [n]e− j2π(k− r)n / N

r=0

N−1

∑
n=0

N−1

∑ = 
1
N

˜ X [r] ˜ y [n]e− j2π(k− r )n / N

n=0

N −1

∑
r=0

N−1

∑

         = 
1

N
˜ X [r] ˜ Y [k − r]

r=0

N−1

∑ .

(b) ˜ h [n] = 1
N

˜ X [k] ˜ Y [k]e j2πkn/ N

k =0

N−1

∑ = 
1
N

˜ x [r]
r=0

N−1

∑ ˜ Y [k]e j2πk(n− r) / N

k =0

N−1

∑
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  = ˜ x [r]
1
N

˜ Y [k]e j2πk(n− r) / N

k =0

N−1

∑
 

 
 
 

 

 
 
 

r=0

N −1

∑ = ˜ x [r] ˜ y [n − r]
r=0

N −1

∑ .

3.39  (a)  y[n] = αg[n] +βh[n] . Therefore

    Y[k]= y[n]WN
nk

n =0

N−1

∑ = α g[n]WN
nk

n=0

N−1

∑ + β h[n]WN
nk

n=0

N −1

∑ = αG[k]+ βH[k]

(b) x[n] = g[< n − n0 > N] . Therefore X[k] = g[< n − n0 >N ]WN
nk

n=0

N −1

∑

= g[N + n − n0]WN
nk

n=0

n
0
−1

∑ + g[n − n0 ]WN
nk

n =n0

N −1

∑

        = g[n]WN
(n +n 0 −N)k

n =N −n0

N−1

∑ + g[n]WN
(n+n 0 )k

n=0

N−n
0

−1

∑  = WN
n0k g[n]WN

nk

n=0

N−1

∑  = WN
n0kG[k] .

(c) u[n] = WN
−k0n

g[n].  Hence U[k]= u[n]WN
nk

n =0

N−1

∑ = g[n]WN
(k−k0 )n

n=0

N −1

∑

=

WN
(k−k 0 )n

g[n],
n =0

N−1

∑ if k ≥ k 0,

WN
(N +k−k0 )n

g[n],
n=0

N−1

∑ if k < k0.

 

 

 
  

 

 
 
 

Thus, U[k]=
G[k − k 0], if k ≥ k0,

G[N + k − k 0], if k < k 0,
 
 
 

 = G[< k − k0 >N ] .

(d) h[n] = G[n].  Therefore, H[k] = h[n]WN
nk

n=0

N−1

∑ = G[n]WN
nk

n=0

N −1

∑ = g[r]W nrWkr

r=0

N−1

∑
n =0

N −1

∑

= g[r] W(k+ r )n

n=0

N −1

∑
r=0

N −1

∑ .

The second sum is non-zero only if k = r = 0 or else if r = N – k and k ≠ 0.   Hence,

  H[k] = 
Ng[0], if k = 0,

Ng[N − k], if k > 0, = Ng[< −k >N]
 
  .

(e) u[n] = g[m]h[< n − m >N ]
m=0

N−1

∑ . Therefore, U[k]= g[m]h[< n − m >N ]
m=0

N−1

∑
n =0

N−1

∑ WN
nk

  = g[m] h[< n − m >N ]
n =0

N−1

∑
m=0

N −1

∑ WN
nk = g[m]H[k]

m=0

N−1

∑ WN
mk   = H[k]G[k].
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(f) v[n] = g[n]h[n]. Therefore, V[k]= g[n]h[n]
n =0

N−1

∑ WN
nk  = 1

N
h[n]G[r]Wnk W −nr =

r=0

N −1

∑
n=0

N−1

∑
1
N

G[r] h[n]W(k− r )n

n =0

N−1

∑
r=0

N−1

∑ = 1
N

G[r]H[< k − r >N ]
r=0

N−1

∑ .

(g)  x[n] = 1
N

X[k]W−nk

k =0

N−1

∑ .  Thus x * [n] = 1
N

X *[k]Wnk

k=0

N −1

∑ .   Therefore,

  

x[n] 2

n=0

N −1

∑ = 1
N2 X[r]W−nr

r=0

N−1

∑
 

 
 
 

 

 
 
 

n=0

N −1

∑ X*[l ]Wnl

l =0

N−1

∑
 

 
 
 

 

 
 
 

  

= 1
N2 X[r]X*[l] Wn(l − r)

n=0

N−1

∑
l =0

N −1

∑
r=0

N−1

∑ .

Since the inner sum is non-zero only if   l = r, we get  x[n] 2

n=0

N −1

∑ = 1
N

X[k] 2.
k =0

N−1

∑

3.40  X[k] = x[n]W nk

n=0

N −1

∑ .

(a) X*[k] = x *[n]W−nk

n=0

N −1

∑ .  Replacing k by N – k on both sides we obtain

     X*[N – k] = x *[n]W−n(N−k)

n=0

N −1

∑ = x *[n]
n =0

N−1

∑ Wnk .   Thus x*[n] ⇔  X*[N – k] = X*[< –k >N].

(b) X*[k] = x *[n]W−nk

n=0

N −1

∑ .   Replacing n by N – n in the summation we get

     X*[k] = x *[N − n]W−(N −n)k

n=0

N −1

∑ = x *[N − n]Wnk

n=0

N−1

∑ .

Thus x*[N – n] = x*[< –n >N] ⇔  X*[k].

(c) Re{x[n]} = 1
2

{x[n] + x*[n]}.  Now taking DFT of both sides and using results of part (a) 

we get  Re{x[n]} ⇔  1
2

{X[k] + X*[< –k >N]}.

(d) j Im{x[n]} = 1
2

{x[n] – x*[n]} this imples  j Im{x[n]}⇔  1
2

{X[k] – X*[< –k >N]}.

(e) xpcs[n] = 1
2

{x[n] + x*[<–n >N]} Using linearity and results of part (b) we get

     xpcs[n] ⇔   1
2

{X[k] + X*[k]} = Re{X[k]}.

(f) xpca[n] = 1
2

{x[n] – x*[< –n >N]}. Again using results of part (b) and linearity we get

     xpca[n] ⇔  1
2

{X[k] –X*[k]} = j Im {X[k]}.
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3.41  X[k] = Re{X[k]} + j Im{X[k]} = x[n]e– j2πkn / N

n=0

N −1

∑ .

(a)  x pe[n] = 1

2
x[n]+ x[< −n >N ]{ }.   From Table 3.6,  x * [< −n >N ] ⇔

DFT
X *[k].   Since x[n] is 

real,  x[< −n >N ]= x *[< −n >N ] ⇔
DFT

X *[k].  Thus,  Xpe[k] = 1

2
X[k]+ X *[k]{ } = Re{X[k]}.

(b)  x po[n]= 1

2
x[n]− x[< −n >N ]{ }.   As a result, Xpo[k] = 1

2
X[k]− X* [k]{ } = jIm{X[k]}.

3.42  Since for a real sequence, x[n] = x*[n], taking DFT of both sides we get  X[k] =

 X*[<– k>N].  This implies, Re{X[k]} + j Im{X[k]} = Re{X[<– k>N} – j  Im{X[<– k>N}.

Comparing real and imaginary parts we get

Re{X[k]} = Re{X[<– k>N} and Im{X[k]} = – Im{X[<– k>N}.

Also X[k] = Re{X[k]}( )2 + Im{X[k]}( )2  

= Re{X[< – k >N]}( )2
+ – Im{X[< –k >N]}( )2

= X[< – k >N]

and arg{X[k]}= tan−1 Im{X[k]}
Re{X[k]}

 

 
 

 

 
 = tan−1 – Im{X[< −k >N ]}

Re{X[< −k >N ]}

 

 
  

 

 
   = − arg{X[< −k >]N}.

3.43  (a)  x1[< −n >8] = 1 1 1 0 0 0 1 1[ ]= x1[n].  Thus, x1[n]  is a periodic even sequence, 
and hence it has a real-valued 8-point DFT.

(b)  x2 [< −n >8 ]= 1 −1 −1 0 0 0 0 1[ ]..   Thus, x2 [n] is neither a periodic even or a 
periodic odd sequence.  Hence, its 8-point DFT is a complex sequence.

(c)  x3[< −n >8] = 0 −1 −1 0 0 0 1 1[ ] = −x3[n].  Thus, x3[n]  is a periodic odd 
sequence, and hence it has an imaginary-valued 8-point DFT.

(d)  x 4[< −n >8 ]= 0 1 1 0 0 0 1 1[ ] = x4[n].  Thus, x 4[n] is a periodic even sequence, 
and hence it has a real-valued 8-point DFT.

3.44  (a) Now, X[N/2] = x[n]WN
nN / 2

n=0

N −1

∑ = (−1)n x[n]
n=0

N −1

∑ .  Hence if x[n] = x[N – 1 – n] and N is 

even, then (−1)n x[n]
n=0

N −1

∑ = 0  or X[N/2] = 0.

(b)  X[0] = x[n]
n=0

N −1

∑  so if x[n] = – x[N – 1 – n], then X[0] = 0.
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(c )  

  

X[2l ]= x[n]
n=0

N −1

∑ W2nl = x[n]
n =0

N
2

−1

∑ W2nl + x[n]
n=N / 2

N −1

∑ W2nl

  

= x[n]
n=0

N
2

−1

∑ W2nl + x[n + N

2
]

n=0

N
2

−1

∑ W2nl = (x[n]
n=0

N
2

−1

∑ + x[n + N

2
])W2nl .

Hence if x[n] = – x[n + 
N

2
] = – x[n+M], then X[2  l ] = 0, for   l  = 0, 1, . . . . , M – 1.

3.45   X[2m]= x[n]WN
2 mn

n =0

N−1

∑ = x[n]WN
2mn

n=0

N

2
−1

∑ + x[n]WN
2mn

n=
N

2

N −1

∑

= x[n]WN
2mn

n =0

N

2
−1

∑ + x[n +
N

2
]WN

2m(n+
N

2
)

n =0

N

2
−1

∑ = x[n]WN
2mn

n=0

N

2
−1

∑ + x[n +
N

2
]WN

2mn

n=0

N

2
−1

∑ WN
mN

= x[n]+ x[n +
N

2
] 

   
  WN

2mn

n =0

N

2
−1

∑ = 0, 0 ≤ m ≤
N

2
− 1.   This implies x[n]+ x[n +

N

2
] = 0.

3.46  (a)  Using the circular time-shifting property of the DFT given in Table 3.5 we observe 

DFT x[< n − m1 >N{ } = WN
km1X[k]  and  DFT x[< n − m2 >N{ } = WN

km2X[k].   Hence, 

W[k]= DFT x[n]{ } = αWN
km1X[k] + βWN

km2X[k] = αWN
km1 + βWN

km2( )X[k].   A proof of the 

circular time-shifting property is given in Problem 3,39.

(b)  g[n] =
1

2
x[n] + (−1)n x[n]( ) =

1

2
x[n]+ WN

−
N

2
n
x[n]

 

 
 
 

 

 
 
 

,   Using the circular frequency-shifting 

property of the DFT given in Table 3.5, we get G[k] = DFT g[n]{ } =
1

2
X[k ]+ X[< k −

N

2
>N]  

 
  
 
.

(c)  Using the circular convolution property of the DFT given in Table 3.5 we get 

Y[k] = DFT y[n]{ } = X[k] ⋅ X[k]= X2[k].   A proof of the circular convolution property is given in
Problem 3,39.

3.47  (a)  DFT x[n −
N

2
]  

 
  
 

= WN

k
N

2 X[k] = −X[k].   Hence, 

u[k]= DFT u[n]{ } = DFT x[n] + x[n −
N

2
]  

 
  
 

= X[k]− X[k] = 0.

(b)  V[k] = DFT v[n]{ } = DFT x[n] − x[n −
N

2
]  

 
  
 

= X[k] + X[k] = 2 X[k].
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(c)  y[n] = (−1) n x[n]= WN

N

2
n

x[n].  Hence, Y[k] = DFT y[n]{ } = DFT WN

N

2
n

x[n]
 
 
 

  

 
 
 

  
= X[< k −

N

2
>N ]  

using the circular frequency-shifting property of the DFT given in Table 3.5.

3.48  (a)  From the circular frequency-shifting property of the DFT given in Table 3.5, 

IDFT X[< k − m1 >N ]{ } = WN
−m1n x[n]  and IDFT X[< k − m2 >N ]{ } = WN

−m2nx[n].  Hence, 

w[n]= IDFT W[k]{ } = IDFT α X[< k − m1 >N +β X[< k − m2 >N{ }
= α WN

−m1n x[n]+ βWN
−m2n x[n]= α WN

−m1n + βWN
−m2n( )x[n].

(b)  G[k] =
1

2
X[k]+ (−1)k X[k]( ) =

1

2
X[k] + WN

−
N

2
k

X[k]
 

 
 
 

 

 
 
 
.   Using the circular time-shifting 

property of the DFT given in Table 3.5, we get g[n] = IDFT G[k]{ } =
1

2
x[n] + x[< n −

N

2
>N ] 

   
  .

(c)  Using the modulation property of the DFT given in Table 3.5 we get 

y[n] = IDFT Y[k]{ } = N ⋅ x[n] ⋅ x[n]= N ⋅ x2[n].

3.49  (a) X[2m]= x[n]WN
2 mn

n =0

N−1

∑ = x[n]WN
2mn

n=0

N

2
−1

∑ + x[n]WN
2mn

n=
N

2

N −1

∑

= x[n]WN
2mn

n =0

N

2
−1

∑ + x[n +
N

2
]WN

2m(n+
N

2
)

n =0

N

2
−1

∑ = x[n]WN
2mn

n=0

N

2
−1

∑ + x[n +
N

2
]WN

2mn

n=0

N

2
−1

∑ WN
mN

= x[n]+ x[n +
N

2
] 

   
  WN

2mn

n =0

N

2
−1

∑ = x[n]− x[n]( )WN
2mn

n=0

N

2
−1

∑ = 0, 0 ≤ m ≤
N

2
−1.

(b)  

  

X[4l ]= x[n]WN
4ln

n =0

N−1

∑ = x[n]WN
4ln

n=0

N

4
−1

∑ + x[n]WN
4l n

n=
N

4

N

2
−1

∑ + x[n]WN
4ln

n=
N

2

3N

4
−1

∑ + x[n]WN
4l n

n=
3N

4

N −1

∑

  

= x[n]WN
4l n + x[n +

N

4
]WN

4l (n+
N

4
)

+ x[n +
N

2
]WN

4l (n+
N

2
)

+ x[n +
3N

4
]WN

4l (n +
3N

4
) 

 
 
 

 

 
 
 n =0

N

4
−1

∑

  
= x[n]+ x[n +

N

4
]WN

l N + x[n +
N

2
]WN

2l N + x[n +
3N

4
]WN

3l N 
   

  
n =0

N

4
−1

∑ WN
4l n

  
= x[n] − x[n]+ x[n] − x[n]( )

n =0

N

4
−1

∑ WN
4l n = 0   as   WN

lN = WN
2l N = WN

3l N = 1.
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3.50  (a)  X[N − k]= x[n]WN
(N−k)n

n =0

N−1

∑ = x[n]WN
−kn

n=0

N −1

∑ = X * [k].

(b)  X[0]= x[n]WN
0

n =0

N−1

∑ = x[n]
n=0

N −1

∑  which is real.

(c)  X[
N

2
] = x[n]WN

(N /2)n

n=0

N−1

∑ = (−1)n x[n]
n=0

N−1

∑  which is real.

3.51  (a)  H[k] = DFT h[n]{ } = DFT g[{n − 3 >7 ]{ } = W7
3kG[k]= e

− j
6πk

7 G[k]

= 1 + j2, e
− j

6π
7 (−2 + j3), e

− j
12π

7 (−1 − j2), 0, e
− j

24π
7 (8 + j4), e

− j
30π

7 (−3 + j2), e
− j

36π
7 (2 + j5)

 

 

 
 
 

 

 

 
 
 

(b)  h[n]= IDFT H[k]{ } = IDFT G[< k − 4 >7]{ } = W7
−4ng[n]= e

j
8πn

7 g[n]

= −3.1, 2.4 e j8π/ 7, 4.5 e j16π / 7, −6 e j24π / 7, e j32π /7 , −3e j40π/ 7, 7 e j42π / 7[ ].

3.52  Y[k] = y[n]WMN
nk

n=0

MN−1

∑  = x[n]WMN
nk

n=0

N −1

∑ .   Thus, Y[kM] = x[n]WN
nk

n=0

N −1

∑ = X[k].

Hence, X[k] = Y[kM].

3.53   Note X[k] is the MN-point DFT of the sequence xe[n]  obtained from x[n] by appending it 
with  M(N-1) zeros.  Thus, the length-MN sequence y[n] is given by 

  
y[n] = xe

l =0

M−1

∑ [< n − Nl >MN ], 0 ≤ n ≤ MN − 1.   Taking the MN-point DFT of both sides we 

get 

  

Y[k] = WMN
Nkl

l =0

M−1

∑
 

 
 

 

 
 X[k] == WM

kl

l =0

M−1

∑
 

 
 

 

 
 X[k].

3.54  (a)  X[0]= x[n]
n=0

11

∑ = 13.

(b)  X[6]= (−1)n x[n]
n=0

11

∑ = −13.

(c)  X[k]
k=0

11

∑ = 12 ⋅ x[0] = 36.

(d)  The inverse DFT of e− j(4πk/ 6)X[k]  is x[< n − 4 >12] .  Thus, 

e− j(4πk /6)X[k]
k=0

11

∑ =12 ⋅ x[< 0 − 4 >12 ]= 12 ⋅x[8]= −48.
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(e)  From Parseval's relation, X[k] 2

k=0

11

∑ = 12 ⋅ x[n] 2

n =0

11

∑ = 1500.

3.55  X[8] = X * [< −8 >14] = X * [6] = −2 + j3,   X[9] = X * [< −9 >14] = X *[5]= 6 − j3,

X[10] = X * [< −10 >14 ]= X * [4]= −2 − j2,   X[11] = X * [< −11 >14]= X * [3] =1 + j5,

X[12] = X * [< −12 >14 ]= X * [2] = 3 − j4,   X[13]= X * [< −13 >14 ]= X * [1]= −1 − j3.

(a)  x[0] =
1

14
X[k]

k =0

13

∑ =
32

14
= 2.2857,

(b)  x[7] =
1

14
(−1)k X[k]

k=0

13

∑ = −
12

14
= −0.8571,

(c)  x[n]
n =0

13

∑ = X[0] = 12,

(d)  Let g[n] = e j(4πn / 7)x[n]= W14
−4n x[n].  Then DFT{g[n]} = DFT{W14

−4nx[n]}= X[< k − 4 >14]

= X[10] X[11] X[12] X[13] X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] X[9][ ]

Thus, g[n]
n =0

13

∑ = e j(4πn/ 7)x[n]
n=0

13

∑ = X[10] = −2  – j2,

(e)  Using Parseval's relation, x[n] 2

n =0

13

∑ =
1

14
X[k] 2

k =0

13

∑ =
498

14
= 35.5714.

3.56  Now yc[n] = g[k]h[< n − k >6 ]
k =0

6

∑ .  Hence,

yc[0]= g[0]h[0] + g[1]h[6] + g[2]h[5] + g[3]h[4] + g[4]h[3]+ g[5]h[2]+ g[6]h[1] ,
yc[1]= g[0]h[1] + g[1]h[0]+ g[2]h[6] + g[3]h[5] + g[4]h[4]+ g[5]h[3] + g[6]h[2],
yc[2]= g[0]h[2] + g[1]h[1]+ g[2]h[0] + g[3]h[6] + g[4]h[5] + g[5]h[4] + g[6]h[3],
yc[3] = g[0]h[3]+ g[1]h[2] + g[2]h[1]+ g[3]h[0] + g[4]h[6]+ g[5]h[5] + g[6]h[4],
yc[4]= g[0]h[4] + g[1]h[3] + g[2]h[2] + g[3]h[1] + g[4]h[0]+ g[5]h[6] + g[6]h[5],
yc[5] = g[0]h[5] + g[1]h[4]+ g[2]h[3] + g[3]h[2] + g[4]h[1]+ g[5]h[0] + g[6]h[6],
yc[6] = g[0]h[6]+ g[1]h[5]+ g[2]h[4] + g[3]h[3] + g[4]h[2] + g[5]h[1]+ g[6]h[0].

Likewise, yL [n]= g[k]h[n − k]
k =0

6

∑ .   Hence,

yL [0]= g[0]h[0],

yL [1] = g[0]h[1]+ g[1]h[0],

yL [2]= g[0]h[2]+ g[1]h[1]+ g[2]h[0],

yL [3] = g[0]h[3]+ g[1]h[2]+ g[2]h[1]+ g[3]h[0],

yL [4]= g[0]h[4] + g[1]h[3] + g[2]h[2]+ g[3]h[1] + g[4]h[0],
yL [5] = g[0]h[5] + g[1]h[4]+ g[2]h[3] + g[3]h[2] + g[4]h[1] + g[5]h[0],
yL [6] = g[0]h[6]+ g[1]h[5]+ g[2]h[4] + g[3]h[3] + g[4]h[2] + g[5]h[1] + g[6]h[0],
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yL [7] = g[1]h[6]+ g[2]h[5]+ g[3]h[4]+ g[4]h[3] + g[5]h[2] + g[6]h[1],
yL [8]= g[2]h[6] + g[3]h[5] + g[4]h[4] + g[5]h[3] + g[6]h[2],
yL [9] = g[3]h[6]+ g[4]h[5] + g[5]h[4] + g[6]h[3],
yL [10] = g[4]h[6] + g[5]h[5] + g[6]h[4],
yL [11] = g[5]h[6]+ g[6]h[5],
yL [12] = g[6]h[6].

Comparing y10[n] with yL[n] we observe that

yc[0]= yL[0] + y L[7],
yc[1]= yL [1] + yL[8],
yc[2]= yL[2] + yL [9],
yc[3] = yL [3]+ yL[10],
yc[4]= yL [4] + yL[11],
yc[5] = y L[5] + y L[12],
yc[6] = yL[6].

3.57  Since x[n] is a real sequence, its DFT satisfies X[k] = X * [< −k >N ] where N = 11 in this case.

Therefore,   X[1]= X * [< −1 >11 X * [10]= 3 + j2,
X[3] = X * [< −3 >11 X * [8]= −5 + j8,
X[5] = X * [< −5 >11 X * [6]= 9 + j6,
X[7] = X * [< −7 >11 X * [4] = 2 − j5,
X[9] = X * [< −9 >11 X * [2] = −1 − j3.

3.58  The N-point DFT X[k] of a length-N real sequence x[n] satisfy X[k]= X *[< −k >N].   Here N 

= 11.  Hence, the remaining 5 samples are X[1] = X* [< −1 >11] = X*[10] = −3.1− j5.2,  

X[4] = X* [< −4 >11] = X *[7] = −4.1− j0.2,    X[6] = X *[< −6 >11]= X *[5]= 6.5 − j9,

X[8] = X* [< −8 >11]= X *[3]= 5.3 + j4.1,    X[9] = X *[< −9 >11] = X* [2] = −3.2 + j2.

3.59  A length-N periodic even sequence x[n] satisfying x[n] = x * [< −n >N ]  has a real-valued N-
point DFT X[k]. Here N = 10.  Hence, the remaining 4 samples of x[n] are given by
x[6] = x *[< −6 >10] = x *[4] = 2.87− j2,   x[7] = x *[< −7 >10] = x * [3] = −2.1− j4.6,

x[8] = x * [< −8 >10 ]= x *[2]= −3.25− j1.12,   and  x[9] = x *[< −9 >10] = x *[1] = 0.7 + j0.08.

3.60  As x[n] is a real-valued sequence of length 498, its 498-point DFT X[k] satisfy 
X[k] = X * [< −k >498] = X *[498 − k]  (See Table 3.7).

(a)  From the specified DFT samples we observe that X[k1]= X * [412]  implying 
k1 = 498 − 412 = 86,  X[k2 ] = X * [309] implying k2 = 498 − 309 =189, X[k3 ]= X * [112] implying
k3 = 498 − 112 = 386, X[k 4] = X * [11]  implying k4 = 498 −11 = 487.

(b)  dc value of {x[n]} = X[0] = 2.

(c)  x[n]=
1

498
X[k]W498

−kn

k=0

497

∑ =
1

498
(X[0]+ 2 Re X[11] ⋅ W498

−11n{ } + 2 Re X[86] ⋅ W498
−86 n{ }
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+ 2 Re X[112] ⋅W498
−112 n{ } + 2 Re X[189] ⋅ W498

−189 n{ } + X[249]⋅ W498
− 249 n )

=
1

249
{− 0.45 + 7 cos

11πn

249
 
   

  − 3.1sin
11πn

249
 
   

  − 2.2 cos
86πn

249
 
   

  +1.5sin
86πn

249
 
   

  

+ 3cos
112πn

249
 
   

  + 0.7sin
112πn

249
 
   

  − 4.7 cos
189πn

249
 
   

  − 1.9 sin
189πn

249
 
   

  }.

(d)  x[n] 2

n =0

497

∑ =
1

498
X[k] 2

k=0

497

∑ = 0.2275.

3.61  As x[n] is a real-valued sequence of length 316, its 316-point DFT X[k] satisfy 
X[k]= X *[< −k >316 ] = X *[316 − k] (See Table 3.7).

(a)  From the specified DFT samples we observe that X[17] = X * [k 4 ] implying 
k4 = 316 −17 = 299,  X[k1] = X* [210]  if  ε = 0,  implying k1 = 316 − 210 =106, X[k2 ]= X *[179]  

if δ = 0  implying k2 = 316 −179 = 137,  and X[k3] = X*[110] if γ = 0  implying 

k3 = 316 − 110 = 206.

(b)  Now, X[0] = x[n]
n=0

315

∑  which is a real number as x[n] are real numbers implying α = 0.   Since

the length N = 316 is an even number, X[158]= X[N/ 2] = (−1)n x[n]
n =0

315

∑  is also a real number 

implying β = 0.   We have already shown in Part (a),   δ = ε = γ = 0.

(c)  The dc value of {x[n]} is X[0] = 3.

(d)  x[n]=
1

316
{X[0] + 2 Re X[17]W316

−17n( ) + 2 Re X[106]W316
−106 n( ) + 2 Re X[137]W316

−137 n( )
+2 Re X[110]W316

−110 n( )} =
1

316
{3 + 2(1.5)cos

17πn

158
 
   

  + 2(−2.3)sin
106πn

158
 
   

  

+ 2(4.2)cos
137πn

158
 
   

  +2(1.72)sin
110πn

158
 
   

  − 13}

=
1

316
{−10 + 3 cos

17πn

158
 
   

  − 4.6sin
106πn

158
 
   

  + 8.4)cos
137πn

158
 
   

  +3.44 sin
110πn

158
 
   

  }.

(e)  x[n] 2

n =0

315

∑ =
1

316
X[k ] 2

k=0

315

∑ = 0.6521.

3.62  {x[n]} = −4, 5, 2, −3, 0, −2, 3, 4{ }, 0 ≤ n ≤ 7.   Let X[k] denote the 8-point DFT of 

x[n].  Consider the 8-point DFT Y[k]= W4
3k X[k] = W8

6k X[k].   Using the circular time-shifting 
property of the DFT given in Table 3.5 we observe that the IDFT y[n] of Y[k] is given by 
y[n] = x[< n − 6 >8].  Therefore, y[0]= x[< −6 >8 ]= x[2] = 2,   y[1]= x[<1 − 6 >8] = x[3] = −3,   

y[2]= x[< 2 − 6 >8] = x[4]= 0,   y[3]= x[< 3 − 6 >8 ]= x[5]= −2,   y[4]= x[< 4 − 6 >8] = x[6]= 3,  
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y[5] = x[< 5 − 6 >8] = x[7]= 4,   y[6] = x[< 6 − 6 >8 ]= x[0] = −4,   y[7] = x[< 7 − 6 >8 ]= x[1] = 5.   Thus,

{y[n]} = 2, −3, 0, −2, 3, 4, −4, 5{ },  0 ≤ n ≤ 7.

3.63  {x[n]} = 1, −1, 2, 3, 0, 0{ },  0 ≤ n ≤ 5.   Let X[k] denote the 6-point DFT of x[n].  

Consider the 6-point DFT Y[k] = W3
2kX[k] = W6

4kX[k].   Using the circular time-shifting 
property of the DFT given in Table 3.5 we observe that the IDFT y[n] of Y[k] is given by 
y[n] = x[< n − 4 >6 ].  Therefore, y[0] = x[< −4 >6] = x[2] = 2,  y[1] = x[< −3 >6 ] = x[3] = 3,  
y[2] = x[< −2 >6] = x[4]= 0,  y[3] = x[< −1 >6 ]= x[5] = 0,  y[4] = x[< 0 >6] = x[0] = 1,  

y[5]= x[< 1 >6 ]= x[1] = −1.   Thus, {y[n]} = 2 3 0 0 1 −1{ },  0 ≤ n ≤ 5.

3.64  (a)  yL [0] = g[0]h[0]= −6,
yL [1]= g[0]h[1] + g[1]h[0]= 16,
yL [2] = g[0]h[2]+ g[1]h[1] + g[2]h[0]= 0,
yL [3]= g[0]h[3] + g[1]h[2]+ g[2]h[1] = −19,
yL [4]= g[1]h[3] + g[2]h[2]= 2,
yL [5] = g[2]h[3]= 4.

(b) yc[0]= ge[0]h[0]+ ge[1]h[3] + ge[2]h[2] + ge[3]h[1] == g[0]h[0]+ g[1]h[3]+ g[2]h[2]= −4,
yc[1]= ge[0]h[1]+ ge[1]h[0] + ge[2]h[3] + ge[3]h[2] == g[0]h[1] + g[1]h[0]+ g[2]h[3] = 20,
yc[2]= ge[0]h[2]+ ge[1]h[1]+ ge[2]h[0]+ ge[3]h[3] == g[0]h[2]+ g[1]h[1] + g[2]h[0]= 0,
yc[3] = ge[0]h[3] + ge[1]h[2] + ge[2]h[1] + ge[3]h[0]== g[0]h[3] + g[1]h[2]+ g[2]h[1] = −19.

(c)  

Ge[0]

Ge[1]

Ge[2]

Ge[3]

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

1 1 1 1

1 − j −1 j

1 −1 1 −1

1 j −1 − j

 

 

 
 
 
 
 

 

 

 
 
 
 
 

−3

2

4

0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

3

−7 − j2

−1

−7 + j2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

,   

H[0]

H[1]

H[2]

H[3]

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

1 1 1 1

1 − j −1 j

1 −1 1 −1

1 j −1 − j

 

 

 
 
 
 
 

 

 

 
 
 
 
 

2

−4

0

1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

−1

2 + j5

5

2 − j5

 

 

 
 
 
 
 

 

 

 
 
 
 
 

.

Yc[0]

Yc[1]

Yc[2]

Yc[3]

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= .

Ge[0] ⋅H[0]

Ge[1] ⋅H[1]

Ge[2] ⋅H[2]

Ge[3] ⋅H[3]

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

−3

−4 − j39

−5

−4 + j39

 

 

 
 
 
 
 

 

 

 
 
 
 
 

.   Therefore

yc[0]

yc[1]

yc[2]

yc[3]

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=
1

2

1 1 1 1

1 j −1 − j

1 −1 1 −1

1 − j −1 j

 

 

 
 
 
 
 

 

 

 
 
 
 
 

⋅

−3

−4 − j39

−5

−4 + j39

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

−4

20

0

−19

 

 

 
 
 
 
 

 

 

 
 
 
 
 

.

3.65 We need to show Ng[n]      h[n]  = Nh[n]      g[n].

Let x[n] = Ng[n]      h[n]  = g[m]h[< n − m >N ]
m=0

N −1

∑

 and y[n] = Nh[n]      g[n]  = h[m]g[< n − m >N ]
m=0

N −1

∑
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               = h[m]g[n − m]
m=0

n

∑ + h[m]g[N + n − m]
m=n +1

N−1

∑

               = h[n − m]g[m]
m=0

n

∑ + h[N + n − m]g[m]
m=n +1

N−1

∑  = h[< n − m >N ]g[m]
m=0

N −1

∑  = x[n].

Hence circular convolution is commutative.

3.66 (a)  Let g[n] = Nx  [n]1 x  [n]2  = x1[m]x2[< n − m >N]
m=0

N −1

∑ .   Thus, 

g[n]
n=0

N −1

∑ = x1[m] x2 [< n − m >N ]
n =0

N−1

∑
m=0

N −1

∑ = x1[n]
n=0

N −1

∑
 

 
 

 

 
 x1[m]

m=0

N−1

∑
 

 
 

 

 
 .   Similarly we can show that if  

y[n] = N x  [n]3g[n] , then y[n]
n=0

N −1

∑ = g[m] x3[< n − m >N ]
n=0

N −1

∑
m=0

N −1

∑ = g[n]
n=0

N −1

∑
 

 
 

 

 
 x3[m]

m=0

N−1

∑
 

 
 

 

 
  

= x1[n]
n=0

N −1

∑ x2[m]
m=0

N−1

∑
 

 
 

 

 
 x3[m]

m=0

N−1

∑
 

 
 

 

 
 .

(b)  (−1)n g[n]
n=0

N −1

∑ = x1[m] x2[< n − m >N ]
n=0

N−1

∑
m=0

N−1

∑ (−1)n

= x1[m]
m=0

N−1

∑
 

 
 

 

 
 x2[N + n − m](−1)n + x2[n − m](−1)n

n =m

N −1

∑
n =0

m−1

∑
 

 
 

 

 
 .

Replacing  n  by  N+n–m  in the first sum and by  n–m  in the second we obtain 

(−1)n g[n]
n=0

N −1

∑ = x1[m]
m=0

N −1

∑
 

 
 

 

 
 x2 [n](−1)n −N +m + x2 [n](−1)n +m

n =0

N−1

∑
n=0

m−1

∑
 

 
 

 

 
  

= (−1)n x1[n]
n=0

N −1

∑
 

 
 

 

 
 (−1)n x2[n]

n=0

N −1

∑
 

 
 

 

 
 .  Similarly we can show that if  y[n] = N x  [n]3g[n] , then

(−1)n y[n]
n=0

N −1

∑ = (−1)n g[n]
n=0

N −1

∑
 

 
 

 

 
 (−1)n x3[n]

n=0

N−1

∑
 

 
 

 

 
 = (−1)n x1[n]

n=0

N −1

∑
 

 
 

 

 
 (−1)n x2[n]

n=0

N −1

∑
 

 
 

 

 
 (−1)n x3[n]

n=0

N−1

∑
 

 
 

 

 
 .

3.67  
  
y[n] = cos

2πln
N

 
  

 
  x[n]= x[n]

2
e− j2πl n / N + e j2πln / N( ) = 1

2
x[n]WN

nl + 1
2

x[n]WN
−nl .

Hence Y[k] = 
  

1
2

X[< k + l >N ]+ 1
2

X[< k − l >N].

3.68  y[n] = x[4n], 0 ≤ n ≤ N

4
− 1.   Therefore, Y[k] = y[n]WN /4

nk

n =0

N

4
−1

∑ = x[4n]WN /4
nk

n=0

N

4
−1

∑ .
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Now, x[4n] =
1

N
X[m]WN

−4mn

m=0

N−1

∑ =
1

N
X[m]WN/ 4

−mn

m=0

N−1

∑ .  Hence, 

Y[k] =
1

N
X[m]WN/ 4

−mn WN/ 4
nk

m=0

N −1

∑
n =0

N

4
−1

∑ =
1

N
X[m] WN /4

(k−m)n

n =0

N

4
−1

∑
m=0

N−1

∑ .  Since, 

WN /4
(k−m)n

n =0

N

4
−1

∑ =
N

4
, m = k, k + N

4
, k + 2N

4
, k + 3N

4
, k + 4N

4
,

0, elsewhere,

 
 
 

  
  Thus, 

Y[k] =
1
4

X[k] + X[k + N

4
] + X[k + 2N

4
]+ X[k + 3N

4
]( ).

V[k] = −2 + j3, 1 + j5, −4 + j7, 2 + j6, −1 − j3, 4 − j 3 + j8, j6[ ] .   Hence, 

V * [< −k >8] = −2 − j3, − j6, 3 − j8, 4 + j, −1 + j3, 2 − j6, −4 − j7, 1 − j5[ ] .  Therefore,,

X[k] = −2, 0.5 − j0.5, −0.5 − j0.5, 3 + j3.5, −1, 3 − j3.5, −0.5 + j0.5, 0.5 + j0.5[ ] and

Y[k] = 3, 5.5 − j0.5, 7.5 + j3.5, 2.5 + j, −3, 2.5 − j, 7.5 − j3.5, 5.5 + j0.5[ ]

3.69  v[n] = x[n] + jy[n].   Hence, X[k] =
1

2
V[k]+ V* < −k >8 ]{ } is the 8-point DFT of x[n], and 

Y[k] =
1

2 j
V[k ]− V* < −k >8 ]{ }  is the 8-point DFT of y[n].  Now, 

V[k] = −2 + j3, 1 + j5, −4 + j7, 2 + j6, −1 − j3, 4 − j, 3 + j8, j6[ ]
V *[< −k >8]= −2 − j3, − j6, 3 − j8, 4 + j, −1 + j3, 2 − j6, −4 − j7, 1 − j5[ ].  Therefiore,

X[k]= −0.2, 0.5 − j0.5, −0.5 − j0.5, 3 + j3.5, −1, 3 − j3.5, −0.5 + j0.5, 0.5 + j0.5[ ]
Y[k]= 3, 5.5 − j0.5, 7.5 + j3.5, 2.5 + j −3, 2.5 − j, 7.5 − j3.5, 5.5 + j0.5[ ]

3.70  v[n]= ge[n]+ j h[n] = −3 + j2, 2 − j4, 4, j[ ] .  Therefore,

V[0]
V[1]
V[2]
V[3]

 

 

 
 
 

 

 

 
 
 

=
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

 

 

 
 
 

 

 

 
 
 

−3 + j2
2 − j4

4
j

 

 

 
 
 

 

 

 
 
 

=

3 − j
−12

−1 + j5
−2 + j4

 

 

 
 
 

 

 

 
 
 
,   i.e., {V[k]}= 3 − j, −12, −1 + j5, −2 + j4[ ].

Thus, {V*[< −k >4 ]}= 3 + j, −2 − j4, −1 − j5, −12[ ]
Therefore, Ge[k] = 1

2
V[k]+ V *[< −k >4]{ } = 3, −7 − j2, −1, −7 + j2[ ]  and 

H[k]= 1
2j

V[k]− V *[< −k >4]{ } = −1, 2 + j5, 5, 2 − j5[ ] .

3.71  v[n]= g[n]+ jh[n]= −2 + j, 1 + j2, −3 − j3, 4 + j2[ ] .  Therefore,

V[0]
V[1]
V[2]
V[3]

 

 

 
 
 

 

 

 
 
 

=
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

 

 

 
 
 

 

 

 
 
 

−2 + j
1 + j2
−3 − j3
4 + j2

 

 

 
 
 

 

 

 
 
 

=

j2
1 + j7

−10 − j6
1 + j

 

 

 
 
 

 

 

 
 
 
,  i.e., {V[k]}= j2, 1 + j7, −10 − j6, 1 + j[ ].
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Thus, {V*[< −k >4 ]}= − j2, 1− j, −10 + j6, 1 − j7[ ] .

Therefore, Ge[k] = 1
2

V[k]+ V *[< −k >4]{ } = 0, 1 + j3, −10, 1− j3[ ]  and

H[k]= 1
2j

V[k]− V *[< −k >4]{ } = 2, 4, −6, 4[ ].

3.72  (a)  Let p[n] = IDFT P[k]{ }.   Thus,
p[0]
p[1]
p[2]
p[3]

 

 

 
 
 

 

 

 
 
 

= 1
4

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

 

 

 
 
 

 

 

 
 
 

4
1 + j7

2
1 − j7

 

 

 
 
 

 

 

 
 
 

= 1
4

8
−12

4
16

 

 

 
 
 

 

 

 
 
 

=
2
−3
1
4

 

 

 
 
 

 

 

 
 
 
.   Similarly, let d[n] = IDFT D[k]{ }.

d[0]
d[1]
d[2]
d[3]

 

 

 
 
 

 

 

 
 
 

= 1
4

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

 

 

 
 
 

 

 

 
 
 

4.5
1.5 + j
−5.5

1.5 − j

 

 

 
 
 

 

 

 
 
 

= 1
4

2
8

−4
12

 

 

 
 
 

 

 

 
 
 

=
0.5
2

−1
2

 

 

 
 
 

 

 

 
 
 
.   Therefore,

X(e jω) = 2 − 3 e− jω + e− j2ω + 4 e− j3ω

0.5 + 2 e− jω − e− j2ω + 3e− j3ω .

(b)  Let p[n] = IDFT P[k]{ }.   Thus, 

p[0]
p[1]
p[2]
p[3]

 

 

 
 
 

 

 

 
 
 

= 1
4

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

 

 

 
 
 

 

 

 
 
 

7
7 + j2

−9
7 − j2

 

 

 
 
 

 

 

 
 
 

=
3
3

−4
5

 

 

 
 
 

 

 

 
 
 
.  Similarly, let 

d[n] = IDFT D[k]{ }.   Thus, 

d[0]
d[1]
d[2]
d[3]

 

 

 
 
 

 

 

 
 
 

= 1
4

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

 

 

 
 
 

 

 

 
 
 

0
4 + j6

−4
4 − j6

 

 

 
 
 

 

 

 
 
 

=
1

−2
−3
4

 

 

 
 
 

 

 

 
 
 
.   Therefore, 

X(e jω) = 3 + 3e− jω − 4e− j2ω + 5e− j3ω

1 − 2 e− jω −3e− j2ω + 4 e− j3ω .

3.73  X(e jω) = x[n]e− jωn

n =0

N−1

∑  and ˆ X [k]= x[n]e− j2πkn / M

n =0

N−1

∑ .

Now ˆ x [n] = 1
M

ˆ X [k]WM
−nk

k=0

M−1

∑ = 1
M

x[m]e− j2πkm / M

m=0

N−1

∑ WM
−nk

k =0

M−1

∑

         = 
1
M

x[m] e− j2πk(m−n) / M

k=0

M−1

∑
m=0

N−1

∑  = x[n + rM]
r=−∞

∞

∑ . .

Thus ˆ x [n] is obtained by shifting x[n] by multiples of M and adding the shifted copies. Since 
the new sequence is obtained by shifting in multiples of M, hence to recover the original 
sequence take any M consecutive samples. This would be true only if the shifted copies of x[n] 
did not overlap with each other, that is, if only if M ≥  N.

3.74  (a)  X(e jω) = x[n]e− jωn

n=0

7

∑ .   Therefore, X1[k] = x[n]e− j2πkn/10

n=0

7

∑ .   Hence,
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x1[n]= 1
10

X1[k]e j2πkn /10

k=0

9

∑ = 1
10

x[m]e j2πkm /10

m=0

7

∑
 

 
 
 

 

 
 
 

k=0

9

∑ e j2πkn/ 10

= 1
10

x[m] e j2πk(n−m)/10

k =0

9

∑
m=0

7

∑ = x[n +10r]
r=−∞

∞

∑   using the result of Problem 3.74.

Since M = 10 and N = 8, M > N, and hence x[n] is recoverable from x1[n].  In fact

{x1[n]}= 1 1 1 1 1 1 1 1 0 0{ }  and x[n] is given by the first 8 samples of x1[n].

(b)  Here, X2[k]= x[n]e− j2πkn / 6

n=0

7

∑ .   Hence, 

x2[n] = 1
6

X1[k]e j2πkn/ 6

k =0

5

∑ = 1
10

x[m]e j2πkm / 6

m=0

7

∑
 

 
 
 

 

 
 
 

k=0

5

∑ e j2πkn/ 6

= 1
10

x[m] e j2πk(n−m)/ 6

k =0

6

∑
m=0

7

∑ = x[n + 6 r]
r=−∞

∞

∑ .   Since M = 6 and N = 8, M < N, the sequence x[n]

is not recoverable from x2[n].   In fact, x2[n] = 2 2 1 1 1 1{ }.   As there is time-domain 

aliasing, x[n] is not recoverable from x2[n].

3.75  Since 
  
F −1 =

1

N
F  thus   F  =   NF −1. Thus

y[n] =   F {  F {  F {  F {  F {  F {x[n]}}}}}}}
= N  F -1{  F {N  F -1{  F {N  F -1{  F {x[n]}}}}}} = N3 x[n].

3.76  y[n] = x[n] * h[n]  = x[k]h[n − k]
k=0

39

∑ = h[k]x[n − k]
k =0

39

∑ = h[k]x[n − k]
k =12

27

∑ .

u[n] = Nx[n]      h[n]  = h[k]x[< n − k >40 ]
k=0

39

∑ = h[k]x[< n − k >40]
k=12

27

∑ .

Now for n ≥  27,  x[< n − k >40]= x[n − k] .  Thus u[n] = y[n] for 27 ≤ n ≤ 39.

3.77  (a)  Overlap and add method: Since the impulse response is of length 55 and the DFT size to 
be used is 64, hence the number of data samples required for each convolution will be 64 – 
54 = 10. Thus the total number of DFT's required for length-1100 data sequence is  

1100
10

 
  

 
  =110.   Also the DFT of the impulse response needs to be computed once. Hence, the 

total number of DFT's used are = 110 + 1 = 111.  The total number of IDFT's used are = 110.

(b)  Overlap and save method:  In this since the first 55 – 1 = 54 points are lost, we need to 
pad the data sequence with 54 zeros for a total length of 1154. Again each convolution will 
result in 64 – 54 = 10 correct values. Thus the total number of DFT's required for the data are 

thus 
1154
10

 
  

 
  =116 .   Again 1 DFT is required for the impulse response. Thus

The total number of DFT's used are = 116 + 1 = 117.
The total number of IDFT's used are = 116.
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3.78  (a) y[n] = x[n / L], n = 0,L,2L,....., (N −1)L,
0, elsewhere.

 
  

Y[k]= y[n]WNL
nk

n=0

NL−1

∑ = x[n]WNL
nLk

n=0

N −1

∑ = x[n]WN
nk

n=0

N −1

∑ .

For k ≥  N,  let k = k0 + rN  where k0 = < k >N .  Then,

Y[k] = Y[ k0 + rN ] = x[n]WN
n(k 0 + rN)

n=0

N −1

∑  = x[n]WN
nk 0

n=0

N −1

∑  = X[k0] = X[< k >N ].

(b)  Since Y[k] = X[< k >7 ]  for k = 0, 1, 2, ....., 20, a sketch of Y[k] is thus as shown below.

0 1 2 3 4 5 6
k

1

2

3

4

7 8 20

Y[k]

3.79  x0[n] = x[2n +1] + x[2n],  x1[n]= x[2n +1]− x[2n], y1[n] = y[2n +1]+ y[2n], and 

y0[n] = y[2n +1] − y[2n],  0 ≤ n ≤ N

2
− 1.    Since x[n] and y[n] are real, symmetric sequences, it 

follows that x0[n] and y0[n] are real, symmetric sequences, and x1[n] and y1[n] are real, anti-
symmetric sequences.  Now consider, the (N/2)-length sequence

u[n] = x0[n]+ y1[n]+ j x1[n]+ y0[n]( ).  Its conjugate sequence is given by

u * [n] = x0[n] + y1[n]− j x1[n]+ y0[n]( ).   Next we observe that

u[< –n >N / 2] = x0[< –n >N / 2 ]+ y1[< –n >N / 2] + j x1[< –n >N / 2 ]+ y0[< – n >N / 2 ]( )
= x0[n]− y1[n]+ j −x1[n]+ y0[n]( ).   Its conjugate sequence is given by

u * [< −n >N / 2 ]= x0[n]− y1[n]− j −x1[n]+ y0[n]( ).
By adding the last 4 sequences we get

4 x0 [n] = u[n]+ u *[n]+ u[< −n >N / 2 ]+ u * [< −n >N / 2 ].

From Table 3.6, if U[k] = DFT{u[n]}, then U *[< −k >N / 2 ]= DFT{u * [n]},

U *[k] = DFT{u *[< −n >N / 2]},  and  U[< −k >N / 2] = DFT{u[< −n >N / 2 ]}.   Thus,

X0[k]= DFT{x0 [n]} = 1

4
U[k]+ U* [< −k >N / 2 ]+ U[< −k >N / 2 ]+ U *[k]( ).   Similarly,

j4 x1[n] = u[n] − u *[n]− u[< −n >N / 2]+ u *[< −n >N / 2].   Hence,

X1[k] = DFT{x1[n]} = 1

4 j
U[k]− U* [< −k >N / 2 ]− U[< −k >N / 2 ]+ U *[k]( ).   Likewise,

4 y1[n]= u[n]− u[< −n >N / 2 ]+ u * [n]− u *[< −n >N / 2].   Thus,

Y1[k]= DFT{y1[n]}= 1

4
U[k]− U[< −k >N / 2 ]+ U *[< −k >N / 2]− U* [k]( ).   Finally,

j4 y0[n] = u[n]+ u[< −n >N / 2] − u *[n]− u * [< −n >N / 2 ].  Hence,

Y0[k] = DFT{y0[n]}= 1

4j
U[k]+ U[< −k >N / 2 ]− U *[< −k >N / 2] − U* [k]( ).
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3.80  g[n]= 1

2
x[2n]+ x[2n +1]( ), h[n] = 1

2
x[2n]– x[2n + 1]( ), 0 ≤ n ≤ N

2
–1.  Solving for x[2n] and 

x[2n+1] , we get  x[2n] = g[n] + h[n] and x[2n + 1] = g[n] – h[n], 0 ≤ n ≤ N

2
–1 .  Therefore,

X(z) = x[n]z–n

n=0

N−1

∑ = x[2n]z–n

n=0

N
2

−1

∑ + z−1 x[2n +1]z–n

n=0

N
2

−1

∑  

= g[n]+ h[n]( )z–n

n=0

N
2

−1

∑ + z−1 g[n]+ h[n]( )z–n

n=0

N
2

−1

∑ = (1 + z−1) g[n]z–n

n=0

N
2

−1

∑ + (1 − z−1) h[n]z–n

n=0

N
2

−1

∑ .

Hence, X[k]= X(z) z=WN
k = (1 + WN

–k )G[< k >N / 2 ]+ (1− WN
–k )H[< k >N / 2],  0 ≤ k ≤ N – 1.

3.81  g[n]= a1x[2n]+ a2x[2n +1]  and h[n] = a3x[2n]+ a4 x[2n +1], with a1a4 ≠ a2a3.   Solving for x[2n]

and x[2n+1] , we get  x[2n] = 
a4g[n]− a2h[n]

a1a4 − a2a3
,   and  x[2n + 1] = 

−a3g[n]+ a1h[n]

a1a4 − a2a3
.  Therefore

X(z) = x[n]z–n

n=0

N−1

∑ = x[2n]z–n

n=0

N
2

−1

∑ + z−1 x[2n +1]z–n

n=0

N
2

−1

∑

= 
a4g[n]− a2h[n]

a1a4 − a2a3

 

 
  

 

 
  z

–n

n=0

N
2

−1

∑ + z−1 −a3g[n]+ a1h[n]

a1a4 − a2a3

 

 
  

 

 
  z–n

n =0

N
2

−1

∑

= 1

a1a4 −a2a3
(a4 − a3z−1) g[n]z–n

n =0

N
2

−1

∑ + (−a2 + a1z
−1) h[n]z–n

n=0

N
2

−1

∑ .   Hence,

X[k]= 1

a1a4 −a2a3
(a4 − a3WN

−nk )G[< k >N / 2 ]+ (−a2 + a1WN
−nk)G[< k >N /2 ], 0 ≤ k ≤ N – 1.

3.82  XGDFT[k,a,b]= x[n]
n =0

N−1

∑ exp − j
2π(n + a)(k + b)

N

 
  

 
  .

x[n] = 1
N

X[k,a,b]
k =0

N−1

∑ exp j
2π(n + a)(k + b)

N

 
  

 
   

        = 1
N

x[r]exp − j
2π(r + a)(k + b)

N

 
  

 
  

r=0

N −1

∑
k =0

N−1

∑ exp j
2π(n + a)(k + b)

N

 
  

 
  

    = 1
N

x[r]exp j
2π(n + a − r − a)(k + b)

N

 
  

 
  

r=0

N −1

∑
k =0

N−1

∑ = 1
N

x[r]exp j
2π(n − r)(k + b)

N

 
  

 
  

r=0

N −1

∑
k =0

N−1

∑

= 1
N

x[r] exp j
2π(n − r)(k + b)

N

 
  

 
  

k =0

N−1

∑
r=0

N−1

∑  = 1
N

⋅x[n]⋅N = x[n] ,
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as from Eq. (3.28), exp j
2π(n − r)(k + b)

N

 
  

 
  

k=0

N −1

∑ = N, if n = r,
0, otherwise.{

3.83  X(z) = x[n]z−n

n=−∞

∞

∑ = x[n]z−n

n=0

∞

∑ .   Therefore, 

lim
z→∞

X(z) = lim
z→∞

x[n]z−n

n =0

∞

∑ = lim
z→∞

x[0]+ lim
z→∞

x[n]z−n

n=1

∞

∑ = x[0].

3.84  G(z) = (z + 0.4)(z − 0.91)(z2 + 0.3z + 0.4)
(z2 − 0.6 z + 0.6)(z2 + 3z + 5)

.   G(z) has poles at z = 0.3 ± j
2.04
2

 and z = 3
2

± j
11
2

.

Hence, there are possible ROCs.

(i)  ¬1:   z ≤ 0.6 . The inverse z-transform g[n] in this case is a left-sided sequence.

(ii)  ¬2:  0.6 ≤ z ≤ 5 .  The inverse z-transform g[n] in this case is a two-sided sequence.

(iii)  ¬3:   z ≥ 5 .  The inverse z-transform g[n] in this case is a right-sided sequence.

3.85  (a)  (i) x1[n]= (0.4)n µ[n]  is a right-sided sequence.  Hence, the ROC of its z-transform is 

exterior to a circle. Thus,  X1(z) = x1[n]z−n

n =−∞

∞

∑ = (0.4)n z−n

n=0

∞

∑ = 1
1 − 0.4z−1 , z > 0.4

The ROC of X1(z) is given by ¬1: z > 0.4 .

(ii) x2[n] = (−0.6)nµ[n]  is a right-sided sequence.  Hence, the ROC of its z-transform is exterior to

a circle. Thus,  X2(z) = x2[n]z−n

n=−∞

∞

∑ = (−0.6)n z−n

n=0

∞

∑ = 1
1 + 0.6z−1 , z > 0.6

The ROC of X2(z) is given by ¬2: z > 0.6 .

(iii) x3[n] = (0.3)nµ[n − 4] is a right-sided sequence.  Hence, the ROC of its z-transform is 

exterior to a circle.  Thus, X3(z) = x3[n]z−n

n =−∞

∞

∑ = (0.3)n z−n

n=4

∞

∑

X3(z) = x3[n]z−n

n =−∞

∞

∑ = (0.3)n z−n

n=4

∞

∑ = (0.3)4 z−4

1 − 0.3z−1 , z > 0.3.   The ROC of X3(z) is given by 

¬3: z > 0.2 .
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(iv) x 4[n] = (−0.3)n µ[−n − 2]  is a left-sided sequence.   Hence, the ROC of its z-transform is 
interior to a circle.  Thus, 

X4(z) = x4[n]z−n

n=−∞

∞

∑ = (−0.3)n z−n

n=–∞

−2

∑ = (−0.3)−mzm

m=2

∞

∑ = − 2 + a−1z
1+ 0.3z−1 , z < 0.3.

The ROC of X4(z) is given by ¬4: z < 0.3.

(b)  (i)  Now, the ROC of X1(z) is given by ¬1: z > 0.4  and the ROC of  X2(z)  is given by 
¬2: z > 0.6 .  Hence, the ROC of Y1(z) is given by ¬1∩ ¬2 = ¬2: z > 0.6

     (ii)  The ROC of Y2(z) is given by ¬1∩ ¬3 = ¬1: z > 0.4 .

    (iii)  The ROC of Y3(z) is given by ¬1∩ ¬4 = ∅ .  Hence, the z-transform of the sequence 
y3[n] does not converge anywhere in the z-plane.

    (iv)  The ROC of Y4(z) is given by ¬2∩ ¬3 = ¬2: z > 0.6 .

(v)  The ROC of Y5(z) is given by ¬2 ∩ ¬4 = ∅ .  Hence, the z-transform of the sequence 
y5[n] does not converge anywhere in the z-plane.

(vi)  The ROC of Y6(z) is given by ¬3∩ ¬4 = ∅ .  Hence, the z-transform of the sequence 
y6[n] does not converge anywhere in the z-plane.

3.86  (a) Z{δ[n]} = δ[n]z−n

n =−∞

∞

∑ = δ[0] =1,which converges everywhere in the z-plane. 

(b) Z{αnµ[n]} = αnµ[n]z−n

n=−∞

∞

∑ = (αz−1)n

n=0

∞

∑ = 1
1 − αz−1 ,   ∀ z > α

(c) See Example 3.29.

(d)  x[n] = r n sin(ω 0n)µ[n] = 
r n

2j
e jω0n − e− jω0n( )µ[n] .  Using the results of (iii) and the 

linearity property of the z-transform we obtain

Z{r n sin(ω 0n)µ[n]} = 1
2 j

1
1− rejω0z−1

 
  

 
  − 1

2j
1

1− re− jω0 z−1
 
  

 
  

            =

r
2j

e jω0 − e− jω0( )z−1

1 − rz−1 e jω0 + e− jω0( )+ r 2z−2 =
r sin(ω0 )z−1

1 − 2rcos(ω 0)z−1 + r2z−2 ,            ∀ z > r

3.87  (a)  x1[n]= 6 (0.5)n − (0.3)n[ ]µ[n] = 6(0.5)n µ[n]− 6(0.3)n µ[n] .  Therefore,

X1(z) = 6
1 − 0.5 z−1 − 6

1 − 0.3z−1 = 6(1− 0.3z−1 − 1+ 0.5z−1)
(1 − 0.5 z−1)(1− 0.3z−1)

 = 1.2 z−1

(1− 0.5z−1)(1 − 0.3 z−1)
,  z > 0.5
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(b)  x2[n] = −6(0.3)n µ[n]− 6(0.5)n µ[−n −1].   Now, 
  
Z{−6(0.3)n µ[n]} = −6

1 − 0.3z−1 ,   z > 0.3  and 

  
Z{−6(0.5)n µ[−n −1]}= 6

1 − 0.5 z−1 ,   z < 0.5.  Therefore, 

X2(z) = 6
1− 0.5z−1 − 6

1 − 0.3z−1 = 1.2 z−1

(1− 0.5z−1)(1 − 0.3 z−1)
,  0.3 < z < 0.5.

(c)  x3[n] = 6(0.3)n µ[−n −1]− 6(0.5)n µ[−n −1].   Now, 
  
Z{6(0.3)n µ[−n −1]} = −6

1 − 0.3z−1 ,  z < 0.3 

and  
  
Z{−6(0.5)n µ[−n −1]}= 6

1 − 0.5 z−1 ,   z < 0.5.  Therefore, 

X3(z) = 6
1 − 0.5 z−1 − 6

1 − 0.3z−1 = 1.2 z−1

(1 − 0.5 z−1)(1− 0.3z−1)
, z < 0.3.

Note:  X1(z) = X2(z) = X3(z),  but their ROCs are all different.

3.88  (a)  x1[n]= αnµ[n]+ βnµ[n]  with β > α .  Note that x1[n] is a right-sided sequence.  Hence, the

ROC of its z-transform is exterior to a circle.  Now, 
  
Z{αnµ[n]} = 1

1− α z−1 ,  with ROC given 

by z > α  and  
  
Z{βnµ[n]} = 1

1 − βz−1 , with ROC given by z > β .  Hence, 

X1(z) = 1
1 − α z−1 + 1

1 − βz−1 = 1− (α+ β) z−1 + z−2

(1 − αz−1)(1 −β z−1)
, z > β

(b)  x2[n] = αnµ[−n −1]+ βnµ[n].  Note that x2[n]  is a two-sided sequence. Now, 

  
Z{αnµ[−n −1]}= 1

1 − αz−1 ,  with ROC given by z < α  and 
  
Z{βnµ[n]} = 1

1 − βz−1 , with ROC 

given by z > β .  Since the regions z < α  and z > β  do not intersect, the z-transform of x2[n]  
does not converge.

(c)  x3[n] = αnµ[n]+ βnµ[−n − 1] .  Note, is a two-sided sequence.  Now, 
  
Z{αnµ[n]} = 1

1− α z−1 ,  

with ROC given by z > α  and  
  
Z{βnµ[−n −1]} = 1

1− βz−1 ,  with ROC given by z < β .  Since the 

regions z > α  and z < β  intersect, the z-transform X3(z)  of x3[n]  converges and is given by 

X3(z) = 1
1 − αz−1 + 1

1 −β z−1 = 1 − (α+ β) z−1 + z−2

(1 − αz−1)(1 −β z−1)
,  Its ROC is an annular region given by 

α < z < β
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3.89  (a)  Let y[n] = α g[n]+ βh[n].   Then, 

Y(z) = αg[n]+ βh[n]( )
n=−∞

∞

∑ z−n = α g[n]
n=−∞

∞

∑ z−n + βg[n]
n=−∞

∞

∑ z−n = αG(z) +β H(z).   In this case, Y(z)

will converge wherever both G(z) and H(z) converge.  Thus, the ROC of Y(z) is given by 

  
R g ∩ R h  where 

  
R g  is the ROC of G(z) and   R h  is the ROC of H(z).

(b)  y[n] = g[−n].   Then, Y(z) = g[−n]z−n

n=−∞

∞

∑ = g[n]zn

n=−∞

∞

∑ = g[n](1 / z)−n

n=−∞

∞

∑ = G(1/ z).  Y(z) will 

converge wherever G(1/z) converges.  Hence, if 
  
R g  is the ROC of G(z), then the ROC of Y(z) is 

given by 1/
  
R g  is the ROC of G(z).

(c) y[n] = g[n − n0 ] .  Hence Y(z) = y[n]z−n

n =−∞

∞

∑ = g[n − n0 ]z−n

n =−∞

∞

∑ = g[m]z−(m+n 0 )

m=−∞

∞

∑

= z−n0 g[m]z−m

m=−∞

∞

∑ = z−n0G(z).

In this case the ROC of Y(z) is the same as that of G(z) except for the possible addition or 

elimination of the point z = 0 or z = ∞  (due to the factor z−n0 ).

(d) y[n] = αng[n] .  Hence, Y(z) = y[n]z−n

n=−∞

∞

∑ = g[n](zα−1)−n

n =−∞

∞

∑ = G(z / α).

The ROC of Y(z) is 
  
α R g .

(e) y[n] = ng[n].  Hence Y(z) = ng[n]z−n

n =−∞

∞

∑ .

Now G(z) = g[n]z−n

n=−∞

∞

∑ . Thus, 
dG(z)

dz
= − ng[n]z−n−1

n=−∞

∞

∑  ⇒  z
dG(z)

dz
= − ng[n]z−n

n=−∞

∞

∑ .

Thus Y(z) = – z
dG(z)

dz
.

(f) y[n] = g[n] * h[n] = g[k]h[n − k]
k=−∞

∞

∑ . Hence,

Y(z) = y[n]z−n

n=−∞

∞

∑ = g[k]h[n − k]
k=−∞

∞

∑
 

 
 
 

 

 
 
 z

−n = g[k] h[n − k]
n =−∞

∞

∑ z−n

k =−∞

∞

∑
n=−∞

∞

∑

         = g[k]H(z)z−k

k=−∞

∞

∑ = H(z)G(z) .

In this case also Y(z) will converge wherever both H(z) and G(z) converge.   Thus ROC of Y(z)
is   R g ∩ R h .

(g) y[n] = g[n]h[n].  Hence, Y(z) = g[n]h[n]
n =−∞

∞

∑ z−n . From Eq. (3.??),
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 g[n]= 1
2πj

G(v)vn−1dv

C
∫ .  Thus, Y(z) = h[n]

n=−∞

∞

∑ 1
2πj

G(v)vn −1dv

C
∫

 

 

 
  

 

 

 
  

z−n

= 1
2πj

G(v) h[n]
n=−∞

∞

∑ z−nvn −1
 

 
 
 

 

 
 
 dv

C
∫ = 1

2πj
G(v)H(z / v)v−1dv

C
∫ .

(h) g[n]h * [n]
n =−∞

∞

∑ = 1
2πj

G(v) h * [n]vn v−1dv
n=−∞

∞

∑
C
∫ = 1

2πj
G(v)H* (1/ v*)v−1 dv

C
∫ .

3.90    X(z) = Z{x[n]} with an ROC given by   R x .  Using the conjugation property of the z-transform 

given in Table 3.9 we observe that   Z{x *[n]} = X * (z*)  whose ROC is given by   R x .  Now, 

Re(x[n]) = 1
2

(x[n] + x *[n]).   Hence, 
  
Z Re(x[n]){ } = 1

2
X(z)+ X* (z)( )  whose ROC is also   R x .  

Likewise, Im(x[n]) = 1
2 j

(x[n]− x * [n]).   Thus 
  
Z Im(x[n]){ } = 1

2j
X(z) − X * (z)( )  with an ROC given 

by   R x .

3.91  {x[n]} = 3 0 1 −2
↑

−3 4 1 0 −1
 
 
 

 
 
 

.  Then, 

˜ X [k]= X(z) z=e jπk / 3 = X(z) z=e j2πk / 6 = X(e jω )
ω=2πk / 6

.   Note that ˜ X [k] is a periodic sequence of 

period 6.  Hence, from the results of Prpblem 3.37, the inverse of the discrete Fourier series ˜ X [k]

is given by ˜ x [n] = x[n + 6r]
n =−∞

∞

∑ = x[n − 6]+ x[n]+ x[n + 6], for 0 ≤ n ≤ 5 .  Let 

y[n] = x[n − 6]+ x[n]+ x[n + 6], −3 ≤ n ≤ 5 .  It follows {x[n − 6]}= 0 0 0 0
↑

0 0 3 0 −1
 
 
 

 
 
 
,

and {x[n + 6]}= 3 0 1 0
↑

0 0 0 0 0
 
 
 

 
 
 
.   Therefore, 

{y[n]} = 4 0 4 −2
↑

−3 4 4 0 0
 
 
 

 
 
 
.   Hence, {˜ x [n]} = −2

↑
−3 4 4 0 0

 
 
 

 
 
 
.

3.92  X(z) = x[n]z−n

n=0

11

∑ .

Xo[k]= X(z) z=e j2πk /9 = x[n]e− j2πkn/ 9

n=0

11

∑ .   Therefore, 

xo[n] = 1
9

Xo[k]
k =0

8

∑ e j2πkn / 9 = 1
9

x[r]e− j2πkr / 9

r=0

11

∑
 

 
 
 

 

 
 
 

k=0

8

∑ e j2πkn/ 9 = 1
9

x[r]e j2πk(n− r) / 9

r=0

11

∑
k=0

8

∑

= 1
9

x[r] e j2πk(n− r) / 9

k =0

8

∑
r=0

11

∑ = 1
9

x[r] W9
−(r−n)k

k =0

8

∑
r=0

11

∑
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But, from Eq. (3.28), W9
−( r−n)k

k=0

8

∑ = 9, for r − n = 9 i
0, otherwise.{   Hence, 

xo[n] =

x[0]+ x[9], for n = 0,
x[1]+ x[10], for n = 1,
x[2]+ x[11], for n = 2,

x[n], for 3 ≤ n ≤ 8,

 

 
 

 
 

 i.e., xo[n] = 9 1 7 4 −3 −2 0 1 −4,{ } , 0 ≤ n ≤ 8.

3.93  (a)  X(z) = x[n]z−n

n=−∞

∞

∑ .   Hence, X(z2 ) = x[n]z−2n

n=−∞

∞

∑ = x[m / 2]z−m

m=−∞
m even

∞

∑ .   If we define a new 

sequence 
  
g[m]= x[m / 2], m = 0,± 2,± 4,K

0, otherwise,{ , we can then express X(z2 ) = g[n]z−n

n=−∞

∞

∑ .   Thus, the

inverse z-transfoprm of X(z2 )  is given by g[n].  For x[n] = (0.4)nµ[n],  

  
g[n]= (0.4)n / 2, n = 0,2,4,K

0, otherwise,
 
 
 

(b)  Y(z) = (1 + z−1)X(z2 ) = X(z2 ) + z−1X(z2).   Therefore, 

  y[n] = Z −1{Y(z)} = Z −1{X(z2 )}+ Z −1{z−1X(z2 )} = g[n] + g[n–1], where g[n] is the inverse z-

transform of X(z2 ) .  Now, 
  
g[n]= x[n / 2], n = 0,± 2,± 4,K

0, otherwise,{  and 

  
g[n −1]= x[(n −1) / 2], n = ±1,± 3,K

0, otherwise,{ .  Hence, 

  
y[n] = g[n]+ g[n − 1] = x[n / 2], n = 0,± 2, ± 4,K

x[(n − 1) / 2], n = ±1,± 3,± 5,K{ .  For x[n] = (0.4)nµ[n],  therefore, 

  

y[n] =
(0.4)n / 2 , n = 0,2,4,K,

(0.4)(n−1) / 2, n = 1,3,5,K,
0, n < 0.

 

 
 

 
 

3.94  (a) x1[n]= αnµ[n +1],   α < 1.   Therefore, X1(z) = αn

n =−∞

∞

∑ µ[n + 1]z−n = αn

n=−1

∞

∑ z−n  

= z
α

αn

n=0

∞

∑ z−n = 1
α z−1(1− α z−1)

, z > α .   The ROC of X1(z)  includes the unit circle since α < 1.

On the unit circle X1(e jω ) = X1(z)
z=e jω = 1

α e− jω(1 − αe− jω )
, which is the same as the DTFT of 

x1[n].

(b)  x2[n] = n ⋅αnµ[n],   α < 1.   Therefore,  X2(z) = n ⋅αn

n=−∞

∞

∑ µ[n]z−n = n ⋅αn

n=0

∞

∑ z−n  

= α z−1

(1− α z−1)2 , z > α .  The ROC of X2(z)  includes the unit circle since α < 1.   On the unit circle,

X2(e jω) = X2 (z)
z=e jω = αe− jω

(1 − αe− jω )2 , which is the same as the DTFT of x2[n].
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(c)  x3[n] = α n , n < M,
0, otherwise.

 
 
 

  Therefore, X3(z) = α−n

n =−M

−1

∑ z−n + αn

n =0

M

∑ z−n

= αMzM 1 − α−Mz−M

1 −α−1z−1 + 1− αM+1z−(M+1)

1 − α−1z−1 .   Since x3[n]  is a finite-length sequence, the ROC is the

whole z-plane except possibly the origin.  On the unit circle

X(e jω) = X(z) z=e jω = αMe jωM 1 −α−Me− jωM

1 − α−1e− jω + 1− αM+1e− jω(M+1)

1 −α−1e− jω .

(d)  x 4[n] = αnµ[n −3], α <1.   Note that we can express x 4[n] = α4x1[n − 4],  where 

x1[n]= αnµ[n +1], is the sequence considered in Part (a).  Therefore, 

X4(z) = α4z−4X1(z) = α3z−3

1− α z−1 , z > α .   The ROC of X4(z)  includes the unit circle since α < 1.   

On the unit circle, X3(e jω ) = α3e− j3ω

1 − α e− jω , which is the same as the DTFT of x 4[n].

(e)  x5[n]= n ⋅αnµ[n + 2], α < 1.  Therefore, 

X5(z) = n ⋅αn

n=−2

∞

∑ z−n = −2α−2z2 −α−1z + n ⋅αn

n=0

∞

∑ z−n = −z(2α−2z + α−1)+ αz−1

(1 − αz−1)2 , z > α .  

The ROC of X5(z)  includes the unit circle since α < 1.   On the unit circle, 

X5(e jω ) = −e jω(2α−2e jω + α−1)+ αe− jω

(1 − αe− jω )2 ,  which is the same as the DTFT of x5[n].

(f)  x6[n]= αnµ[−n −1], α >1.   Therefore, 

X6(z) = αn

n=−∞

−1

∑ z−n = αn

n =−∞

0

∑ z−n − α = 1
1− α−1z

− α, z < α .   The ROC of X6(z)  includes the unit 

circle since α > 1.   On the unit circle, X6(e jω) = 1
1− α−1e jω −α, which is the same as the DTFT of

x6[n].

3.95  (a)  y1[n] =
1, –N ≤ n ≤ N,

0, otherwise.

 
 
 

  
  Therefore, Y1(z) = z−n

n=−N

N

∑ = zN (1 − z−(2N +1))
(1− z−1)

.  Since y1[n]  is  a 

finite-length sequence, the ROC of its z-transform is the whole z-plane except possibly the origin,
and therefore includes the unit circle.  On the unit circle, 

Y1(e
jω) = e− jωn

n=−N

N

∑ = e jωN (1− e− jω(2N+1))
(1 − e− jω )

=
sin(ω N + 1

2[ ])
sin(ω / 2)

, which is the same DTFT of y1[n] .
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(b)  y2[n] =
1− n

N
, −N ≤ n ≤ N,

0, otherwise.

 
 
 

  
 Now y2[n] = y0[n] * y0[n] where  

y0[n] =
1, −N / 2 ≤ n ≤ N / 2,

0, otherwise.

 
 
 

  
  Therefore, Y2 (z) = Y0

2(z) = zN (1− z−(N +1))2

(1 − z−1)2 .   Since y2[n]  is  a 

finite-length sequence, the ROC of its z-transform is the whole z-plane except possibly the origin,
and therefore includes the unit circle.  On the unit circle,

Y2 (e jω ) = Y0
2(e jω) =

sin2 ω N +1
2

 
  

 
  

 
  

 
  

sin2(ω / 2)
 which is the same DTFT of y2[n] .

(c)  y3[n] =
cos(πn / 2N), −N ≤ n ≤ N,

0, otherwise.

 
 
 

  
  Therefore, 

Y3(z) = 1
2

e− j(πn / 2N)z−n

n=−N

N

∑ + 1
2

e j(πn / 2N)z−n

n=−N

N

∑

= e j(π / 2)zN

2
1 − e− j(2N+1)(π / 2N) z−(2N +1)

1 − e− j(π / 2N) z−1

 

 
  

 

 
  + e− j(π / 2)zN

2
1 − e j(2N +1)(π / 2N)z−(2N+1)

1 − e j(π / 2N) z−1

 

 
  

 

 
  .  Since 

y3[n]  is  a finite-length sequence, the ROC of its z-transform is the whole z-plane except possibly
the origin, and therefore includes the unit circle.  On the unit circle, 

Y(e jω) = 1
2

sin (ω − π
2N

)(N + 1
2
)( )

sin (ω − π
2N

) / 2( ) + 1
2

sin (ω + π
2N

)(N + 1
2
)( )

sin (ω + π
2N

) / 2( )  which is the same DTFT of y3[n] .

3.96  (a)  x1[n]= −αnµ[−n −1].   Note, is a left-sided sequence.  Hence, the ROC of its z-transform is 

interior to a circle.  Therefore, X1z) = − αn

n=−∞

∞

∑ µ[−n −1]z−n = − αnz−n

n=−∞

−1

∑ = − α−mzm

m=1

∞

∑  

= − (z /α)m

m=1

∞

∑ = − z / α
1− (z / α)

 

 
 

 

 
 = z

z − α
, z / α <1.   The ROC of X1(z)  is thus given by z < α .

(b)  x2[n] = αnµ[n + 1].   Note, is a right-sided sequence.  Hence, the ROC of its z-transform is 

exterior to a circle.  Therefore, X2(z) = αnµ[n +1]
n=–∞

∞

∑ z−n = αn

n =−1

∞

∑ z−n  

= α−1z + αn

n=0

∞

∑ z−n = α−1z + 1
1 − αz−1 , α / z <1.   Simplifying we get X2(z) = z / α

1− (z / α)
 whose 

ROC is given by z > α .
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(c)  x3[n] = αnµ[−n].   Note, is a left-sided sequence.  Hence, the ROC of its z-transform is 

interior to a circle.  Therefore, X3(z) = αn

n =−∞

∞

∑ µ[−n]z−n = αn

n =−∞

0

∑ z−n = α−m

m=0

∞

∑ zm  

= 1
1 − α−1z

, α−1z < 1.   Therefore, the ROC of X3(z)  is given by z < α .

3.97  v[n]= α n = αnµ[n]+ α−n µ[−n −1].   Now, 
  
Z{αnµ[n]} = 1

1 − α z−1 , z > α   (see Table 3.8) and 

  

Z{α−nµ[−n −1]} = α−nz−n

n =−∞

−1

∑ = αmzm

m=1

∞

∑ = αmzm

m=0

∞

∑ −1 = 1
1 − αz

−1 = −α z
α − z−1 , α z < 1.   

Therefore, V(z) = 1
1− α z−1 + −α z

α − z−1 = z−1(−1)
(1 − αz−1)(α − z−1)

,  with the ROC of V(z) given by 

α < z < 1/ α

3.98 (a)  Y1(z) =
z(z −1)

(z +1)(z + 1 / 3)
=

(1 − z−1 )

(1 + z−1) 1 + (1 / 3)z−1( ) = K +
A

1 + z−1 +
B

1 + (1 / 3)z−1 ,  where

K = Y1(z) z=0 = 0,  A =
(1 − z−1)

1 + (1 / 3)z−1( )
z−1=−1

= 3,  and B =
(1 − z−1)

1 + z−1
z−1=−3

= −2.   Thus, 

Y1(z) =
3

1 + z−1 +
−2

1 + (1 / 3)z−1 , z > 1.   Since, the ROC is exterior to a circle, the inverse

z-transform y1[n]  of Y1(z)  is a right-sided sequence and is given by 

y1[n] = 3(−1)n µ[n] − 2(−1 / 3)n µ[n].

(b)  Y2 (z) =
3

1 + z−1 +
−2

1 + (1 / 3)z−1 , z <
1

3
.   Since, the ROC is interior to a circle, the inverse 

z-transform y2[n]  of Y2 (z)  is a left-sided sequence and is given by 

y2 [n] = −3(−1)n µ[−n −1] + 2(−1 / 3) nµ[−n −1].

(c)  Y3(z) =
3

1 + z−1 +
−2

1 + (1 / 3)z−1 ,
1

3
< z <1.   Since, the ROC is an annular region in the

z-plane, the inverse z-transform y3[n]  of Y3(z)  is a two-sided sequence and is given by 

y3[n] = −3(−1)nµ[−n −1] − 2(−1 / 3)n µ[n].

3.99  (a)   Xa(z) =
4 − 3z−1 + 3 z−2

(z + 2)(z − 3)2 = z−3 4 − 3 z−1 + 3z−2

(1 + 2 z−1)(1 − 3z−1 )2
 

 
 

 

 
 =

4 z−3 − 3z−4 + 3 z−5

(1 + 2 z−1)(1 − 3z−1)2 .åç  z > 3,
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Let G(z) = 4 − 3 z−1 + 3z−2

(1 + 2 z−1)(1− 3 z−1)2 .   A partial-fraction expansion of G(z) yields  

G(z) =
A

1 + 2 z−1 +
B

1 − 3 z−1 +
C

(1 − 3 z−1)2 ,    where  A =
4 − 3 z−1 + 3 z−2

(1 − 3 z−1)2
z−1=−1/ 2

=
25 / 4

25 / 4
= 1,  

C =
4 − 3 z−1 + 3 z−2

1 + 2 z−1
z−1=1/3

=
10 / 3

5 / 3
= 2,   and 

B =
1

(2 − 1)!(−3)2−1 ⋅
d

d z−1
4 − 3z−1 + 3z−2

1 + 2 z−1

 

 
 
 

 

 
 
 z1/ 3

=
−25 / 3

−25 / 3
= 1.

Therefore Xa(z) = z−3 1
1 + 2 z−1

 

 
  

 

 
  + z−3 1

1 − 3z−1

 

 
  

 

 
  + z−3 2

(1 − 3z−1)2

 

 
  

 

 
  .    Since the ROC is z > 3,  

the inverse z-transform xa[n]of Xa(z)  is a right-sided sequence.

Thus, 
  
Z−1 1

1 + 2 z−1

 

 
  

 

 
  = (−2)n µ[n],  

  
Z−1 1

1 − 3z−1

 

 
  

 

 
  = (3)n µ[n],  and 

  
Z−1 3z−1

(1 − 3 z−1)2

 

 
 

 

 
 = n(3)n µ[n].   Thus, 

xa[n] = (−2)n−3µ[n − 3] + (3)n−3µ[n − 3] +
2

3
(n − 2)(3)n−2µ[n − 2].

(b)  Xb(z) = z−3 1
1+ 2z−1

 

 
  

 

 
  + z−3 1

1 −3 z−1

 

 
  

 

 
  + z−3 2

(1 −3 z−1)2

 

 
  

 

 
  ,  z < 2.   Here the ROC is  z < 2 .  

Hence, the inverse z-transform x b[n]  of Xb(z)  is a right-sided sequence.  Thus, 

  
Z−1 1

1 + 2 z−1

 

 
  

 

 
  = −(−2)n µ[−n −1],  

  
Z−1 1

1 − 3z−1

 

 
  

 

 
  = −(3)n µ[−n −1], and 

  
Z−1 3z−1

(1 − 3 z−1)2

 

 
 

 

 
 = − n(3)n µ[−n −1].   Therefore, 

x b[n]= −(−2)n −3µ[−n − 4] − (3)n−3µ[−n − 4]−
2

3
n(3)n−2 µ[−n − 3].

(c)  Xc(z) = z−3 1
1 + 2 z−1

 

 
  

 

 
  + z−3 1

1 − 3z−1

 

 
  

 

 
  + z−3 2

(1 − 3z−1)2
 

 
  

 

 
  ,  2 < z < 3.   Here the ROC is an 

annular region in the z-plane.  Hence, the inverse z-transform xc[n]  of Xc(z)  is a two-sided 

sequence.  Now 
  
Z−1 1

1 + 2 z−1

 

 
  

 

 
   is right-sided sequence as z > 2,  whereas, 

  
Z−1 1

1 − 3z−1

 

 
  

 

 
   and 

  
Z−1 2 z−1

(1 −3 z−1)2

 

 
  

 

 
   are right-sided sequences as z < 3.   Thus, 

  
Z−1 1

1 + 2 z−1

 

 
  

 

 
  = (−2)n µ[n],  
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Z−1 1

1 − 3z−1

 

 
  

 

 
  = −(3)n µ[−n −1], and 

  
Z−1 3z−1

(1 − 3 z−1)2

 

 
 

 

 
 = − n(3)n µ[−n −1].  Therefore, 

xc[n] = (−2)n−3µ[n − 3] − (3)n −3µ[−n − 4] −
2

3
n(3)n−2 µ[−n − 3].

3.100  
  
G(z) = P(z)

D(z)
= P(z)

(1 − λ l z
−1)R(z)

.   By definition the residue    ρl  at the pole    z = λ l  is given by 

  

ρl = P(z)
R(z) z=λ l

.   Now, 
  
D' (z) = d D(z)

d z−1 =
d (1 − λ l z

−1)R(z)[ ]
d z−1 = −λ l R(z) + (1− λ l z−1)

d R(z)
d z

.  Hence, 

  
D' (z) z=λl

= −λl R(z) z=λ l
.   Therefore, 

  

ρl = −λ l
P(z)
D' (z) z=λ l

.

3.101  
  
G(z) = P(z)

D(z)
=

p0 + p1z
−1 +L+ pMz−M

d0 + d1z
−1 +L+ dMz−M .   Thus, G(∞) =

p0

d 0
.   Now a partial-fraction expansion 

of G(z) in z−1 is given by 

  

G(z) =
ρl

1 − λ l z
−1

l =1

N

∑ ,   from which we obtain 

  

G(∞) = ρl
l =1

N

∑ .   Therefore,

  

G(∞) = ρl
l =1

N

∑ =
p0

d0
.

3.102  H(z) = 1
1− 2r cos(θ)z−1 + r2z−2 , z > r > 0 .  By using partial-fraction expansion we write

         H(z) = 1

e jθ − e− jθ( )
e jθ

1 − re jθz−1 − e− jθ

1 − re − jθz−1

 
 
 

  

 
 
 

  
= 1

2 jsin(θ)
e jθ

1− rejθz−1 − e− jθ

1− re− jθz−1

 
 
 

  

 
 
 

  
.     Thus,

h[n] = 1
2 jsin(θ)

e jθ rne jnθµ[n]− r ne− jθe− jnθµ[n]{ } = rn

sin(θ)
e jθ(n+1) − e− jθ(n+1)

2j

 
 
 

  

 
 
 

  
µ[n]

         = 
r n sin (n +1)θ( )

sin(θ)
µ[n].

3.103   G(z) = g[n]z−n

n=−∞

∞

∑   with a ROC given by Rg.

(a) Therefore G * (z) = g *[n](z*)−n

n=−∞

∞

∑  and   G * (z*) = g *[n]z−n

n =−∞

∞

∑ .

Thus the z-transform of g * [n]  is G * (z*).

(b) Replace n by –m in the summation. This leads to  G(z) = g[−m]zm

m=−∞

∞

∑ . Therefore
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G(1/ z) = g[−m]z−m

m=−∞

∞

∑ . Thus the z-transform of g[–n] is G(1/z).  Note that since z has been 

replaced by 1/z, the ROC of G(1/z) will be   1/ R g .

(c) Let y[n] = αg[n] +βh[n] .  Then,  

Y(z) = αg[n]+ βh[n]( )z−n

n=−∞

∞

∑ = α g[n]z−n

n=−∞

∞

∑ + β h[n]z−n

n=−∞

∞

∑ = αG(z) + βH(z)

In this case Y(z) will converge wherever both G(z) and H(z) converge.  Thus the ROC of Y(z)
 is   R g ∩ R h , where is 

  
R g  the ROC of G(z) and   R h  is the ROC of H(z).

(d) y[n] = g[n − n0 ] .  Hence Y(z) = y[n]z−n

n =−∞

∞

∑ = g[n − n0 ]z−n

n =−∞

∞

∑ = g[m]z−(m+n 0 )

m=−∞

∞

∑

= z−n0 g[m]z−m

m=−∞

∞

∑ = z−n0G(z).

In this case the ROC of Y(z) is the same as that of G(z) except for the possible addition or 

elimination of the point z = 0 or z = ∞  (due to the factor z−n0 ).

(e) y[n] = αng[n] .  Hence, Y(z) = y[n]z−n

n=−∞

∞

∑ = g[n](zα−1)−n

n =−∞

∞

∑ = G(z / α).

The ROC of Y(z) is 
  
α R g .

(f) y[n] = ng[n].  Hence Y(z) = ng[n]z−n

n =−∞

∞

∑ .

Now G(z) = g[n]z−n

n=−∞

∞

∑ . Thus, 
dG(z)

dz
= − ng[n]z−n−1

n=−∞

∞

∑  ⇒  z
dG(z)

dz
= − ng[n]z−n

n=−∞

∞

∑ .

Thus Y(z) = – z
dG(z)

dz
.

(g) y[n] = g[n] * h[n] = g[k]h[n − k]
k=−∞

∞

∑ . Hence,

Y(z) = y[n]z−n

n=−∞

∞

∑ = g[k]h[n − k]
k=−∞

∞

∑
 

 
 
 

 

 
 
 z

−n = g[k] h[n − k]
n =−∞

∞

∑ z−n

k =−∞

∞

∑
n=−∞

∞

∑

         = g[k]H(z)z−k

k=−∞

∞

∑ = H(z)G(z) .

In this case also Y(z) will converge wherever both H(z) and G(z) converge.   Thus ROC of Y(z)
is   R g ∩ R h .

(h) y[n] = g[n]h[n].  Hence, Y(z) = g[n]h[n]
n =−∞

∞

∑ z−n . From Eq. (3.107),
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 g[n]= 1
2πj

G(v)vn−1dv

C
∫ .  Thus, Y(z) = h[n]

n=−∞

∞

∑ 1
2πj

G(v)vn −1dv

C
∫

 

 

 
  

 

 

 
  

z−n

= 1
2πj

G(v) h[n]
n=−∞

∞

∑ z−nvn −1
 

 
 
 

 

 
 
 dv

C
∫ = 1

2πj
G(v)H(z / v)v−1dv

C
∫ .

(i) g[n]h * [n]
n =−∞

∞

∑ = 1
2πj

G(v) h * [n]vn v−1dv
n=−∞

∞

∑
C
∫ = 1

2πj
G(v)H* (1/ v*)v−1 dv

C
∫ .

  3.104  x[n] = x re[n]+ jxim[n], where x re[n]= 1
2

x[n]+ x * [n]( ),  and xim [n] = 1
2 j

x[n]− x * [n]( ).   From 

Table 3.9,   Z x * [n]{ } = X * (z*),  with an ROC   R x .  Therefore, 
  
Z x re[n]{ } = 1

2
X(z)+ X * (z*){ },  and

  
Z xim [n]{ } = 1

2j
X(z)− X * (z*){ }.

3.105  (a)  Expnading in a power series we get  X1(z) = 1
1 − z−3 = z−3n

n =0

∞

∑ , z >1 .

Thus, x1[n] = 1, if n = 3k and n ≥ 0,
0, elsewhere.{    Using partial fraction, we get

X1(z) = 1
1 − z−3 =

1
3

1 − z−1 +
1
3

1 + ( 1

2
+ j 3

2
)z−1

+
1
3

1 + (1

2
− j 3

2
) z−1

.  Therefore, 

x1[n] =
1
3

µ[n]+ 1

3
−

1

2
− j

3

2

 
  

 
  

n
µ[n]+ 1

3
−

1

2
+ j

3

2

 
  

 
  

n
µ[n]

=
1

3
µ[n]+ 1

3
e− j2πn / 3µ[n]+ 1

3
e j2πn / 3µ[n] = 1

3
µ[n] + 2

3
cos(2πn / 3)µ[n] .

Thus x1[n] = 1, if n = 3k and n ≥ 0,
0, elsewhere.{

(b) Expnading in a power series we get  X2(z) = 1
1− z−2 = z−2n

n=0

∞

∑ , z >1 .

Thus , x2[n] = 
1, if n = 2k and n ≥ 0,
0, elsewhere.

 
  

Using partial fraction, we get X2(z) = 1
1− z−2 =

1
2

1 + z−1 +
1
2

1 − z−1 .  Therefore,

x2[n] = 
1

2
µ[n]+ 1

2
(−1)n µ[n]

Thus, x2[n] = 
1, if n = 2k and n ≥ 0,
0, elsewhere.

 
  

3.106  (a) X1(z) = log 1 − αz−1( ), z > α .  Expanding log 1 − αz−1( )  in a power series we get 
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X1(z) = −αz−1 − α2z−2

2
− α3z−3

3
− ..... = − αn

n
z−n

n=1

∞

∑ .

 Therefore,, x1[n]= − αn

n
µ[n −1].

 (b)  X2(z) = log
α − z−1

α

 

 
  

 

 
  = log 1 − (α z)−1( ), z < α .  Expanding log 1 −(α z)−1( )  in a power 

series we get  

  

X2(z) = −(αz)−1 − (α z)−2

2
− (α z)−3

3
−L = − (αz)−n

n
n=1

∞

∑ .

Therefore, x2[n] = − α−n

n
µ[n −1] .

(c)  X3(z) = log
1

1 − αz−1
 
  

 
  = − log(1 − αz−1), z > α .   Expanding X3(z)  in a power series we get

X1(z) = α z−1 + α2z−2

2
+ α3z−3

3
+ ..... = αn

n
z−n

n=1

∞

∑ .

Therefore, x3[n] = αn

n
µ[n −1].

(d)  X4(z) = log
α

α − αz−1
 
  

 
  = − log 1 −(αz)−1( ), z < α .   Expanding X4(z)   in a power series we

get 

  

X4(z) = (α z)−1 + (αz)−2

2
+ (αz)−3

3
+L= (αz)−n

n
n=1

∞

∑ .

Therefore, x 4[n] = α−n

n
µ[n −1].

3.107  X(z) = α z−1

(1 − αz−1)2  where   x[n] = Z−1{X(z)} is a causal sequence.  Now, from Table 3.8, 

  
Z{αnµ[n]} = 1

1− α z−1 .   But, 
d

dz
1

1 − αz−1

 

 
  

 

 
  = −α z−2

(1 − α z−1)2 .   Thus, X(z) = −z ⋅ d
dz

1
1 −α z−1

 

 
  

 

 
  .   

Therefore, x[n] = n αnµ[n].

3.108  H(z) = z−1 − 2 z−2

(1 + 0.4 z−1)(1 − 0.2 z−1)
= k + A

1 + 0.4z−1 + B
1 − 0.2 z−1 ,  where k = H(0) = −2

0.4(−0.2)
= 25,  

A = z−1(1− 2 z−1)
1− 0.2 z−1

z−1=−2.5

=
−2.5 1 − 2(−2.5)( )

1 − 0.2(−2.5)
= −10,  B = z−1(1 − 2 z−1)

1 + 0.4 z−1
z−1=5

= 5 1 −10( )
1+ 0.4(5)

= −15.  

Thus, H(z) = 25 − 10
1 + 0.4 z−1 − 15

1 − 0.2 z−1 .   Using the M-file residuz we also arrive at the same 

partial-fraction expansion.
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Therefore, h[n] = 25δ[n]−10(−0.4)n µ[n]−15(0.2)n µ[n].

3.109  From Eq. (3.177), for N = 3, we get

D3 =
1 z0

−1 z0
−2

1 z1
−1 z1

−2

1 z2
−1 z2

−2

 

 

 
 
 
 

 

 

 
 
 
 
.   The determinant of D3 is given by

det(D3) =
1 z0

−1 z0
−2

1 z1
−1 z1

−2

1 z2
−1 z2

−2
=

1 z0
−1 z0

−2

0 z1
−1 − z0

−1 z1
−2 − z0

−2

0 z2
−1 − z0

−1 z2
−2 − z0

−2
=

z1
−1 − z0

−1 z1
−2 − z0

−2

z2
−1 − z0

−1 z2
−2 − z0

−2

  

= z1
−1 − z0

−1( ) z2
−1 − z0

−1( ) 1 z1
−1 + z0

−1

1 z2
−1 + z0

−1 = z1
−1 − z0

−1( ) z2
−1 − z0

−1( ) z2
−1 − z1

−1( ) = zk
−1 − zl

−1( )
2≥k> l ≥0
∏ .

From Eq. (3.177), for N = 4, we get

D4 =

1 z0
−1 z0

−2 z0
−3

1 z1
−1 z1

−2 z1
−3

1 z2
−1 z2

−2 z2
−3

1 z3
−1 z3

−2 z3
−3

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.   The determinant of D4 is given by

det(D4) =

1 z0
−1 z0

−2 z0
−3

1 z1
−1 z1

−2 z1
−3

1 z2
−1 z2

−2 z2
−3

1 z3
−1 z3

−2 z3
−3

=

1 z0
−1 z0

−2 z0
−3

0 z1
−1 − z0

−1 z1
−2 − z0

−2 z1
−3 − z0

−3

0 z2
−1 − z0

−1 z2
−2 − z0

−2 z2
−3 − z0

−3

0 z3
−1 − z0

−1 z3
−2 − z0

−2 z3
−3 − z0

−3

=
z1

−1 − z0
−1 z1

−2 − z0
−2 z1

−3 − z0
−3

z2
−1 − z0

−1 z1
−2 − z0

−2 z2
−3 − z0

−3

z3
−1 − z0

−1 z1
−2 − z0

−2 z3
−3 − z0

−3
= z1

−1 − z0
−1( ) z2

−1 − z0
−1( ) z3

−1 − z0
−1( )

1 z1
−1 + z0

−1 z1
−2 + z1

−1z0
−1 + z0

−2

1 z2
−1 + z0

−1 z2
−2 + z2

−1z0
−1 + z0

−2

1 z3
−1 + z0

−1 z3
−2 + z3

−1z0
−1 + z0

−2

= z1
−1 − z0

−1( ) z2
−1 − z0

−1( ) z3
−1 − z0

−1( )
1 z1

−1 + z0
−1 z1

−2 + z1
−1z0

−1 + z0
−2

0 z2
−1 − z1

−1 (z2
−1 − z1

−1)(z2
−1 + z1

−2 + z0
−1)

0 z3
−1 − z1

−1 (z3
−1 − z1

−1)(z3
−1 + z1

−2 + z0
−1)

= z1
−1 − z0

−1( ) z2
−1 − z0

−1( ) z3
−1 − z0

−1( ) z2
−1 − z1

−1 (z2
−1 − z1

−1)(z2
−1 + z1

−1 + z0
−1)

z3
−1 − z1

−1 (z3
−1 − z1

−1)(z3
−1 + z1

−1 + z0
−1)

= z1
−1 − z0

−1( ) z2
−1 − z0

−1( ) z3
−1 − z0

−1( ) z2
−1 − z1

−1( ) z3
−1 − z1

−1( ) 1 z2
−1 + z1

−1 + z0
−1

1 z3
−1 + z1

−1 + z0
−1

  

= z1
−1 − z0

−1( ) z2
−1 − z0

−1( ) z3
−1 − z0

−1( ) z2
−1 − z1

−1( ) z3
−1 − z1

−1( ) z3
−1 − z2

−1( ) = zk
−1 − z l

−1( )
3≥k >l ≥0
∏ .

Hence, in the general case, det(DN) = 

  

zk
−1 − z l

−1( )
N −1≥k>l ≥0

∏ .   It follows from this expression 

that the determinant is non-zero, i.e. DN is non-singular, if the sampling points zk are distinct.
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 3.110  XNDFT[0] = X(z0) = 4 + 4 +12 − 8 =12,   XNDFT[1] = X(z1) = 4 − 2 + 3 + 1 = 6,   

XNDFT[2] = X(z2) = 4 − 4 +12 + 8 = 20,   XNDFT[3]= X(z3) = 4 − 4 + 12 + 8 = 52.

I 0(z) = (1 − z−1)(1 − 1

2
z−1)(1 − 1

3
z−1) =1 −

11

6
z−1 + z−2 −

1

6
z−3.   Thus, I 0 − 1

2( ) = 10,

I1(z) = (1 + 1

2
z−1)(1 − 1

2
z−1)(1 − 1

3
z−1) = 1 −

1

3
z−1 −

1

4
z−2 +

1

12
z−3.  Thus, I1(1) =

1

2
,

I 2(z) = (1 + 1

2
z−1)(1 − z−1)(1 − 1

3
z−1) =1 −

5

6
z−1 −

1

3
z−2 +

1

6
z−3.   Thus, I 2 2( ) = −

2

3
 and

I3 (z) = (1 + 1

2
z−1 )(1 − z−1 )(1 − 1

2
z−1) =1 − z−1 −

1

4
z−2 +

1

4
z−3.   Thus, I3

1

3
 
 

 
 =

5

2
.  Therefore,

X(z) =
12

10
I0 (z) +

6

1 / 2
I1(z) −

20

2 / 3
I2 (z) +

52

5 / 2
I3 (z) = 4 − 2 z−1 + 3z−2 + z−3.

3.111  xe[n]= x[n], 0 ≤ n ≤ N −1,
0, N ≤ n ≤ 2N −1.

 
    y[n] = xe[n] + xe[2N –1– n].  Therefore,

Y[k] = y[n]W2N
nk

n=0

2N−1

∑ = x[n]W2N
nk

n=0

N−1

∑ + x[2N −1 − n]W2N
nk

n=N

2N −1

∑

= x[n]W2N
nk

n =0

N −1

∑ + x[n]W2N
(2N −1−n)k

n =0

N −1

∑ = x[n](W2N
nk

n =0

N−1

∑ + W2N
−kW2N

−nk) .

Thus, Cx[k] = W2N
k / 2 Y[k] = x[n](W2N

k(n+1 / 2)

n=0

N −1

∑ + W2N
−k(n +1/ 2))

          = 2x[n]
n=0

N −1

∑ cos
π(2n +1)k

2N

 
  

 
  , 0 ≤ k ≤ N −1.

3.112  Y[k] = 
W2N

−k / 2Cx[k], 0 ≤ k ≤ N −1,
0, k = N,

−W2N
−k / 2Cx[2N − k], N +1 ≤ k ≤ 2N −1.

 
 
 

 
 

  Thus,

y[n] =
1

2N
Y[k]W2N

−nk

k =0

2 N−1

∑  = 
1

2N
Cx[k]W2N

− (n +1 / 2)k

k =0

N−1

∑ −
1

2N
Cx[2N − k]W2 N

−(n+1 / 2)k

k =N +1

2N −1

∑

         =
1

2N
Cx[k]W2N

− (n +1 / 2)k

k =0

N−1

∑ −
1

2N
Cx [k]W2N

−(n +1/ 2)(2N−k)

k =1

N −1

∑

         = 
1

2N
Cx[k]W2N

− (n +1 / 2)k

k =0

N−1

∑ +
1

2N
Cx [k]W2N

(n+1 / 2)k

k =1

N −1

∑

         = 
Cx[0]

2N
+ 1

N
Cx[k]cos

πk(2n +1)
2N

 
  

 
  

k =1

N −1

∑ ,

Hence, 
Cx[0]

2N
+ 1

N
Cx[k]cos

πk(2n +1)
2N

 
  

 
  

k =1

N −1

∑ ,   where  w[k] = 1 / 2, k = 0,
1, 1 ≤ k ≤ N −1.

 
  
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Moreover, x[n] = y[n], 0 ≤ n ≤ N − 1,
0, elsewhere,

 
  =

1
N

w[k]Cx[k]cos
πk(2n + 1)

2N

 
  

 
  ,

k=0

N−1

∑ 0 ≤ n ≤ N −1,

0, elsewhere.

 

 
 

 
  

(b) From Eq. (3.163), x[n] =
1

N
w[k]Cx[k]cos (2n+1)πk

2N( ),
k =0

N−1

∑ 0 ≤ n ≤ N −1,

0, elsewhere.

 

 
 

 
  

  Hence,

2 x[n]cos
(2n +1)πm

2N

 
  

 
  

m=0

N −1

∑  = 
1
N

w[k]Cx[k]cos (2n+1)πk
2N( )

m=0

N−1

∑
k =0

N−1

∑ cos (2n+1)πm
2N( )

= 
1
N

w[k]Cx[k] cos (2n +1)πk
2N( )

m=0

N−1

∑
k =0

N−1

∑ cos (2n+1)πm
2N( ). (10)

Now,   cos
(2n +1)πk

2N

 
  

 
  

m = 0

N −1
∑ cos

(2n +1)πm
2N

 
  

 
  =

N, if k = m = 0,
N / 2, if k = m,
0, elsewhere.

 
 
 

 
 

Thus, Eq. (10) reduces to

2 x[n]cos
(2n +1)πm

2N

 
  

 
  

m=0

N −1

∑  = 

1

N
w[0]Cx[0] ⋅N, m = 0,

1

N
w[m]Cx[m]⋅N, 1 ≤ m ≤ N −1,

 
 
 

  

= 
Cx[0], m = 0,
Cx[m], 1 ≤ m ≤ N −1,

 
 
 

 = Cx[m], 0 ≤ m ≤ N −1.

3.113   y[n] = αg[n]+βh[n] .   Thus,

Cy[k] = y[n]cos
πk(2n +1)

2N

 
  

 
  

n=0

N −1

∑ = αg[n]+βh[n]( )cos
πk(2n +1)

2N

 
  

 
  

n=0

N −1

∑  =

= α g[n]cos
πk(2n +1)

2N

 
  

 
  

n=0

N −1

∑ + β h[n]cos
πk(2n +1)

2N

 
  

 
  

n =0

N−1

∑  = αCg[k]+βCh [k] .

3.114  Cx[k]= x[n]cos
πk(2n +1)

2N

 
  

 
  

n=0

N −1

∑   ⇒  Cx
*[k]= x *[n]cos

πk(2n +1)
2N

 
  

 
  

n=0

N −1

∑ .

Thus the DCT coefficients of x*[n] are given by Cx
*[k] .

3.115  Note that  cos
πk(2n +1)

2N

 
  

 
  cos

πm(2n +1)
2N

 
  

 
  

n=0

N −1

∑ =
N, if k = m = 0,

N / 2, if k = m and k ≠ 0
0, otherwise.

,
 
 
 

  

Now, x[n]x * [n] = 1
N2 α[k]α[m]Cx

*[m]Cx[k]cos
π(2n +1)k

2N

 
  

 
  cos

π(2n +1)m
2N

 
  

 
  

m=0

N−1

∑
k =0

N −1

∑

Thus, x[n] 2

n=0

N −1

∑ = 1
N2 α[k]α[m]Cx

*[m]Cx[k] cos
π(2n +1)k

2N

 
  

 
  cos

π(2n +1)m
2N

 
  

 
  

n=0

N−1

∑
m=0

N−1

∑
k =0

N−1

∑
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Now, using the orthogonality property mentioned above x[n] 2

n=0

N −1

∑ = 1
2N

α[k] Cx[k]
2

k=0

N−1

∑ .

3.116  XDHT[k]= x[n] cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  

n =0

N −1

∑ .  Now,

XDHT[k] cos
2πnk

N

 
  

 
  + sin

2πmk
N

 
  

 
  

 
  

 
  

            = x[n] cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  cos

2πmk
N

 
  

 
  + sin

2πmk
N

 
  

 
  

 
  

 
  

n =0

N −1

∑ .  Therefore,

XDHT[k] cos
2πmk

N

 
  

 
  + sin

2πmk
N

 
  

 
  

 
  

 
  

k=0

N −1

∑

             = x[n] cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  cos

2πmk
N

 
  

 
  +sin

2πmk
N

 
  

 
  

 
  

 
  

k=0

N−1

∑
n =0

N −1

∑

It can be shown that cos
2πnk

N

 
  

 
  cos

2πmk
N

 
  

 
  =

k=0

N −1

∑
N, if m = n = 0,

N / 2, if m = n ≠ 0,
N / 2, if m = N − n,

0, elsewhere,

 

 
  

 
 
 

sin
2πnk

N

 
  

 
  sin

2πmk
N

 
  

 
  =

k=0

N −1

∑
N / 2, if m = n ≠ 0,

−N / 2, if m = N − n,
0, elsewhere,

 
 
 

  
     and

sin
2πnk

N

 
  

 
  cos

2πmk
N

 
  

 
  =

k=0

N −1

∑ cos
2πnk

N

 
  

 
  sin

2πmk
N

 
  

 
  =

k =0

N−1

∑ 0.

Hence, x[m] = 1
N

XDHT[k] cos
2πmk

N

 
  

 
  + sin

2πmk
N

 
  

 
  

 
  

 
  

k =0

N−1

∑ .

3.117  (a)  y[n] = x(< n − n0 >N ) =
x[n − n0 + N], 0 ≤ n ≤ n0 −1,

x[n − n0 ], n0 ≤ n ≤ N −1.
 
 
 

 YDHT [k] = y[n] cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  

n=0

N−1

∑  = x[n − n0 + N] cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  

n =0

n 0−1

∑

                               + x[n − n0 ] cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  

n=n0

N−1

∑ .

Replacing  n –n0 +N by n in the first sum and n –n0  by n in the second sum we get

YDHT [k] = x[n] cos
2π(n + n0 )k

N

 

 
 

 

 
 + sin

2π(n + n0 )k

N

 

 
 

 

 
 

 

 
  

 

 
  

n=N−n0

N−1

∑

                   + x[n] cos
2π(n + n0)k

N

 

 
 

 

 
 + sin

2π(n + n0 )k

N

 

 
 

 

 
 

 

 
  

 

 
  

n=0

n0 −1

∑
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               = x[n] cos
2π(n + n 0)k

N

 

 
 

 

 
 + sin

2π(n + n0 )k

N

 

 
 

 

 
 

 

 
  

 

 
  

n=0

N −1

∑

= cos
2πn0k

N

 

 
 

 

 
 x[n] cos

2πnk
N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  

n=0

N −1

∑

                 + sin
2πn0k

N

 

 
 

 

 
 x[n] cos

2πnk
N

 
  

 
  − sin

2πnk
N

 
  

 
  

 
  

 
  

n =0

n 0−1

∑

               = cos
2πn0k

N

 

 
 

 

 
 XDHT[k]+ sin

2πn0k

N

 

 
 

 

 
 XDHT[−k] .

(b) The N-point DHT of x[< –n >N] is XDHT[–k].

(c)  

  

x2[n]
n=0

N −1

∑ = 1
N2 XDHT[k]XDHT[l ]

l =0

N−1

∑
k=0

N−1

∑ ×

                        

  

cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  cos

2πnl
N

 
  

 
  + sin

2πnl
N

 
  

 
  

 
  

 
  

n=0

N −1

∑
 

 
 
 

 

 
 
 .

Using the orthogonality property, the product is non-zero if k =   l  and is equal to N.

Thus x2[n]
n=0

N −1

∑ =
1

N
XDHT

2 [k]
k =0

N−1

∑ .

3.118   cos
2πnk

N

 
  

 
  = 1

2
WN

nk + WN
−nk( ) ,  and  sin

2πnk
N

 
  

 
  = 1

2 j
WN

nk − WN
−nk( ) .

XDHT[k]= x[n]
e j2πnk/ N + e− j2πnk / N

2
+ e j2πnk / N − e− j2πnk / N

2j

 

 
  

 

 
  

n =0

N −1

∑

Therefore  X DHT[k] =
1

2
X[N − k] + X[k] − jX[N − k] + jX[k]( ) .

3.119  y[n] = Nx[n]      g[n] .  Thus, YDHT [k] = y[n] cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  

n=0

N−1

∑

                 = x[r] g[< n − r >N ]
n =0

N−1

∑ cos
2πnk

N

 
  

 
  + sin

2πnk
N

 
  

 
  

 
  

 
  

r=0

N −1

∑ .

Fro m results of Problem 3.117

  

YDHT [k] = x[l ] GDHT[k]cos
2πl k

N

 
  

 
  + GDHT[< −k >N]sin

2πl k
N

 
  

 
  

 
  

 
  

l =0

N−1

∑

               = 

  

GDHT[k] x[l ]cos
2πlk

N

 
  

 
  

l =0

N−1

∑ + GDHT[< −k >N ] x[l ]sin
2πl k

N

 
  

 
  

l =0

N−1

∑
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               = 
1

2
GDHT[k] XDHT[k] + X DHT[< −k >N ]( )

               +  
1

2
GDHT[< −k > N] XDHT [k]− XDHT[< −k >N ]( ) .

or YDHT [k] = 1
2

XDHT[k] GDHT[k]+ GDHT[< −k >N ]( )
               +

1

2
XDHT [< −k >N ] GDHT[k] − GDHT[< −k >N ]( ) .

3.120  (a)  H2 = 1 1
1 −1

 
  

 
  ,   H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 

 

 
 
 
 

 

 

 
 
 
 
,  and H8 =

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

.

(b) From the structure of H2, H4 and H8 it can be seen that

H4 =
H2 H2
H2 −H2

 
  

 
  ,   and  H8 =

H4 H4
H4 −H 4

 
  

 
  .

(c) XHT = HNx .  Therefore  x = HN
−1XHT = NHN

T XHT = N HN
* XHT.   Hence,

  

x[n] = XHT[k](−1) bi (n)bi (k)
i=0

l −1

∑
k=0

N −1

∑ .

where bi (r)  is the ith bit in the binary representation of  r.

3.121  

  

X(zl ) = x[n]zl
−n

n =0

N −1

∑ = x[n]A−n Vl n

n=0

N−1

∑ = x[n]A−n V l 2 / 2 Vn2 / 2 V−(l −n)2 / 2

n=0

N −1

∑

  

= V l 2 / 2 g[n]h[l − n]
n =0

N−1

∑ ,  where g[n]= x[n]A−nVn2 / 2  and h[n] = V−n 2 / 2 .

A block-diagram representation for the computation of   X(zl )  using the above scheme is thus 
precisely Figure P3.6.

3.122    z l = αl .  Hence,   A0V0
−l e jθ 0e− jl φ0 = α l .   Since α  is real,  we have

A 0 = 1 , V0 =1 / α , θ0 = 0  and φ0 = 0 .

3.123  (i)  N = 3.

X(z) = x[0]+ x[1]z−1 + x[2]z−2 , and  H(z) = h[0]+ h[1]z−1 + h[2]z−2

YL(z) = h[0]x[0]+ h[1]x[0]+ x[1]h[0]( )z−1 + h[2]x[0]+ h[1]x[1]+ h[0]x[2]( )z −2
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+ h[1]x[2]+ h[2]x[1]( )z−3 + h[2]x[2]z−4 .
On the other hand,

Yc(z) = h[0]x[0] + h[1]x[2]+ h[2]x[0]( )+ h[0]x[1]+ h[1]x[0]+ h[2]x[2]( )z−1

+ h[0]x[2]+ h[1]x[1]+ h[2]x[0]( )z−2.

It is easy to see that in this case Yc(z) = YL(z)mod(1 − z−3 ) .

(ii)  N = 4.

X(z) = x[0]+ x[1]z−1 + x[2]z−2 + x[3]z−3  and  H(z) = h[0]+ h[1]z−1 + h[2]z−2 + h[3]z−3 .

YL(z) = h[0]x[0]+ h[1]x[0] + h[0]x[1]( )z−1 + h[0]x[2] + h[1]x[1] + h[2]x[0]( )z −2

          + h[0]x[3] + h[1]x[2] + h[2]x[1] + h[3]x[0]( )z−3 + h[1]x[3]+ h[2]x[2] + h[3]x[1]( )z−4

          + h[2]x[3] + h[3]x[2]( )z−5 + h[3]x[3]z−6 ,

whereas,  Yc(z) = h[0]x[0] + h[1]x[3] + h[2]x[2]+ h[3]x[1]( )
+ h[0]x[1] + h[1]x[0] + h[2]x[3] + h[3]x[2]( )z−1

+ h[0]x[2]+ h[1]x[1]+ h[2]x[0] + h[3]x[3]( )z−2

             + h[0]x[3]+ h[1]x[2]+ h[2]x[1]+ h[3]x[0]( )z−3 .

Again it can be seen that Yc(z) = YL(z)mod(1 − z−4 ) .

(ii)  N = 5.

X(z) = x[0] + x[1]z−1 + x[2]z−2 + x[3]z−3 + x[4]z−4  and 

H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 .

YL(z) = h[0]x[0]+ h[1]x[0] + h[0]x[1]( )z−1 + h[0]x[2] + h[1]x[1] + h[2]x[0]( )z −2

+ h[0]x[3] + h[1]x[2] + h[2]x[1] + h[3]x[0]( )z−3 

    + h[0]x[4] + h[1]x[3] + h[2]x[2] + h[3]x[1] + h[4]x[0]( )z−4

+ h[1]x[4] + h[2]x[3] + h[3]x[2] + h[4]x[1]( )z−5 + h[2]x[4] + h[3]x[3]+ h[4]x[2]( )z−6

+ h[4]x[3]+ h[3]x[4]( )z−7 + h[4]x[4]z−8 ,

whereas,  Yc(z) = h[0]x[0] + h[4]x[1] + h[3]x[2] + h[2]x[3] + h[1]x[4]( )
+ h[0]x[1] + h[1]x[0] + h[2]x[4] + h[3]x[3] + h[4]x[2]( )z−1

+ h[0]x[2] + h[1]x[1] + h[2]x[0]+ h[3]x[4] + h[4]x[3]( )z−2

+ h[0]x[3] + h[1]x[2] + h[2]x[1] + h[3]x[0] + h[4]x[4]( )z−3

+ h[0]x[4] + h[1]x[3] + h[2]x[2] + h[3]x[1] + h[4]x[0]( )z−4 .

Again it can be seen that Yc(z) = YL(z)mod(1 − z−5 ) .

3.124  (a) X(z) = x[n]z−n

n=−∞

∞

∑ .  Let ˆ X (z) = log(X(z))  ⇒ X(z) = e
ˆ X (z) .   Thus, X(e jω) = e

ˆ X (e jω )
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(b) ˆ x [n] = 1
2π

log X(e jω )( )e jωndω
−π

π

∫ .  If x[n] is real, then X(e jω) = X *(e− jω ) .   Therefore, 

log X(e jω )( ) = log X* (e− jω)( ). .
ˆ x * [n] = 1

2π
log X* (e jω )( )e− jωndω

−π

π

∫  = 
1

2π
log X(e− jω)( )e− jωndω

−π

π

∫

          = 
1

2π
log X(e jω)( )e jωndω

−π

π

∫  = ˆ x [n] .

(c)  ˆ x ev[n] =
ˆ x [n]+ ˆ x [−n]

2
= 1

2π
log X(e jω)( ) e jωn + e− jωn

2

 

 
  

 

 
  dω

−π

π

∫

= 1
2π

log X(e jω )( )cos(ωn)dω
−π

π

∫ ,

and similarly,  ˆ x od[n]=
ˆ x [n]− ˆ x [−n]

2
= j

2π
log X(e jω)( ) e jωn − e− jωn

2 j

 

 
  

 

 
  dω

−π

π

∫

= j
2π

log X(e jω )( ) sin(ωn)dω
−π

π

∫ .

3.125  x[n] = aδ[n]+ b δ[n −1] and  X(z) = a + b z−1 .  Also,

ˆ X (z) = log(a + b z−1) = log(a)+ log(1 + b / az−1) = log(a) + (−1)n−1 b / a( )n

n
n =1

∞

∑ z−n .  Therefore,

ˆ x [n] =

log(a), if n = 0,

(−1)n−1 (b / a)n

n
, for n > 0,

0, elsewhere.

 

 
  

 
 
 

3.126  (a) ˆ X (z) = log(K)+ log 1− αkz−1( )
k=1

Nα

∑ + log 1− γ kz( )
k=1

N γ

∑  − log 1 −βkz−1( )
k=1

Nβ

∑ − log 1− δk z( )
k=1

Nδ

∑ .

ˆ X (z) = log(K)−
αk

n

n
z−n

n =1

∞

∑
k=1

Nα

∑ −
γ k

n

n
zn

n =1

∞

∑
k=1

N γ

∑ +
βk

n

n
z−n +

δk
n

n
zn

n=1

∞

∑
k=1

Nδ

∑
n=1

∞

∑
k =1

Nβ

∑ .

Thus, ˆ x [n] =  

log(K), n = 0,

βk
n

n
n =1

Nβ

∑ −
αk

n

n
,

n =1

Nα

∑ n > 0,

γ k
−n

n
n=1

Nγ

∑ −
δk

−n

n
,

n =1

Nδ

∑ n < 0.

 

 

 
 
  

 

 
 
 
 
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(b) ˆ x [n] < N
r n

n
  as n→ ∞ , where r is the maximum value of αk , βk , γ k  and δk  for all values

of k, and N is a constant.  Thus ˆ x [n]  is a decaying bounded sequence as n→ ∞ .

(c) From Part (a) if αk = βk =0 then ˆ x [n]  = 0 for all n > 0, and is thus anti-causal.

(d) If γ k = δk = 0 then ˆ x [n]  = 0 for all n < 0 and is thus a causal sequence.

3.127  If X(z) has no poles and zeros on the unit circle then from Problem 3.95, γ k = δk = 0 and

ˆ x [n]  = 0 for all n < 0.

ˆ X (z) = log X(z)( )  therefore 
d ˆ X (z)

dz
= 1

X(z)
dX(z)

dz
.  Thus , z

dX(z)
dz

= z X(z)
d ˆ X (z)

dz
.

Taking the inverse z-transform we get  n x[n] = k ˆ x [k]x[n − k]
k=−∞

∞

∑ , n ≠  0.

Since x[n] = 0 and ˆ x [n]  = 0 for n < 0,  thus  x[n] = k
n

ˆ x [k]x[n − k]
k =0

n

∑ , n≠ 0.

Or, x[n] = k
n

ˆ x [k]x[n − k]
k =0

n −1

∑ + ˆ x [n]x[0] .  Hence, ˆ x [n] = x[n]
x[0]

− k
n

 
  

 
  

ˆ x [k]x[n − k]
x[0]

k =0

n−1

∑ , n≠ 0.

For n = 0, ˆ x [0]= ˆ X (z) z=∞ = X(z) z=∞ = log(x[0]) .  Thus,

ˆ x [n] =
0, n < 0,

log(x[0]), n = 0,

x[n]
x[0]

− k
n

 
  

 
  

ˆ x [k]x[n − k]
x[0]

,
k=0

n−1

∑ n > 0.

 

 

 
 
  

 

 
 
 
 

3.128   This problem is easy to solve using the method discussed in Section 4.13.2.

x[n] h[n] g[n]
v[n]

y[n]

h[n]= 0.6n µ[n] .  Thus, H(z) =
1

1 − 0.6 z−1 .  g[n] = 0.8n µ[n].  Thus, G(z) =
1

1 − 0.8 z−1 .

From Eq. (4.212) we get Φvv(z) = H(z)H(z−1)Φxx(z), (A)

and Φyy(z) = G(z)G(z−1)Φ vv(z) = G(z)G(z−1)H(z)H(z−1)Φxx(z). (B)

      Now, H(z)H(z−1) =
1

(1 − 0.6 z−1)(1 − 0.6z)
=

z−1

−0.6 +1.36z−1 − 0.6 z−2 =
1.5625

1 − 0.6 z−1 +
−1.5625

1 −1.6667z−1 .

Thus, using Eq. (A) we get
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Φvv(z) = H(z)H(z−1)σx
2 = 1.5625σx

2 1

1 − 0.6z−1 −
1

1 − 1.667 z−1

 

  
 

  ,  0.6 < z <1.6667

Taking the inverse transform of the above we get 

φ vv[n] =1.5625σx
2 0.6n µ[n]− 1.6667n µ[−n −1]( ) =1.5625σ x

2 0.6 n .

As m x = 0  and m v = 0 , we have σ v
2 = φ vv[0]= 1.5625σ x

2.

Next we observe G(z)G(z−1)H(z)H(z−1) =
1

(1 − 0.6 z−1)(1 − 0.6 z)(1 − 0.8z−1)(1 − 0.8z)
 

=
−15.0240

1 − 0.6 z−1 +
5.4087

1 − 1.6667z−1 +
26.7094

1 − 0.8z−1 +
−17.094

1 − 1.25z−1 .

Using Eq. (B) and taking the inverse we get 

φyy[n] =σ x
2(−15.024 (0.6)n µ[n]− 5.4087(1.6667)n µ[−n − 1] 

            + 26.7094(0.8)n µ[n]+ 17.094 (1.25)n µ[−n −1]) .

As m v = 0  and m y = 0 , we have σ v
2 = φ yy[0] = (−15.024 + 26.7094)σ x

2 =11.6854 σx
2.

M3.1 (a)  r = 0.9, θ  = 0.75. The various plots generated by the program are shown below:

(b)  r = 0.7, θ  = 0.5. The various plots generated by the program are shown below:
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M3.2   (a)  Y1(e
jω) = 1− e– j(2N+1)ω

e–jNω – e–j(N+1)ω .   For example, for N = 6, Y1(e
jω) = 1− e– j13ω

e–j6ω – e– j7ω .

(b)  Y2 (e jω ) = 1 − 2 e– j(N+1)ω + e– j2(N+1)ω

e– jNω – 2 e–j(N+1)ω + e– j(N+2)ω .   For example, for N = 6,
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    Y2 (e jω ) = 1 − 2 e–j 7ω + e– j14ω

e– j 6ω – 2 e– j 7ω + e– j8ω .

(c)  Y3(e jω) = 1

2
e– jπn / 2N + e jπn /2N( )

n=–N

N

∑ e–jωn  = cos πn
2N( )

n =– N

N

∑ e– jωn

= e j Nω cos πn
2N( )

n=–N

N

∑ e– j(N +n)ω =

cos πn
2N( )

n =– N

N

∑ e– j(N+n)ω

e–j Nω .

For example, for N = 6,  Y3(e jω) =

cos πn
2N( )

n=–6

6

∑ e– j(6+n)ω

e– j6ω .
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M3.3  (a)
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(b)
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M3.4  N = input('The length of the sequence = ');
k = 0:N-1;
gamma = -0.5;
g = exp(gamma*k);
% g is an exponential sequence
h = sin(2*pi*k/(N/2));
% h is a sinusoidal sequence with period = N/2
[G,w] = freqz(g,1,512);
[H,w] = freqz(h,1,512);

% Property 1
alpha = 0.5;
beta = 0.25;
y = alpha*g+beta*h;
[Y,w] = freqz(y,1,512);
% Plot Y and alpha*G+beta*H to verify that they are equal

% Property 2
n0 = 12; % S equence shifted by 12 samples
y2 = [zeros([1,n0]) g];
[Y2,w] = freqz(y2,1,512);
G0 = exp(-j*w*n0).*G;
% Plot G0 and Y2 to verify they are equal

% Property 3
w0 = pi/2;  % the value of omega0 = pi/2
r=256;  %the value of omega0 in terms of number of samples
k = 0:N-1;
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y3 = g.*exp(j*w0*k);
[Y3,w] = freqz(y3,1,512);
k = 0:511;
w = -w0+pi*k/512; % creating G(exp(w-w0))
G1 = freqz(g,1,w');
% Compare G1 and Y3

% Property 4
k = 0:N-1;
y4 = k.*g;
[Y4,w] = freqz(y4,1,512);
% To compute derivative we need sample at pi
y0 = ((-1).^k).*g;
G2 = [G(2:512)' sum(y0)]';
delG = (G2-G)*512/pi;
% Compare Y4, delG

% Property 5
y5 = conv(g,h);
[Y5,w] = freqz(y5,1,512);
% Compare Y5 and G.*H

% Property 6
y6 = g.*h;
[Y6,w] = freqz(y6,1,512,'whole');
[G0,w] = freqz(g,1,512,'whole');
[H0,w] = freqz(h,1,512,'whole');
% Evaluate the sample value at w = pi/2
% and verify with Y6 at pi/2
H1 = [fliplr(H0(1:129)') fliplr(H0(130:512)')]';
val = 1/(512)*sum(G0.*H1);
% Compare val with Y6(129) i.e sample at pi/2
% Can extend this to other points similarly

% Parsevals theorem
val1 = sum(g.*conj(h));
val2 = sum(G0.*conj(H0))/512;
% Comapre val1 with val2

M3.5 N = 8;  % Number of samples in sequence
gamma = 0.5;
k = 0:N-1;
x = exp(-j*gamma*k);
y = exp(-j*gamma*fliplr(k));
% r = x[-n] then y = r[n-(N-1)]
% so if X1(exp(jw)) is DTFT of x[-n], then
% X1(exp(jw)) = R(exp(jw)) = exp(jw(N-1))Y(exp(jw))
[Y,w] = freqz(y,1,512);
X1 = exp(j*w*(N-1)).*Y;
m = 0:511;
w = -pi*m/512;
X = freqz(x,1,w');
% Verify X = X1

% Property 2
k = 0:N-1;
y = exp(j*gamma*fliplr(k));
[Y,w] = freqz(y,1,512);
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X1 = exp(j*w*(N-1)).*Y;
[X,w] = freqz(x,1,512);
% Verify X1 = conj(X)

% Property 3
y = real(x);
[Y3,w] = freqz(y,1,512);
m = 0:511;
w0 = -pi*m/512;
X1 = freqz(x,1,w0');
[X,w] = freqz(x,1,512);
% Verify Y3 = 0.5*(X+conj(X1))

% Property 4
y = j*imag(x);
[Y4,w] = freqz(y,1,512);
% Verify Y4 = 0.5*(X-conj(X1))

% Property 5
k = 0:N-1;
y = exp(-j*gamma*fliplr(k));
xcs = 0.5*[zeros([1,N-1]) x]+0.5*[conj(y) zeros([1,N-1])];
xacs = 0.5*[zeros([1,N-1]) x]-0.5*[conj(y) zeros([1,N-1])];
[Y5,w] = freqz(xcs,1,512);
[Y6,w] = freqz(xacs,1,512);
Y5 = Y5.*exp(j*w*(N-1));
Y6 = Y6.*exp(j*w*(N-1));
% Verify Y5 = real(X) and Y6 = j*imag(X)

M3.6 N = 8;
k = 0:N-1;
gamma = 0.5;
x = exp(gamma*k);
y = e xp(gamma*fliplr(k));
xev =0.5*([zeros([1,N-1]) x]+[y zeros([1,N-1])]);
xod = 0.5*([zeros([1,N-1]) x]-[y zeros([1,N-1])]);
[X,w] = freqz(x,1,512);
[Xev,w] = freqz(xev,1,512);
[Xod,w] = freqz(xod,1,512);
Xev = exp(j*w*(N-1)).*Xev;
Xod = exp(j*w*(N-1)).*Xod;
% Verify real(X)= Xev, and imag(X)= Xod

r = 0:511;
w0 = -pi*r/512;
X1 = freqz(x,1,w0');
% Verify X = conj(X1)
% real(X)= real(X1) and imag(X)= -imag(X1)
% abs(X)= abs(X1) and angle(X)= -angle(X1)

M3.7 N = input('The size of DFT to be computed =');
for k = 1:N
    for m = 1:N

D(k,m) = exp(-j*2*pi*(k-1)*(m-1)/N);
    end
end
diff = inv(D)-1/N*conj(D);
% Verify diff is N*N matrix with all elements zero
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M3.8  (a)

clf;
N = input('The value of N = ');
k = -N:N;
y1 = ones([1,2*N+1]);
w = 0:2*pi/255:2*pi;
Y1 = freqz(y1, 1, w);
Y1dft = fft(y1);
k = 0:1:2*N;
plot(w/pi,abs(Y1),k*2/(2*N+1),abs(Y1dft),'o');
xlabel('Normalized frequency');ylabel('Amplitude');

(b) Add the statement  y2 = y1 - abs(k)/N; below the statement y1 =
ones([1,2*N+1]); and replace y1, Y1, and Y1dft in the program with y2, Y2
and Y2dft, respectively.

(c)  Replace the statement y1 = ones([1,2*N+1]); with y3 =
cos(pi*k/(2*N)); , and  replace y1, Y1, and Y1dft in the program with y3, Y3
and Y3dft, respectively.

The plots generated for N = 3 is shown below where the circles denote the DFT samples.

(a) (b)
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M3.9 g = [3 4  -2  0  1  -4];
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h = [1  -3  0  4  -2  3];
x = [2+j*3 3-j -1+j*2 j*3 2+j*4];
v = [-3-j*2 1+j*4 1+j*2 5+j*3 1+j*2];
k = 0:4;
z = sin(pi*k/2);
y = 2.^k;
G = fft(g); H = fft(h); X = fft(x);
V = fft(v); Z = fft(z); Y = fft(y);
y1 = ifft(G.*H); y2 = ifft(X.*V); y3 = ifft(Z.*Y);

M3.10  N = 8; % N is length of the sequence(s)
gamma = 0.5;
k = 0:N-1;
g = exp(-gamma*k); h = cos(pi*k/N);
G = fft(g); H=fft(h);

% Property 1
alpha=0.5; beta=0.25;
x1 = alpha*g+beta*h;
X1 = fft(x1);
% Verify X1=alpha*G+beta*H

% Property 2
n0 = N/2; % n0 is the amount of shift
x2 = [g(n0+1:N) g(1:n0)];
X2 = fft(x2);
% Verify X2(k)= exp(-j*k*n0)G(k)

% Property 3
k0 = N/2;
x3 = exp(-j*2*pi*k0*k/N).*g;
X3 = fft(x3);
G3 = [G(k0+1:N) G(1:k0)];
% Verify X3=G3

% Property 4
x4 = G;
X4 = fft(G);
G4 = N*[g(1) g(8:-1:2)]; % This forms N*(g mod(-k))
% Verify X4 = G4;

% Property 5
% To calculate circular convolution between
% g and h use eqn (3.67)
h1 = [h(1) h(N:-1:2)];
T = toeplitz(h',h1);
x5 = T*g';
X5 = fft(x5');
% Verify X5 = G.*H

% Property 6
x6 = g.*h;
X6 = fft(x6);
H1 = [H(1) H(N:-1:2)];
T = toeplitz(H.', H1); % .' is the nonconjugate transpose
G6 = (1/N)*T*G.';
% Verify G6 = X6.'
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M3.11  N = 8; % sequence length
gamma = 0.5;
k = 0:N-1;
x = exp(-gamma*k);
X = fft(x);

% Property 1
X1 = fft(conj(x));
G1 = conj([X(1) X(N:-1:2)]);
% Verify X1 = G1

% Property 2
x2 = conj([x(1) x(N:-1:2)]);
X2 = fft(x2);
% Verify X2 = conj(X)

% Property 3
x3 = real(x);
X3 = fft(x3);
G3 = 0.5*(X+conj([X(1) X(N:-1:2)]));
% Verify X3 = G3

% Property 4
x4 = j*imag(x);
X4 = fft(x4);
G4 = 0.5*(X-conj([X(1) X(N:-1:2)]));
% Verify X4 = G4

% Property 5
x5 = 0.5*(x+conj([x(1) x(N:-1:2)]));
X5 = fft(x5);
% Verify X5 = real(X)

% Property 6
x6 = 0.5*(x-conj([x(1) x(N:-1:2)]));
X6 = fft(x6);
% Verify X6 = j*imag(X)

M3.12  N = 8;
k = 0:N-1;
gamma = 0.5;
x = exp(-gamma*k);
X = fft(x);

% Property 1
xpe = 0.5*(x+[x(1) x(N:-1:2)]);
xpo = 0.5*(x-[x(1) x(N:-1:2)]);
Xpe = fft(xpe);
Xpo = fft(xpo);
% Verify Xpe = real(X) and Xpo = j*imag(X)

% Property 2
X2 = [X(1) X(N:-1:2)];
% Verify X = conj(X2);
% real(X) = real(X2) and imag(X) = -imag(X2)
% abs(X)= abs(X2) and angle(X) = -angle(X2)
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M3.13  Using the M-file fft we obtain X[0] =13,  X[1] = 12.8301 + j5.634,  X[2] = −4 + j3.4641, 
X[3] = −8 + j7 ,  X[4] = 13+ j1.7321,  X[5]= 4.1699 + j7.366 ,  X[6]= –13,  X[7] = 4.1699− j 7.366 ,
X[8] = 13− j1.7321, X[9] = −8 − j7 ,  X[10]= − 4 − j3.4641,  X[11]= 12.8301− j5.634 .

(a)  X[0] = 13,  (b)  X[6] = – 13,  (c)  X[k] = 36,
k=0

11

∑    (d)  e− j(4πk /6)

k=0

11

∑ X[k] = −48,

(e)  X[k]12 = 1500.
k=0

11

∑

M3.14  Using the M-file ifft we obtain x[0]= 2.2857, x[1] = −0.2643, x[2] = 0.7713, x[3]= −0.4754,
x[4]= −1.1362, x[6] = 1.6962, x[6] = 3.5057, x[7]= −0.8571, x[8] = 2.0763, x[9] = −0.6256,
x[10] =1.9748, x[11] =1.0625,  x[12] =1.5224, x[13]= 0.4637,

(a)  x[0] = 2.2857 ,  (b)  x[7] = – 0.8571,  (c)  x[n]= 12,
n =0

13

∑   (d)  e j(4πn /7)x[n]= − 2 − j2,
n =0

13

∑   

(e)  x[n] 2 = 35.5714,
n =0

13

∑

M3.15
function y = overlapsave(x,h)
X = length(x);           %Length of longer sequence
M = length(h);           %length of shorter sequence
flops(0);
if (M > X)               %Error condition
   disp('error');
end
%clear all
temp = ceil(log2(M));    %Find length of circular convolution
N = 2^temp;              %zero padding the shorter sequence
if(N > M)
    for i = M+1:N
    h(i) = 0;
    end
end
m = ceil((-N/(N-M+1)));
while (m*(N-M+1) <= X)
  if(((N+m*(N-M+1)) <= X)&((m*(N-M+1)) > 0))
      for n = 1:N
         x1(n) = x(n+m*(N-M+1));
      end
  end
if(((m*(N-M+1))<=0)&((N+m*(N-M+1))>=0)) %underflow adjustment
     for n = 1:N
        x1(n) = 0;
     end
     for n = m*(N-M+1):N+m*(N-M+1)
        if(n > 0)
           x1(n-m*(N-M+1)) = x(n);
        end
     end
end
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if((N+m*(N-M+1)) > X)               %overflow adjustment
   for n = 1:N
      x1(n) = 0;
   end
    for n = 1:(X-m*(N-M+1))
       x1(n) =x (m*(N-M+1)+n);
    end
end

   w1 = circonv(h,x1);    %circular convolution using DFT
   for i = 1:M-1
      y1(i) = 0;
   end
   for i = M:N
      y1(i) = w1(i);
   end
   for j = M:N
      if((j+m*(N-M+1)) < (X+M))
         if((j+m*(N-M+1)) > 0)
             yO(j+m*(N-M+1)) = y1(j);
          end
      end
   end
   m = m+1;
end
disp('Number of Floating Point Operations')
flops
%disp('Convolution using Overlap Save:');
y = real(yO);

function y = circonv(x1,x2)
L1 = length(x1); L2 = length(x2);
if L1 ~= L2,
   error('Sequences of unequal lengths'),
end
X1 = fft(x1);
X2 = fft(x2);
X_RES = X1.*X2;
y = ifft(X_RES);

The MATLAB program for performing convolution using the overlap-save method is

h = [1  1  1]/3;
R = 50;
d = rand(1,R) - 0.5;
m = 0:1:R-1;
s = 2*m.*(0.9.^m);
x = s + d;
%x = [x  x  x  x  x  x  x];
y = overlapsave(x,h);
k = 0:R-1;
plot(k,x,'r-',k,y(1:R),'b--');
xlabel('Time index  n');ylabel('Amplitude');
legend('r-', 's[n]','b--','y[n]');
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M3.16  (a)  Using the M-file roots we determine the zeros and the poles of G1(z)  which are 

given by z1 = −3.5616, z2 = −0.4500 + j0.7730, z3 = −0.4500 − j0.7730, z4 = 0.5616 , and  

p1 = −1.0000 + j1.7321, p2 = −1.0000 − j1.7321, p3 = 0.6000 + j0.3742, p4 = 0.6000 − j0.3742.

 Next using the M-file conv we determine the quadratic factors corresponding to the complex 
conjugate zeros and poles resulting in the following factored form of G1(z) : 

G1(z) = 4
3

⋅ (1+ 3.5616z−1)(1 − 0.5616z−1)(1 + 0.9 z−1 + 0.8z−2)
(1 + 2 z−1 + 4 z−2)(1 −1.2 z−1 + 0.5z−2)

.

(b)  Using the M-file roots we determine the zeros and the poles of G2(z)  which are 

given by  z1 = −2, z2 = −1, z3 = −0.5, z4 = 0.3,   and  

p1 = −1.0482 + j1.7021, p2 = −1.0482 − j1.7021, p3 = −0.6094, p4 = −0.3942.

 Next using the M-file conv we determine the quadratic factors corresponding to the complex 
conjugate zeros and poles resulting in the following factored form of G2(z) :

G2(z) = 2
5

⋅ (1+ 2 z−1)(1 +z−1)(1 + 0.5 z−1)(1 − 0.3z−1)
(1 + 0.6094 z−1)(1 + 0.3942 z−1)(1 + 2.0963z−1 + 3.9957z−2)

M3.17  Using Program 3_9 we arrive at  we get
Residues
   3.0000  2.0000
Poles
   -1.0000 -0.3333
Constant
    []

Hence, Y1(z) =
3

1 + z−1 −
2

1 + 1
3

z−1
,   which is same as that determined in Problem 3.98.

M3.18  (a)  A partial-fraction expansion of  Xa(z) =
4 − 3z−1 + 3 z−2

(z + 2)(z − 3)2 =
4z−3 − 3z−4 + 3 z−5

1 − 4 z−1 − 3 z−2 + 18z−3 .

using Program 3_9 we arrive at 

Xa(z) = 0.2361z−2 − 0.1389z−1 + 0.1667 −
0.1852

1 − 3z−1 +
0.0741

(1 − 3 z−1)2 −
0.125

1 + 2 z−1 .   Since the ROC is 
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given by z > 3,  the inverse z-transform is a right-sided sequence and is thus given by  
xa[n] = 0.2361δ[n − 2] − 0.1389δ[n − 1]+ 0.1667δ[n]  

−0.1852(3)n µ[n] + 0.0741n (3)n µ[n] − 0.125(−2)n µ[n].

A more compact solution is obtained by writing Xa(z)  as Xa(z) = z−3 4 − 3 z−1 + 3z−2

1 − 4 z−1 − 3 z−2 + 18z−3

 

 
 

 

 
 ,

and making a partial-fraction expansion of the function inside the brackets:  

Xa(z) = z−3 1

1 − 3z−1 +
2

(1 − 3 z−1)2 +
1

1 + 2 z−1

 

  
 

  = z−3 1

1 − 3 z−1 +
1

1 + 2 z−1

 

  
 

  + z−2 2z−1

(1 − 3z−1 )2
 

 
 

 

 
   

The inverse z-trasform of the above function is given by 

xa[n] = (3)n −3µ[n − 3]+ (−2)n −3 µ[n − 3]+
2

3
(n − 2)(3)n−2 µ[n − 2]

= (3)n−3(2n − 3) + (−2)n −3[ ]µ[n − 3].

(b)  Here the ROC is z < 2,hence, the inverse z-transform of 
 

Xb (z) = z−3 1

1 − 3 z−1 +
1

1 + 2 z−1

 

  
 

  + z−2 2z−1

(1 − 3z−1)2

 

 
 

 

 
  is thus given by 

x b[n]= −(3)n −3 µ[−n + 2] − (−2)n−3µ[−n + 2]−
2

3
(n − 2)(3)n−2 µ[−n +1]

= −(3)n−3 (2n − 3) − (−2)n−3[ ]µ[−n + 2].

 (c)  In this case, the ROC is given by 2 < z < 3.   Hence, the inverse z-transform of 
 

Xc(z) = z−3 1

1 − 3z−1 +
1

1 + 2 z−1

 

  
 

  + z−2 2z−1

(1 − 3z−1)2

 

 
 

 

 
  is thus given by 

xc[n] = −(3)n−3 µ[−n + 2] + (−2)n −3µ[n − 3]−
2

3
(n − 2)(3)n−2 µ[−n +1]

= −(3) n−3(2n − 3)µ[−n + 2] + (−2)n −3 µ[n − 3].

M3.19  (a)  Using the statement
[num,den] = residuez([10/4  -8/2],[-1/4 -1/2],0); we get
num = –3.5  –1.25  –0.25 and den = 1  0.75  0.125.

Hence the transfer function is given by X1(z) = −
3.5 + 1.25z−1 + 0.25z−2

1 + 0.75z−1 + 0.125 z−2 .

(b)  Using the statement [r,p,k]=residuez([–3  –1],[1  0   – 0.25]); we 

first obtain a partial-fraction expansion of −
3 + z−1

1 − 0.25z−2  which yields

r = – 2.5  0.5, p = 0.5  –0.5  and k = 0.
Therefore we can write 

X2(z) = 3.5 −
2

1 − 0.5z−1 −
2.5

1 − 0.5 z−1 +
0.5

1 + 0.5 z−1 = 3.5 −
4.5

1 − 0.5z−1 +
0.5

1 + 0.5 z−1 .  Next we use the

statement [num,den] = residuez([-4.5  0.5],[0.5 -0.5],3.5); which 
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yields  num = –0.5   –2.5   –0.075  and  den = 1  0  0.25.  Therefore, 

X2(z) = − 0.5 + 2.5 z−1 + 0.875z−2

1 − 0.25z−2 .

(c)  We first make a partial-fraction expansion of  
3

1 + 0.81z−2  using the statement [r,p,k] =

residuez(3, [1 0 0.81],0); which yields 
3

1 + 0.81z−2 = 1.5
1 + j0.9 z−1 + 1.5

1− j0.9z−1 .   

Hence, we can write X3(z) =
1.5

1 + j0.9 z−1 +
1.5

1 − j0.9 z−1 −
4 / 3

1 + 2
3

z−1
+

5 / 9

1 + 2
3 z−1 

   
  

2 .   Using Program

3_10 we then obtain X3(z) =
2.2222 + 3.1111z−1 + 0.70333 z−2 − 0.72 z−3

1 + 1.3333z−1 +1.2544z−2 +1.08z−3 + 0.36z−4 .

(d)  We first make a partial-fraction expansion of 

1
6

z−1

1 + 5

6
z−1 + 1

6
z−2

 using the statement 

[r,p,k] = residuez([0  1  0]/6, [1 5/6 1/6],0); which yields  

–
1

1 + 1
2

z−1
+ 1

1 + 1
3

z−1
.  Hence, we can write X4(z) = 4 + 10/ 5

1+ 2
5

z−1
–

1

1 + 1
2

z−1
+ 1

1 + 1
3

z−1
.  Using 

Program 3_10 we then arrive at  X4(z) = 6 + 6.7667z−1 + 2.4 z−2 + 0.2667z−3

1 +1.2333z−1 + 0.5 z−2 + 0.0667 z−3 .

M3.20  (a)  From Part (a) of M3.19 we observe X1(z) = −2 + 2.5

1 + 1

4
z−1

–
4

1+ 1
2

z−1
.   Hence its inverse 

z-transform is given by x1[n]= −2 δ[n]+ 2.5(−0.25)nµ[n]– 4(−0.5)n µ[n].   Evaluating for values of 

  n = 0,1,K  we get x1[0] = −3.5 ,  x1[1] = 1.375,  x1[2] = −0.8438,   x1[3] = 0.4609,   x1[4] = −0.2402,   

x1[5]= 0.1226,   x1[6] = −0.0619,   x1[7] = 0.0311,   x1[8]= −0.0156,   x1[9] = 0.0078

Using Program 3_11 we get

Coefficients of the power series expansion
Columns 1 through 6

   -3.5000    1.3750   -0.8438    0.4609   -0.2402    0.1226

  Columns 7 through 10
    -0.0619 0.0311   -0.0156    0.0078

(b)  From Part (b) of M3.19 we observe X2(z) = 3.5 − 4.5
1 − 0.5 z−1 + 0.5

1 + 0.5 z−1 .  Hence, its inverse

z-transform is given by x2[n] = 3.5 δ[n]− 4.5(0.5)n µ[n]+ 0.5(−0.5)n µ[n].  Evaluating for values 

of   n = 0,1,K  we get x2[0]= −0.5, x2[1]= −2.5, x2 [2] = −0.1,  x2[3] = −0.625,  x2[4]= −0.25,

x2[5] = −0.1562, x2[6] = −0.0625,  x2[7] = −0.0391, x2[8] = −0.0156, x2[9] = −0.0098,

Using Program 3_11 we get
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Coefficients of the power series expansion
Columns 1 through 6

   -0.5000   -2.5000   -0.1000   -0.6250   -0.2500   -0.1562

  Columns 7 through 10
   -0.0625 -0.0391   -0.0156   -0.0098

(c)  From Part (c) of M3.19 we observe  X3(z) =
3

1 + 0.81z−2 −
4 / 3

1 + 2
3

z−1
+

5 / 9

1 + 2
3 z−1 

   
  

2 .  Hence, 

its inverse z-transform is given by 

x3[n] = 3(0.9)n cos(πn / 2)µ[n + 1]−
4

3
−

2

3
 
   

  
n

µ[n] +
5

9
−

3

2
 
   

  (n +1) −
2

3
 
   

  
n +1

µ[n + 1]

= 3(0.9)n cos(πn / 2)µ[n]−
4

3
−

2

3
 
   

  
n

µ[n] +
5

9
(n + 1) −

2

3
 
   

  
n

µ[n].   Evaluating for values of n = 0,

1, . . . , we get  x3[0]= 2.2222, x3[1]= 0.14815,    x3[2]= – 2.2819, x3[3] = −0.26337, 
x3[4]=  2.2536,  x3[5] = – 0.26337,  x3[6] = −1.37,  x3[7] = −0.18209,  x3[8] =  1.4345,  
x3[9] =  − 0.10983.   Using Program 3_11 we get

Coefficients of the power series expansion
Columns 1 through 6

   2.2222   0.14815  -2.2819  -0.26337   2.2536  -0.26337
  Columns 7 through 10
   -1.37  -0.18209   1.4345   -0.10983

(d)  From Part (d) of M3.19 we observe X4 (z) = 4 +
10 / 5

1 + 2
5

z−1
–

1

1 + 1
2

z−1
+

1

1 + 1
3

z−1
.  Hence, its 

inverse z-transform is given by x 4[n]= 4 δ[n] + 2 (−2 / 5)n µ[n]− (−1 / 2)n µ[n] + (−1 / 3)n µ[n].  
Evaluating for values of    n = 0,1,K we get x 4[0] = 6,  x 4[1] = −0.6333,  x 4[2] = 0.1811,  
x 4[3]= −0.04,  x 4[4] = 0.0010,  x 4[5]= 0.0067,  x 4[6] = −0.0061,  x 4[7] = 0.0041,  x 4[8]= −0.0024,  
x 4[9] = 0.0014.  Using Program 3_11 we get

Coefficients of the power series expansion
Columns 1 through 6

   6.0000   -0.6331    0.1808   -0.0399    0.0011    0.0066

  Columns 8 through 10
  -0.0060 0.0040   -0.0024    0.0014

M3.21  % As an example try a sequence x = 0:24;
% calculate the actual uniform dft
% and then use these uniform samples
% with this ndft program to get the
% the original sequence back
% [X,w] = freqz(x,1,25,'whole');
% use freq = X and  points = exp(j*w)

freq = input('The sample values = ');
points = input('Frequencies at which samples are taken = ');
L = 1;
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len = length(points);
val = zeros(size(1,len));
L = poly(points);
for k = 1:len
   if(freq(k) ~= 0)
       xx = [1 -points(k)];
       [yy, rr] = deconv(L,xx);
       F(k,:) = yy;
       down = polyval(yy,points(k))*(points(k)^(-len+1));
       F(k,:) = freq(k)/down*yy;
       val = val+F(k,:);
    end
end
coeff = val;

115



Chapter 4 (2e)

4.1 If u[n] = zn  is the input to the LTI discrete-time system, then its output  is given by

y[n] = h[k]u[n − k]
k =−∞

∞

∑ = h[k]zn−k

k =−∞

∞

∑ = zn h[k]z−k

k=−∞

∞

∑  = znH(z),

where H(z) = h[k]z−k

k=−∞

∞

∑ .   Hence u[n] = zn is an eigenfunction of the LTI  discrete-time 

system.  If v[n] = znµ[n] is the input to the system, then its output is given by

                        y[n] = h[k]v[n − k]
k =−∞

∞

∑ = zn h[k]µ[n − k]z−k

k =−∞

∞

∑ = zn h[k]z−k

k=−∞

n

∑ .

Since in this case the summation depends upon n, v[n] = znµ[n]  is not an eigenfunction of 
an LTI discrete-time system.

4.2  h[n]= δ[n] − αδ[n − R] .  Taking the DTFT of both sides we get  H(e jω ) =1 − αe− jωR .

Let  α =| α | ejφ , then the maximum value of H(e jω)  is 1 + α ,  and the minimum value of 

H(e jω)  is 1 – α .

4.3  G(e jω ) = H(e jω)( )3
= (1 − αe− jωR)3 .

4.4 G(e jω) = α n

n=0

M−1

∑ e− jωn =
1 − αMe−jωM

1 −αe− jω .  Note that G(e jω)  =  H(e jω) , for α = 1 . In order 

to have the dc value of the magnitude response equal to unity the impulse response should be 

multiplied by a factor of  K, where K = (1 − α) /(1 − αM).

4.5 The group delay  τ(ω)  of an LTI discrete-time system with a frequency response H(e jω) =  

H(e jω) e jφ(ω) ,  is given by τ(ω) = −
d(φ(ω))

dω
.  Now,

d H(e jω)
dω

= e jφ(ω)
d H(e jω )

dω
+ j H(e jω ) e jφ(ω) dφ(ω)

dω
.

Hence, –j H(e jω) e jφ(ω) dφ(ω)
dω

= e jφ(ω)
d H(e jω )

dω
–

d H(e jω)
dω

.   Equivalently,

–
dφ(ω)

dω
= e jφ(ω)

j H(e jω ) e jφ(ω)

d H(e jω )

dω
–

d H(e jω)
dω

jH(e jω)
= 1

j H(e jω )

d H(e jω )

dω
+ j

d H(e jω)
dω

H(e jω )
.

The first term on the right hand side is purely imaginary.  Hence,
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τ(ω) = –
dφ(ω)

dω
= Re

j
d(H(e jω))

dω
H(e jω)

 

 

 
 
 
  

 

 

 
 
 
  

.

4.6  H(e jω ) = (a1 + a5 ) cos2ω + (a2 + a4 ) cosω + a3[ ] + j (a1 – a5 )sin 2ω + (a2 – a4) sinω[ ].   Hence, 
the frequency response will have zero phase for a1 = a5 ,  and a2 = a3.

4.7  H(e jω ) = a1 + a2e− jω + a3e
− j2ω + a4e− j3ω + a5e− j4ω + a6e− j5ω + a7e− j6ω

= (a1e j3ω + a7e− j3ω )e− j3ω + (a2e j2ω + a6e− j2ω )e− j3ω + (a3e jω + a5e− jω )e− j3ω + a4e− j3ω .  If
a1 = a7,  a2 = a6 , and a3 = a5 ,  then we can write 

H(e jω ) = 2(a1 + a7 ) cos(3ω) + 2(a2 + a6 ) cos(2ω) + 2(a3 + a5 ) cos(ω) + a4[ ]e− j3ω , which is seen
to have libear phase.

4.8 The frequency response of the LTI discrete-time system is given by

H(e jω) = a1ejωk + a2e jω(k−1) + a3ejω(k−2) + a2e jω(k−3) + a1ejω(k−4)

= e jω(k−2) a1e
j2ω + a2ejω + a3 + a2e− jω + a1e

− j2ω( )
             = e jω(k−2) 2a1cos(2ω) + 2a2 cos(ω) + a3( )

Hence for H(e jω)  will be real for k = 2.

4.9  H1(e jω ) = α + e− jω  and H2(e jω) = 1
1− βe− jω .   Thus, H(e jω) = H1(e

jω)H2 (e jω ) = α + e− jω

1 − βe− jω .  

H(e jω)
2

= (α + e− jω)(α + e jω)
(1− βe− jω)(1 −βe jω)

= α2 + 2 α cosω +1
1− 2 βcosω + β2 .   H(e jω)

2
= 1,  if α = −β.

4.10 Y(e jω) = X(e jω )
α

e jarg X(e jω ) .  Hence  H(e jω) =
Y(ejω)

X(ejω)
= X(e jω)

(α −1)
.   Since H(e jω)  is 

real, it has zero-phase.

4.11 y[n] = x[n] + αy[n – R].  Y(e jω) = X(e jω )+ αe− jωRY(e jω ). Hence,

H(e jω) =
Y(ejω)

X(ejω)
= 1

1 − αe− jωR .   Maximum value of H(e jω)  is 1 /(1− | α |),  and the 

minimum value is 1 /(1+ | α |).   There are R peaks and dips in the range 0 ≤ ω < 2π .  The 

locations  of peaks and dips are given by 1 − α e− jωR = 1± α ,  or e− jωR = ± | α |
α

.   The  locations

of peaks are given by  ω = ωk = 2π k
R

 and the locations of dips are given by 

ω = ωk = (2π +1)k
R

,  0 ≤ k ≤ R − 1. .

Plots of the magnitude and phase responses of H(e jω)  for α  = 0.8 and R = 6 re shown below:
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4.12  A(e jω ) =
b0 + b1e

− jω + b2e− j2ω

1 + a1e
− jω + a2e− j2ω =

(b0e jω + b2e− jω ) + b1

(e jω + a2e− jω) + a1
 

=
b1 + (b0 + b2 ) cosω + j( b0 − b2 ) sinω

a1 + (1 + a2 ) cosω + j(1 − a2 ) sinω
.  Therefore, 

A(e jω )
2

=
[b1 + (b0 + b2)]2 cos2 ω +(b0 − b2 )2 sin2 ω

[a1 + (1 + a2 )]2 cos2 ω + (1 − a2 )2 sin2 ω
= 1.  Hence, at ω = 0,  we have 

b1 + (b0 + b2)  = ± a1 + (1 + a2 )[ ] , and at ω = π / 2  we have b0 − b2  = ± 1 − a2[ ] .

Solution #1:  Consider b0 − b2 = 1 − a2 .   Choose b0 =1,−b2 =1 − a2.  and b2 = a2.  Substituting

these values in b1 + (b0 + b2)  = ± a1 + (1 + a2 )[ ] , we have b1 = a1.   In this case, 

A(e jω ) =
1 + a1e

− jω + a2e− j2ω

1 + a1e
− jω + a2e− j2ω =1,  a trivial solution.

Solution #2:  Consider b0 − b2 = a2 −1.   Choose b0 = a2,  and b2 =1.    Substituting these 

values in b1 + (b0 + b2)  = ± a1 + (1 + a2 )[ ] , we have b1 = a1.    In this case, 

A(e jω ) =
a2 + a1e

− jω + e− j2ω

1 + a1e
− jω + a2e− j2ω .

4.13  From Eq. (2.17), the input-output relation of a factor-of-2 up-sampler is given by

 
  
y[n] =

x[n / 2], n = 0,± 2,± 4,K

0, otherwise.
 
 
 

The DTFT of the output is therefore given by 

Y(e jω ) = y[n]e− jωn

n =−∞

∞
∑ = x[n / 2]

n=–∞
n even

∞
∑ e− jωn = x[m]e− j2ωm

m=−∞

∞
∑ = X(e j2ω)  where X(e jω )  is the

DTFT of x[n].
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4.14

H(e j4ω)

0 ↑ ↑ ↑ ↑
ω

π
0.2π

4

0.3π
4

2

π
4

π
2

3π
4

1.7π
4 1.8π

4

2.2π
4 2.3π

4
3.8π

4

3.7π
4

4.15  H(e jω) = (0.4)n

n=0

∞

∑ e− jωn = 1
1 − 0.4e− jω .   Thus, H(e jω) = 1

1.16 − 0.8 cosω
,  and 

arg H(e jω){ } = θ(ω) = tan−1 0.4 sinω
1 − 0.4 cosω

 

 
  

 

 
  .     H(e± jπ / 4 ) = 1.2067 m j0.4759.   Therefore, 

H(e± jπ / 4) = 1.2972,  and   θ(± jπ / 4) = m 0.3757  radians.

Now for an input x[n] = sin(ω on)µ[n] , the steady-state output is given by 

y[n] = H(e jωo ) sin ωon + θ(ωo )( )  which for ωo = π / 4  reduces to 

y[n] = H(e jπ / 4 ) sin π
4 n + θ(π / 4)

 
  

 
  = 1.2972sin( π

4 n − 0.3757).

4.16  H(e jω) = h[0] 1 + e– j2ω( )+ h[1]e– jω = e–jω 2 h[0]cosω + h[1]( ).   Therefore, we require, 

H(e j0.2 ) = 2 h[0]cos(0.2)+ h[1] = 0,  and H(e j0.5 ) = 2 h[0]cos(0.5)+ h[1] = 1.  Solving these two 
equations we get  h[0]= − 4.8788   and  h[1] = 9.5631.

4.17  (a) H(e jω ) = h 0 + h1e
− jω − h1e

− j3ω − h0e− j4ω = e− j2ω h0 e j2ω − e− j2ω( ) + h 0 e jω − e− jω( )[ ]   

= je− j2ω 2 h0 sin(2ω) + 2 h1 sin(ω)[ ].   This implies, H(e jω ) = 2 h0 sin(2ω) + 2 h1 sin(ω).   Thus, 

H(e jπ /4 ) = 2 h0 sin(π / 2) + 2 h1 sin(π / 4) = 0.5,  and 

H(e jπ /2 ) = 2 h0 sin(π) + 2 h1 sin(π / 2) = 1.   Solving these two equations we get h 0 = −0.1036,  

and h1 = 0.5.

(b)  H(e jω ) = je− j2ω − 0.2072 sin(2ω) + sin(ω)[ ].

4.18  (a)  H(e jω ) = h 0 + h1e
− jω − h1e

− j2ω − h0e− j3ω  

= e− j3ω /2 h0 e j3ω / 2 − e− j3ω / 2( ) + h 0 e jω /2 − e− jω /2( )[ ]
= je− j3ω /2 2 h 0 sin(3ω / 2) + 2 h1 sin(ω / 2)[ ].   This implies, 

H(e jω ) = 2 h0 sin(3ω / 2) + 2 h1 sin(ω / 2).   Thus, H(e jπ /4 ) = 2 h0 sin(3π / 8) + 2 h1 sin(π / 8) = 1,
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and H(e jπ /2 ) = 2 h0 sin(3π / 4) + 2 h1 sin(π / 4) = 0.5.   Solving these two equations we get 

h 0 = −0.0381, and h1 = 0.7452.

(b)  H(e jω ) = je− j3ω /2 −0.0762sin(3ω / 2) + 1.4904sin(ω / 2)[ ].

4.19  H(e jω ) = h 0 + h1e
− jω + h2e− j2ω + h1e

− j3ω + h0e− j4ω  

= e− j2ω[h 0(e j2ω + e− j2ω ) + h1(e jω + e− jω) + h2 ] = e− j2ω[2h0 cos(2ω) + 2h1 cos(ω) + h2 ] .  

This implies H(e jω ) = 2h0 cos(2ω) + 2h1 cos(ω) + h2 .  Thus, we have 

H(e j0.2) = 2h0 cos(0.4) + 2h1 cos(0.2) + h 2 = 0,  H(e j0.5) = 2h0 cos(1) + 2h1 cos(0.5) + h2 = 1,  

H(e j0.8) = 2h0 cos(1.6) + 2h1 cos(0.8) + h2 = 0.   Solving these equations we get 

h 0 = −13.4866, h1 = 45.2280, h2 = − 63.8089.

4.20  H(e j0 ) = 2, H(e jπ/ 2 ) = 7 − j3, H(e jπ) = 0.  Using the symmetry property of the DTFT of a real 

sequence, we observe  H(e j3π/ 2 ) = H * (e jπ /2 ) = 7 + j3.   Thus the 4-point DFT H[k] of the 

length-4 sequence is given by H[k] = 2 7 − j3 0 7 + j3[ ] whose 4-point inverse DFT yields 

the impulse response coefficients  {h[n]} = 4 2 −3 −1{ },  0 ≤ n ≤ 3.   Hence, 

H(z) = 4 + 2 z−1 − 3 z−2 − z−3.

4.21  Now, for an anti-symmetric finite-length sequence, H(e j0 ) = 0.   Also, since the sequence is real,

H(e j3π/ 2 ) = H * (e jπ /2 ) = − 2 − j2.   Thus the 4-point DFT H[k] of the length-4 sequence is 

given by H[k] = 0 −2 + j2 8 −2 − j2[ ]  whose 4-point inverse DFT yields the impulse 

response coefficients {h[n]} = 1 −3 3 −1{ },   0 ≤ n ≤ 3.   Hence, H(z) = 1 − 3z−1 + 3z−2 − z−3.

4.22  (a)  HA (e jω ) = 0.3 − e− jω + 0.3e−2 jω ,   HB(e jω ) = 0.3 + e− jω + 0.3e−2 jω .

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ω

Highpass Filter

     
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

ω

Lowpass Filter

(a) HA (e jω)                                        (b) HB(e jω)

HA(e jω)  is a highpass filter, whereas, HB(e jω)  a lowpass filter.

(b)  HC(e jω ) = HB(e jω) = HA (e j(ω+π)).
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4.23  y[n] = y[n −1] + 0.5 x[n] + x[n −1]{ } .  Hence, 

Y(e jω) = e– jωY(e jω) + 0.5 X(e jω )+ e– jωX(e jω){ },  or, H tr (e jω) = Y(e jω)

X(e jω)
= 0.5

1 + e– jω

1 – e– jω

 

 
  

 

 
  .

4.24 y[n] = y[n − 2] +
1

3
x[n] + 4x[n −1] + x[n − 2]{ } .  Hence, H sim(e jω ) = 1

3
1 + 4e− jω + e−2 jω

1 − e−2jω

 

 
  

 

 
  .

Note:  To compare the performances of the Trapezoidal numerical integration formula with 

that of the Simpson's formula, we first observe that if the input is xa(t) = ejwt, then the result 

of integration is ya(t) = ya(t) = 1
jω

e jωt .   Thus, the ideal frequency response H(ejw)is 1/jw.  

Hence, we take the ratio of the frequency responses of the approximation to the ideal, and 

plot the two curves as indicated below.

From the above plot it is eveident that the Simpson's formula amplifies high frequencies, 

whereas, the Trapzoidal formula attenuates them. In the very low frequency range, both 

formulae yield results close to the ideal.  However, Simpson's formula is reasonably accurate 

for frequencies close to the midband range.

4.25  A mirror-image polynomial A(z) of degree N satisfies the condition A(z) = z−N A(z−1,)  and an

antimirror-image polynomial B(z) of degree N satisfies the condition  B(z) = −z−NB(z−1,).

(a)  Bmi(z) =
1

2
B(z) + z−N B(z−1){ }.   Thus, z−N Bmi (z

−1) =
1

2
z−N B(z−1) + B(z){ } = Bmi (z).   

Likewise, B1i (z) =
1

2
B(z) − z−NB(z−1){ }.   Thus, z−N Bai(z

−1) =
1

2
z−NB(z−1) − B(z){ } = −Bai (z).

(b)  H(z) =
Nmi (z) + Nai (z)

Dmi (z) + Dai(z)
.   Thus, H(z−1) =

Nmi (z
−1) + Nai(z

−1)

Dmi (z
−1) + Dai (z−1 )

=
Nmi (z) − Nai (z)

Dmi (z) − Dai (z)
.   Hence, 

H(z) + H(z−1) =
Nmi (z) + Nai (z)

Dmi (z) + Dai (z)
+

Nmi (z) − Nai (z)

Dmi (z) − Dai (z)
= 2 ⋅

Dmi (z)Nmi(z) − Dai (z)Nai (z)

Dmi
2 (z) − Dai

2 (z)
,  and 

H(z) − H(z−1) =
Nmi (z) + Nai (z)

Dmi (z) + Dai (z)
−

Nmi (z) − Nai (z)

Dmi (z) − Dai (z)
= 2 ⋅

Dmi (z)Nai (z) − Dai (z)Nmi (z)

Dmi
2 (z) − Dai

2 (z)
.
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(c)  Since H(z) is a real rational function of  z−1,  H(z−1)
z=e jω = H * (e jω ).   Therefore,  

H re(e jω) =
1

2
H(e jω ) + H * (e jω ){ } =

1

2
H(z) + H(z−1){ }

z=e jω
= Hev (z) z=e jω , and 

H rim (e jω ) =
1

2j
H(e jω) − H * (e jω){ } =

1

2j
H(z) − H(z−1){ }

z=e jω
= − jHod(z) z=e jω .

(d)  H(z) =
3 z2 + 4 z + 6

3z3 + 2 z2 + z +1
 and H(z−1) =

3 z−2 + 4 z−1 + 6

3 z−3 + 2 z−2 + z−1 +1
=

6 z3 + 4 z2 + 3z

z3 + z2 + 2 z + 3
.   Thus, 

Hev(z) =
1

2
H(z) + H(z−1){ } =

1

2

3z2 + 4 z + 6

3z3 + 2 z2 + z + 1
+

6 z3 + 4 z2 + 3 z

z3 + z2 + 2 z + 3

 
 
 

  

 
 
 

  

=
9 z6 + 13.5z5 + 15z4 +16 z3 +15 z2 + 13.5 z + 9

3z6 + 5 z5 + 9 z4 + 15z3 + 9 z2 + 5 z + 3
, and  

Hod(z) =
1

2
H(z) − H(z−1){ } =

1

2

3z2 + 4 z + 6

3 z3 + 2 z2 +z + 1
−

6 z3 + 4 z2 + 3z

z3 + z2 + 2 z + 3

 
 
 

  

 
 
 

  
 

=
− 9 z6 − 10.5 z5 − 8 z4 + 8 z2 + 10.5 z + 9

3 z6 + 5z5 + 9 z4 + 15z3 + 9z2 + 5z + 3
.   Therefore, 

H re(e jω) = Hev(z) z=e jω =
9cos(3ω) + 13.5 cos(2ω) + 15cosω + 16

3 cos(3ω ) + 5 cos(2ω) + 9 cosω + 15
,   and 

H im (e jω ) = − jHod(z) z=e jω =
−9 cos(3ω) −10.5 cos(2ω) − 8 cosω
3 cos(3ω) + 5cos(2ω) + 9 cosω + 15

.

4.26  Given the real part of a real, stable transfer function H re(e jω ) =
a i cos(iω)

i =0

N∑
bi cos(iω)

i=0

N∑
= A(e jω)

B(e jω )
,  (1) 

the problem is to determine the transfer function: H(z) = P(z)
D(z)

=
piz

−i
i =0

N∑
di z

−i
i =0

N∑
.

(a)  H re(e jω ) = 1
2

H(e jω) + H* (e jω)[ ]= 1
2

H(e jω )+ H(e− jω)[ ] = 1
2

H(z)+ H(z−1)[ ]
z=e jω .   

Substituting H(z) = P(z)/D(z) in the above we get

H re(e jω ) = 1
2

P(z)D(z−1) + P(z−1)D(z)
D(z)D(z−1) z=e jω

 (2)

which is Eq. (4.241).

(b)  Comparing Eqs. (1) and (2) we get  B(e jω ) = D(z)D(z−1)
z=e jω , (3)

A(e jω) = 1
2

P(z)D(z−1) + P(z−1)D(z)[ ]
z=e jω . (4)

Now D(z) is of the form   D(z) = K z−N (z − zi
i=1

N

∏ ) (5)

122



where the z i 's are the roots of B(z) = B(e jω )
e jω =z

 inside the unit circle and K is a scalar constant.

Putting ω = 0  in Eq. (3) we get B(1) = D(1)[ ]2 ,  or B(1) = K (1 − zi )i=1

N∏ .   Hence, 

K = B(1) / (1 − zi )i=1

N∏ . (6)

(c) By analytic continuation, Eq. (4) yields A(z) = 1
2

P(z)D(z−1) + P(z−1)D(z)[ ].   (7)

Substituting A(z) = 1
2

a i(z
i + z−i )

i=0

N∑  and the polynomial forms of P(z) and D(z), we get 

ai (z
i + z− i)

i=0

N∑ = pi z− i
i=0

N∑ 
  

 
  di z i

i=0

N∑ 
  

 
  + pi z i

i =0

N∑ 
  

 
  di z−i

i =0

N∑ 
  

 
   and equating the 

coefficients of (zi + z−i ) / 2  on both sides, we arrive at a set of N+1 equations which can be solved
for the numerator coefficients pi  of H(z).

For the given example, i.e., H re(e jω ) = 1 + cos(ω) + cos(2ω)
17 − 8cos(2ω)

,  we observe 

A(z) = 1+ 1
2

(z + z−1) + 1
2

(z2 + z−2 ). (8)

Also, B(z) =17 − 4(z2 + z−2 ),  which has roots at z = ± 1
2

 and z = ±2.   Hence, 

D(z) = K z−2 (z − 1
2

)(z + 1
2

) = K(z2 − 1
4

)z−2.

Aldo, from Eq. (6) we have K = 17 − 8 /(1 − 1
4 ) = 4,   so that D(z) = 4 − z−2. (9)

Substituting Eqs. (8), (9) and P(z) = p0 + p1z−1 + p2z−2  in Eq. (7) we get 

1 + 1
2

(z + z−1)+ 1
2

(z2 + z−2) = (p0 + p1z
−1 + p2z−2)(4 − z2) + (p0 + p1z + p2z2 )(4 − z−2 )[ ].

Equating coefficients of (zi + z−i ) / 2 , i = 0, 1, 2, on both sides we get 4 p0 − p2 =1,  3 p1 = 1,  

4 p2 − p0 =1.   Solving these equations we arrive at p0 = p1 = p2 = 1/ 3.   Therefore, 

H(z) = 1+ z−1 + z−2

3(4 − z−2 )
.

4.27  G(z) = H
1+ α z−1

α + z−1

 

 
  

 

 
  .   Thus, G(1) = H

1+ α
α +1

 
  

 
  = H(1).   and  G(−1) = H

1− α
α −1

 
  

 
  = H(−1).

4.28  H(z) = H1(z) H2 (z) + H3(z)[ ] = (3 + 2 z−1 + 4 z−2 )
2

3
+

4

3
 
   

  +
2

5
+

8

5
 
   

  z−1 +
4

7
+

3

7
 
   

  z−2 
  

 
   

= (3 + 2 z−1 + 4 z−2 )(2 + 2 z−1 +z−2 ) = 6 + 10z−1 + 15z−2 +10 z−3 + 4 z−4.
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4.29  H(z) =
5 − 5 z−1 + 0.4 z−2 + 0.32 z−3

1 + 0.5 z−1 − 0.34z−2 − 0.08z−3 = 5 ⋅
(1 − 0.8z−1)(1 − 0.4 z−1)(1 + 0.2 z−1)

(1 + 0.8 z−1)(1 − 0.5z−1)(1 + 0.2 z−1)
 

= 5 ⋅
(1 − 0.8 z−1 )(1 − 0.4 z−1)

(1 + 0.8z−1)(1 − 0.5z−1)
,obtained using the M-file roots.  The pole-zero plot obtained 

using the M-file zplane is shown below.  It can be seen from this plot and the factored form of
H(z), the transfer function is BIBO stable as all poles are inside the unit circle.  Note also from the
plot the pole-zero cancellation at  z = – 0.2.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real part

4.30  H(z) =
5 −10.5 z−1 + 11.7 z−2 + 0.3 z−3 − 4.4 z−3

1 + 0.9 z−1 − 0.76z−2 − 0.016 z−3 − 0.096 z−3   

= 5 ⋅
(1 + 0.5z−1)(1 − 0.8 z−1)(1 − 1.8 z−1 + 2.2 z−2 )

(1 +1.4486z−1)(1 − 0.6515z−1)(1 + 0.1029z−1 + 0.1017z−2 )
, obtained using the M-file 

roots.  The pole-zero plot obtained using the M-file zplane is shown below.  It can be seen 
from this plot and the factored form of H(z), the transfer function is unstable as there is a ploe 
outside the unit circle at z = – 1.4486.

-1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real part

4.31   H(z) = −0.1z−1 + 2.19 z−2

(1 − 0.8 z−1 + 0.4 z−2 )(1 + 0.3 z−1)
= A + Bz−1

1− 0.8z−1 + 0.4 z−2 + C
1 + 0.3 z−1 ,  where
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 C = −0.1z−1 + 2.19 z−2

1− 0.8z−1 + 0.4 z−2
z−1=−1/ 0.3

= 3,   Thus, 

A + B z−1

1 − 0.8 z−1 + 0.4 z−2 = −0.1z−1 + 2.19z−2

(1 − 0.8z−1 + 0.4 z−2 )(1 + 0.3z−1)
− 3

1 + 0.3 z−1 = −3+ 3.2 z−1

1 − 0.8 z−1 + 0.4 z−2   Hence, 

H(z) = −3+ 3.2 z−1

1− 0.8z−1 + 0.4 z−2 + 3
1 + 0.3 z−1 = −3

1−1.0667z−1

1 − 0.8 z−1 + 0.4 z−2

 

 
 
 

 

 
 
 

+ 3
1 + 0.3 z−1 .   Now, using Table

3.8 we observe r 2 = 0.4  and r cosωo = 0.8.   Therefore, r = 0.4 = 0.6325  and cosωo = 0.4  or 

ωo = cos−1 0.4( ) = 0.8861.   Hence r sinωo = 0.4 sin(0.8861) = 0.4899.   We can thus write 

1 −1.0667z−1

1 − 0.8 z−1 + 0.4 z−2 = 1− 0.4 z−1

1 − 0.8 z−1 + 0.4 z−2 − 1.3609
0.4899z−1

1 − 0.8 z−1 + 0.4 z−2

 

 
  

 

 
  .   The inverse z-transform

of this function is thus given by  (0.6325)n cos(0.8861n)µ[n]− 1.3609(0.6325)n sin(0.8861n)µ[n].
Hence, the inverse z-transform of H(z) is given by

h[n] = 3(0.6325)n cos(0.8861n)µ[n]− 4.0827(0.6325)n sin(0.8861n)µ[n]− 3(−0.3)n µ[n].

4.32  (a)  H(z) = 6 − z−1

1+ 0.5z−1 + 2
1 − 0.4 z−1 = k + A

1+ 0.5z−1 + 2
1 − 0.4 z−1  where  A = (6 − z−1) z−1=−2= 8  

and  k = 6 − z−1

1+ 0.5z−1

z−1=∞

= −2.   Therefore, H(z) = −2 + 8
1+ 0.5z−1 + 2

1 − 0.4 z−1 .   Hence, the inverse

z-transform of H(z) is given by h[n] = −2δ[n]+ 8(−0.5)nµ[n]+ 2(0.4)n µ[n].

(b)  x[n] =1.2 (−0.2)n µ[n]− 0.2(0.3)n µ[n].  Its z-transform is thus given by 

X(z) = 1.2
1+ 0.2 z−1 − 0.2

1 − 0.3z−1 = 1 − 0.4 z−1

(1 + 0.2 z−1)(1 − 0.3 z−1)
,   z > 0.3.   Therefore, 

Y(z) = H(z)X(z) = 6 − z−1

1+ 0.5z−1 + 2
1 − 0.4 z−1

 

 
 
 

 

 
 
 

1 − 0.4 z−1

(1+ 0.2 z−1)(1− 0.3z−1)

= 8 − 2.4 z−1 + 0.4 z−2

(1 + 0.5 z−1)(1− 0.4 z−1)

 

 
 
 

 

 
 
 

1 − 0.4z−1

(1+ 0.2 z−1)(1− 0.3z−1)
= 8 − 2.4 z−1 + 0.4 z−2

(1+ 0.5z−1)(1 + 0.2 z−1)(1 − 0.3 z−1)
,  z > 0.5.

A partial-fraction expansion of Y(z) yields  Y(z) = 15
1+ 0.5z−1 − 8

1 + 0.2 z−1 + 1
1 − 0.3z−1 .   Hence, 

the inverse z-transform of Y(z) is given by y[n] =15(−0.5)n µ[n]− 8(−0.2)n µ[n]+ (0.3)n µ[n].

4.33  (a)  h[n] =(0.8)n µ[n] and x[n] = (0.5)n µ[n] .  Their z-transforms are given by 

H(z) = 1
1− 0.8z−1 , z > 0.8  and X(z) = 1

1− 0.5z−1 , z > 0.5 .  The z-transform Y(z) of the output 
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y[n] is therefore given by Y(z) = H(z)X(z) = 1
(1− 0.8z−1)(1 − 0.5 z−1)

, z > 0.5 .  Its partial-fraction 

expansion is given by Y(z) = 1
(1 − 0.8 z−1)(1− 0.5z−1)

= 8 / 3
1 − 0.8 z−1 − 5 / 3

1− 0.5z−1 .  Hence,  the inverse

z-transform of Y(z) is given by  y[n] = 8
3

(0.8)n µ[n]− 5
3

(0.5)n µ[n].

(b)  The z-transform Y(z) of the output y[n] is therefore given by 

Y(z) = H(z)X(z) = 1
(1− 0.5z−1)2 , z > 0.5.  Now,  the inverse z-transform of 

0.5 z−1

(1 − 0.5z−1)2  is 

given by n (0.5) nµ[n].  Thus, the  inverse z-transform of 
0.5

(1 − 0.5 z−1)2  is given by 

(n + 1) (0.5)n+1µ[n + 1].   Hence, y[n] = (n + 1) (0.5)n µ[n + 1]= (n + 1)(0.5)n µ[n].

4.34  y[n] = 4 (0.75)nµ[n]  and x[n] = 3(0.25)n µ[n] .  Their z-transforms are given by 

Y(z) = 4
1− 0.75z−1 , z > 0.75   and X(z) = 3

1− 0.25z−1 , z > 0.25.   Thus, the transfer function H(z) 

is given by H(z) = Y(z)
X(z)

= 4
3

1 − 0.25z−1

1 − 0.75z−1

 

 
  

 

 
  = 4

9
+ 8 / 9

1− 0.75z−1 , z > 0.75.   Hence, the impulse 

response h[n] is given by h[n] = 4
9

δ[n]+ 8
9

(0.75)n µ[n].

4.35  (a)  H(z) = 1
1− 0.8z−1 + 0.15z−2 = 1

(1 − 0.5 z−1)(1 − 0.3 z−1)
,   z > 0.8.

(b)  A partial-fraction expansion of H(z) yields  H(z) = 2.5
1− 0.5z−1 − 1.5

1 − 0.3z−1 .   Hence, 

h[n] = 2.5(0.5)n µ[n] −1.5(0.3)n µ[n].

(c)  the step response s[n] is given by the inverse z-transform of 
H(z)

1 − z−1 = 1
(1 − 0.5 z−1)(1− 0.3z−1)(1 −z−1)

, z >1.   A partial-fraction expansion of 
H(z)

1 − z−1  yields 

H(z)
1 − z−1 = 2.8571

1 −z−1 − 2.5
1 − 0.5 z−1 + 0.6429

1 − 0.3z−1 .   Hence, the step response is given by 

s[n] = 2.8571µ[n]− 2.5(0.5)nµ[n]+ 0.6429(0.3) nµ[n].

4.36 Y(z) = [H0 (z)F0 (z)− H0(−z)F0(−z)]X(z).  Since the output is a delayed replica of the input, 

we must have H0(z)F0 (z) − H0 (−z)F0 (−z)  = z–r.  But H0(z) = 1+ α z−1. , hence

(1 +α z−1)F0 (z)− (1 −α z−1)F0 (−z) = z– r .   Let  F0(z) = a0 + a1z−1.   This impiles, 

2(a0α + a1)z–1 = z–r .

The solution is therefore,  r = 1 and 2(a0α + a1) =1.   One possible solution is thus a0 = 1/ 2,  

α =1 / 2,  and  a1 = 1 / 4.   Hence  F0(z) = 0.25(1 + z−1).
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4.37  H0(z)F0 (z) = E 0(z2 ) + z−1E1(z2 )( ) R0 (z2 )+ z−1R1(z2 )( )
            = E 0(z2 )R0 (z2 )+ z−1 (E0 (z2)R1(z2 )+ E1(z2)R0(z2)( )+ z−2E1(z2 )R1(z

2) .  Thus,

H0(−z)F0(−z) = E 0(z2 )− z−1E1(z2)( ) R0 (z2) − z−1R1(z2 )( )
= E 0(z2 )R0 (z2 )− z−1 E 0(z2 )R1(z

2 ) + E1(z2 )R0(z2 )( ) + z−2E1(z2)R1(z2 ).

As a result, T(z)= H0(z)F0 (z) − H0 (−z)F0 (−z)  = 2z−1 E0 (z2)R1(z2 )+ E1(z2)R0 (z2)( ).
Hence the  condition to be satisfied  by E0(z), E1(z), R0(z), R1(z) for the output to be a

delayed replica for input is  E 0(z2 )R1(z2) + E1(z
2 )R0(z2 ) = 0.5z−r .                                  (A)

(b)  In Problem 4.36, E0(z) =1, E1(z) = 0.5, R0(z) = 0.5, R1(z) = 0.25.  Thus,

E 0(z2 )R1(z2) + E1(z
2 )R0(z2 ) = 0.5.

Hence the  condition of Eq. (A) is satisfied with r = 1.

(c) E 0(z2 ) = E1(z2 ) = z–2.   Let R0 (z2 ) = R1(z
2 ) = 0.25z–2.   r = 4 in this case. Hence

H(z) = z–2(1 + z–1)  and F(z) = 1

4
z–2 (1 – z–1).

4.38    h [n ] = h [N − n ].

H(z) = h[n]z–n

n=0

N–1

∑ = h[N – n]z–n

n=0

N –1

∑ = h[k]z–(N– k)

k =0

N –1

∑ = z– NH(z–1).

So if  z =   z0  is a root then so is z = 1/  z0 .  If G(z) = 1/H(z) then G(z) will have poles both 
inside and outside the unit circle, and will hence be unstable.

4.39  D(z) = (0.5 z +1)(z2 + z + 0.6) = 0.5(z + 2)(z + 0.5 − j0.5916)(z + 0.5 + j0.5916) .  Since one of the 
roots of D(z) is outside the unit circle at z = – 2, H(z) is unstable.  To arrive at a stable, transfer 

function G(z) such that  G(e jω) = H(e jω),  we multiply H(z) with an allpass function 

A(z) = 0.5z + 1
z + 0.5

.  Hence 

G(z) = H(z)A(z) = 3z3 + 2 z2 + 5
(0.5z + 1)(z2 + z + 0.6)

 

 
  

 

 
  

0.5z +1
z + 0.5

 
  

 
  = 3 z3 + 2 z2 + 5

(z + 0.5)(z2 + z + 0.6)
.

Now, H(z) = 3 (z + 1.4545(z2 − 0.7878z + 1.1459)
(0.5 z +1)(z2 + z + 0.6)

.    Thus, there are 14 other transfer functions with

the same magnitude as  H(e jω) .

4.40  D(z) = (z + 3.1238)(z + 0.5762)(z − 0.2 − j0.5568)(z − 0.2 + j0.5568).  Since one of the roots of 
D(z) is outside the unit circle at z = – 3.1238,  H(z) is unstable.  To arrive at a stable, transfer 

function G(z) such that G(e jω) = H(e jω),  we multiply H(z) with an allpass function 
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A(z) = z + 3.1238
3.1238z +1

.  Hence 

G(z) = H(z)A(z) = (z2 + 2 z − 3)(z2 − 3 z + 5)
(z + 3.1238)(z + 0.5762)(z2 − 0.4 z + 0.35)

 

 
  

 

 
  

z + 3.1238
3.1238z +1

 

 
  

 

 
   

= (z2 + 2z − 3)(z2 − 3z + 5)
(3.1238z +1)(z + 0.5762)(z2 − 0.4 z + 0.35)

.

Now H(z) = (z + 3)(z −1)(z2 − 3z + 5)
(z + 3.1238)(z + 0.5762)(z2 − 0.4 z + 0.35)

.  Hence there are ??  other transfer 

functions with the same magnitude as  H(e jω) .

4.41  The transfer function of the simplest notch filter is given by 

H(z) = (1 − e jωo z−1)(1 − e− jωoz−1) = 1 − 2 cosωo z−1 + z−2 .   In the steady-state, the output for an 

input x[n]= cosωon  is given by y[n] = H(e jωo ) cos (ωon + θ(ωo )),  (see Eq. (4.18)).

(a)  Comparing H1(z) = 1 + z−2  with H(z) as given above we conclude cosωo = 0  or ωo = π / 2.

Here H1(e jωo ) =1 − e− j 2ωo = 1 − e− j π =1 −1 = 0.   Hence, y[n] = H1(e jωo ) cos(ωo n + θ(ωo )) = 0.

(b)  Comparing H2(z) = 1 −
3

2
z−1 + z−2  with H(z) as given above we conclude cosωo = 3 / 4.  

Here now H2(e jω ) =1 −
3

2
e− jω + e− j2ω = 2 cosω o −

3

2

 

  
 

  e
− jω = 0.   Hence y[n] = 0.

(c)  Comparing H3(z) = 1 + 2z−1 + z−2  with H(z) as given above we conclude cosωo = −1 / 2.

Here now H2(e jω ) =1 + 2 e− jω + e− j2ω = 2 cosω o + 2( )e− jω = 0.   Hence y[n] = 0.

4.42  From the figure  H0(z) =
Y0(z)

X(z)
= GL (z)GL(z2 ),   H1(z) =

Y1(z)

X(z)
= GH (z)GL(z2 ),

H2(z) =
Y2(z)

X(z)
= GL (z)GH (z2 ),  and H3(z) =

Y3(z)

X(z)
= GH (z)GH (z2 ),
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4.43 G(e jω) = HLP (e j(π−ω)) .  Since, HLP(e jω) =
1, 0 ≤ ω < ωc ,
0, ωc ≤ ω < π,

 
 
 

 G(e jω) =
0, 0 ≤ ω < π − ω c,
1, π − ωc ≤ ω < π.

 
 
 

Hence G(e jω)  is a highpass filter with a cutoff frequency given by ω0 = π − ωc.   Also, since 

G(z) = HLP(–z), hence g[n] = (–1)nhLP[n].

4.44 G(z) = HLP (e jωo z)+ HLP (e− jωo z) .  Hence, g[n]= hLP [n]e− jωon + h LP[n]e jωon  =  

2 h LP[n]cos( ωo n).  Thus, G(z) is a real coefficient bandpass filter with a center frequency at 

wo and a passband width of 
  
2ω p .

4.45 F(z) = HLP(e jωo z) + HLP(e− jωo z)+ HLP (z) .  Hence, f[n]= 1+ 2 cos(ωon)( )hLP[n].  Thus, 

F(z) is a real coefficient bandstop filter with a center frequency at wo and a stopband width of 

π − 3ωp( ) / 2 .

4.46

From the figure,  V(z) = X(–z),  U(z) =   HLP (z)X(–z), and Y(z) = U(-z) = HLP(−z)X(z).

Hence  Heq(z) = Y(z) / X(z) = HLP(−z)  which is the highpass filter of Problem 4.41.

4.47

u0 [n] = 2x[n]cos(ω on)  = x[n]e jωo n + x[n]e− jωon  or U0(e jω) = X(e j(ω+ωo )) + X(e j(ω−ωo )) .

Likewise, U1(e jω ) = jX(e j(ω+ωo ))− jX(e j(ω−ωo )).

V0 (z) = HLP(z)X(zejωo ) + HLP(z)X(ze− jωo ) ,

V1(z) = jHLP (z)X(ze jωo ) − jHLP (z)X(ze− jωo ),

Y(z) = 1
2

V0(ze jωo )+ V0(ze− jωo )( ) + j
2

V1(ze jωo ) − V1(ze− jωo )( )  which after simplification 

yields
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      Y(z) = 1
4

HLP(ze jωo )X(ze2jωo )+ HLP (ze jωo )X(z)+ HLP (ze− jωo )X(z)+ HLP (ze− jωo )X(ze−2jωo ){ }
− 1

4
HLP (ze jωo )X(ze2jωo ) − HLP(ze jωo )X(z) − HLP (ze− jωo )X(z) + HLP(ze− jωo )X(ze−2jωo ){ }

Hence  Y(z) = 1
2

HLP(ze jωo )+ HLP (ze− jωo ){ }X(z),   Therefore

Heq(z) = Y(z)
X(z)

= 1
2

HLP (zejωo ) + HLP(ze− jωo ){ }.

Thus the structure shown in Figure P4.6 implements the bandpass filter of Problem 4.42.

4.48

0 π 2π−
π
M

π
M

ω

H0 (ejω )

0 π 2ππ
M

ω

H1(e jω )

2π
M

3π
M

0 π 2π
ω

3π
M

4π
M

H2(e jω )

      

0 π 2π
ω

−
2π
M 2(M − 1)π

M

↑

HM−1 (e jω )

The output of the k-th filter is a bandpass signals occupying a bandwidth  of 2π/M and 

centered at ω = kπ / M .  In general, the k-th filter Hk(z)  has a complex impulse response 
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generating a complex output sequence.  To realize a real coefficient bandpass filter, one can 

combine the outputs of Hk(z)  and HM−k (z) .

4.49 H0(z) = 1
2

(1 + z−1).   Thus, H0(e jω) = cos(ω / 2) .  Now, G(z) = H0 (z)( )M
.   Hence,

G(e jω)
2

= H0(e jω)
2M

= cos(ω / 2)( )2M .   The 3-dB cutoff frequency wc of G(z) is thus given 

by cos(ωc / 2)( )2M
= 1

2
.   Hence,    ωc = 2 cos−1(2−1/ 2M).

4.50 H1(z) = 1
2

(1− z−1). Thus, H1(e jω )
2

= sin2(ω / 2).   Let F(z) = H1(z)( )M
.   Then

F(e jω )
2

= sin(ω / 2)( )2M .    The 3-dB cutoff frequency wc of F(z) is thus given

sin(ωc / 2)( )2M
= 1

2
,  which yields    ωc  = 2 sin−1(2−1/ 2M) .

4.51 HLP(z) = 1 − α
2

1 + z−1

1 − αz−1

 

 
  

 

 
  .   Note that  HLP(z)  is stable if   α  < 1.   Now,

α =
1 − sin(ω c)

cos(ωc)
 =

cos2(ωc / 2)+ sin2 (ω c / 2) − 2sin(ωc / 2) cos(ωc / 2)

cos2(ωc / 2) − sin2(ωc / 2)

    =
cos(ω c / 2) −sin(ωc / 2)

cos(ω c / 2)+ sin(ωc / 2)
  =

1 − tan(ωc / 2)

1 + tan(ωc / 2)
.                                     (B)

If    0 ≤ ω < π  then tan(ω c / 2) ≥ 0  hence   α  < 1.

4.52 From Eq. (B),    α
 
=

1 − tan(ωc / 2)

1 + tan(ωc / 2)
, hence  tan(ω c / 2) = 1− α

1+ α
.

4.53  (a) From Eq. (111b) we get α = 1 − sin(0.4)
cos(0.4)

= 0.6629.   Substituting this value of α in Eq. 

(4.109) we arrive at HLP(z) = 0.1685(1+ z−1)
1 − 0.6629 z−1 .

(b)  From Eq. (111b) we get  α = 1 − sin(0.3π)
cos(0.3π)

= 0.3249.   Substituting this value of α in Eq. 

(4.109) we arrive at HLP(z) = 0.3375(1+ z−1)
1 + 0.3249 z−1 .

4.54  HHP(z) = 1 +α
2

1 − z−1

1 − αz−1

 

 
  

 

 
  .   Thus, HHP(e jω) = 1 + α

2
1− e− jω

1 − αe− jω

 

 
  

 

 
  .
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HHP (e jω)
2

= 1+ α
2

 
  

 
  
2 2 − 2 cos(ω)

1+ α2 − 2α cos(ω)

 

 
 
 

 

 
 
 

.  At 3-dB cutoff frequency ωc ,  HHP (e jωc )
2

= 1
2

.   

Hence, 
1+ α

2

 
  

 
  
2 2 − 2 cos(ωc)

1+ α2 − 2α cos(ωc)

 

 
 
 

 

 
 
 = 1

2
 which yields  cos(ω c) = 2α

1+ α2 .

4.55  (a)  From Eq. (111b) we get   α = 1 − sin(0.25)
cos(0.25)

= 0.7767.   Substituting this value of α in Eq. 

(4.112) we arrive at HHP(z) = 0.8884(1 − z−1)
1 − 0.7767z−1 .

(b)  From Eq. (111b) we get α = 1 − sin(0.4π)
cos(0.4π)

= 0.1584.   Substituting this value of α in Eq. 

(4.112) we arrive at HHP(z) = 0.5792(1 − z−1)
1 − 0.1584 z−1 .

4.56   
  
H(z) =

1− z−1

1− kz−1 .  Hence, H(e jω)
2

= (1 − cosω)2 + sin2 ω
(1− k cosω)2 + k2 sin2 ω

.

  
H(ejω)

2
=

(1 − cos(ω))2 + sin2 (ω)

(1 − k cos(ω))2 + k2 sin2(ω)
 = 2 − 2 cosω

1 + k2 − 2k cosω
.

Now H(e jπ)
2

= 4

(1 + k)2 .   Thus, the scaled transfer function is given by 

H(z) = 1+ k
2

1 − z−1

1 − kz−1

 

 
  

 

 
  .   A plot of the magnitude responses of the scaled transfer function for 

k =  0.95, 0.9 and –0.5 are given below.

4.57  HBP(z) = 1 − α
2

1− z−2

1− β(1+ α)z−1 + αz−2

 

 
  

 

 
  .   Thus,  HBP(e jω ) = 1 − α

2
1 − e−2 jω

1− β(1 + α)e− jω + αe−2 jω

 

 
  

 

 
  ,

HBP(e jω )
2

= 1 − α
2

 
  

 
  

2 2(1− cos2ω)
1 + β2(1 + α)2 + α2 + 2α cos2ω − 2β(1 + α)2 cosω

,  which can be 

simplified as HBP(e jω )
2

= (1− α)2 sin2 ω
(1 + α)2(cos ω − β)2 + (1− α)2 sin2 ω

.

At the center frequency wo,  HBP(e jωo )
2

= 1.   Hence, (cosω o − β)2 = 0  or cosωo = β .
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At the 3-dB bandedges w1 and  w2, HBP(e jω i )
2

= 1
2

,  i = 1, 2.  This implies

(1 +α)2(cosω i − β)2 = (1 − α)2 sin2 ωi , (C)

or sinω i = ± 1 + α
1 − α

 
  

 
  cosωi − β( ),  i = 1, 2.  Since ω1 < ωo < ω2,  sinω1 must have positive sign 

whereas, sinω2  must have negative sign because otherwise, sinω2  < 0 for ω2  in (0, π).

Now, Eq. (C) can be rewritten as 2(1 + α2) cos2 ωi − 2β(1 + α)2 cosω i +β2(1 + α)2 −(1 − α)2 = 0.

Hence, cosω1 + cosω 2 = β (1 + α)2

1 + α2 ,   and  cosω1( ) cosω 2( ) = β2(1 + α)2 −(1 − α)2

2(1 + α2 )
.

Denote ω3dB = ω2 − ω1.   Then cos(ω 3dB) = cosω2 cosω1 + sinω2 sinω1

= cosω2 cosω1 − 1 + α
1 − α

 
  

 
  

2
cosω2 cosω1 + β2 − β(cos ω2 + cosω1)( )   = 2α

1 + α2 .

4.58  (a)  Using Eq. (4.115) we get β = cos(0.45π) = 0.1564.   Next from Eq. (4.116) we get 
2α

1 + α2 = cos(0.2π) = 0.8090  or, equivalently α2 − 2.4721α +1 = 0 .  Solution of this quadratic 

equation yields α =1.9626  and α = 0.5095.  Substituting α =1.9626 and β = 0.1564  in Eq. 
(4.113) we arrive at the denominator polynomial of the transfer function HBP(z)  as 

D(z) = (1 − 0.4635z−1 +1.9626z−2 ) = 1 −(0.2317 + j1.3816)z−1( ) 1 −(0.2317 − j1.3816)z−1( )  which 

has roots outside the unit circle making HBP(z)  an unstable transfer function.

Next, substituting α = 0.5095 and β = 0.1564  in Eq. (4.113) we arrive at the denominator 
polynomial of the transfer function HBP(z)  as 

D(z) = (1 − 0.2361z−1 + 0.5095z−2) = 1 −(0.1181+ j0.0704)z−1( ) 1 − (0.1181− j0.0704)z−1( )  which 

has roots inside the unit circle making HBP(z)  a stable transfer function.  The desired transfer 

function is therefore HBP(z) =
0.2452(1 − z−2 )

1 − 0.2361z−1 + 0.5095z−2 .

(b)  Using Eq. (4.115) we get β = cos(0.6π) = − 0.3090.   Next from Eq. (4.116) we get 
2α

1 + α2 = cos(0.15π) = 0.8910 or, equivalently α2 − 2.2447α + 1 = 0 .  Solution of this quadratic 

equation yields α =1.6319 and α = 0.6128.  Substituting α =1.6319 and β = − 0.3090  in Eq. 
(4.113) we arrive at the denominator polynomial of the transfer function HBP(z)  as 

D(z) = (1 + 0.8133z−1 +1.6319z−2 ) = 1 +(0.4066 + j1.2110)z−1( ) 1 +(0.4066 − j1.2110)z−1( )  which 

has roots outside the unit circle making HBP(z)  an unstable transfer function.

Next, substituting α = 0.6128 and β = − 0.3090  in Eq. (4.113) we arrive at the denominator 
polynomial of the transfer function HBP(z)  as 

D(z) = (1 + 0.4984z−1 + 0.6128z−2) = 1 +(0.1181+ j0.7040)z−1( ) 1 + (0.1181− j0.7040)z−1( )  which 
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has roots inside the unit circle making HBP(z)  a stable transfer function.  The desired transfer 

function is therefore HBP(z) =
0.1936(1 − z−2)

1 + 0.4984z−1 + 6128z−2 .

4.59  HBS(z) = 1 + α
2

 
  

 
  

1− 2βz−1 + z−2

1 − β(1 + α)z−1 + αz−2 .   

HBS(e jω )
2

= 1 + α
2

 
  

 
  

2 2 + 4β2 − 8β cosω + 2 cos2ω
1+ β2(1 + α)2 + α2 + 2α cos2ω − 2β(1+ α)2 cosω

,  which can be 

simplified as  HBS(e jω )
2

= (1 + α)2 (cosω − β)2

(1 + α)2(cosω − β)2 +(1 − α)2 sin2 ω
.

At the center frequency wo, HBS(e jωo )
2

= 0.   Hence, (cosω o − β)2 = 0  or cosωo = β .

At the 3-dB bandedges w1 and  w2,  HBS(e jω i )
2

= 1
2

,  i = 1, 2.    This leads to Eq. (C) given 

earlier  Hence, as in the aolution of the previous problem ω3dB = 2α
1 + α2 .

4.60  (a)  Using Eq. (4.115) we get β = cos(0.6π) = 0.3090.   Next from Eq. (4.116) we get 
2α

1 + α2 = cos(0.15π) = 0.8910 or, equivalently α2 − 2.2447α + 1 = 0 .  Solution of this quadratic 

equation yields α =1.6319  and α = 0.6128.  Substituting α =1.6319 and β = 0.3090  in Eq. 
(4.118) we arrive at the denominator polynomial of the transfer function HBS(z)  as 

D(z) = (1 + 0.8133z−1 +1.6319z−2 ) = 1 +(0.4066 + j1.2110)z−1( ) 1 +(0.4066 − j1.2110)z−1( )  which 

has roots outside the unit circle making HBS(z)  an unstable transfer function.

Next, substituting α = 0.6128 and β = 0.3090  in Eq. (4.113) we arrive at the denominator 
polynomial of the transfer function HBS(z)  as 

D(z) = (1 − 0.4984z−1 + 0.6128z−2) = 1 +(0.2492 + j0.7421)z−1( ) 1 + (0.2492− j0.7421)z−1( )  which 

has roots inside the unit circle making HBS(z)  a stable transfer function.  The desired transfer 

function is therefore HBS(z) =
0.8064(1 − 0.4984z−1 + z−2 )

1 −0.4984 z−1 + 6128z−2 .

(b)  Using Eq. (4.115) we get β = cos(0.55π) = − 0.1564.   Next from Eq. (4.116) we get 
2α

1 + α2 = cos(0.25π) = 0.7071 or, equivalently α2 − 2.8284α +1 = 0 .  Solution of this quadratic 

equation yields α = 2.4142  and α = 0.4142.  Substituting α = 2.4142 and β = − 0.1564  in Eq. 
(4.118) we arrive at the denominator polynomial of the transfer function HBS(z)  as 

D(z) = (1 + 0.5341z−1 + 2.4142 z−2 ) = 1 + (0.2671+ j1.5307)z−1( ) 1 + (0.2671− j1.5307)z−1( )  which 

has roots outside the unit circle making HBS(z)  an unstable transfer function.

Next, substituting α = 0.4142 and β = 0.3090  in Eq. (4.113) we arrive at the denominator 
polynomial of the transfer function HBS(z)  as 
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D(z) = (1 + 0.2212z−1 + 0.4142 z−2 ) = 1 + (0.1106+ j0.6344)z−1( ) 1 + (0.1106− j0.6344)z−1( )  which

has roots inside the unit circle making HBS(z)  a stable transfer function.  The desired transfer 

function is therefore HBS(z) =
0.7071(1 + 0.3129z−1 + z−2 )

1 +0.2212z−1 + 0.4142z−2 .

4.61  
(1 − α)2(1 + cosωc)

2(1 + α2 − 2αcosωc)
= 2−1/ K .   Let    B = 2 (K−1)/K .  Simplifying this equation we get

α2(cosω c +1 − B)− 2α(1+ cosω c − Bcosωc) +1 + cosω c − B = 0

Solving the above quadratic equation for α  we obtain

α =
2(1+ (1 − B)cosω c)± 4(1 + (1 − B)cosωc)2 − 4(1 + cosωc − B)2

2(1+ cosω c − B)

   = 
1+ (1 − B)cosω c( )± (2 + 2 cosωc − B − Bcosω c) B(1 − cosωc)( )

(1+ cosωc − B)

   = 
1 + (1− B)cosωc ± sin ωc 2B − B2

(1 + cosωc − B)
.   For stability we require   α < 1 , hence the desired 

solution is  α =
1 + (1 − B)cosω c −sin ωc 2B − B2

(1 + cosωc − B)
.

4.62 HHP(z) = 1 +α
2

1 − z−1

1 − αz−1

 

 
  

 

 
  .   HHP (e jω)

2
= 1+ α

2

 
  

 
  
2 1− e− jω

1 − αe− jω

2

HHP (e jω)
2K

= 1+ α
2

 
  

 
  
2K 1− e− jω

1 − αe− jω

2K

= 1+ α
2

 
  

 
  
2K 2K 1 − cosω( )K

1+ α2 − 2α cosω( )K

At the 3-dB cut off frequency ωc , HHP (e jωc )
2K

= 1
2

 . Let  B = 2(K −1) / K . Simplifying the 

above equation we get   α2(1 − cosω c − B)+ 2α(1− cosω c + Bcosωc) +1 − cosωc − B = 0 .  

Hence,  α =
−2(1 − cosω c + Bcosωc) ± 2 (1 − cosωc + Bcosωc)2 − (1 − cosωc − B)2

2(1 − cosωc − B)

For HHP(z) to be stable, we require α < 1,  hence the desired solution is

α =
sinω c 2B − B2 − (1 − cosωc + Bcosωc)

(1 − cosωc − B)
.

4.63 H1(z) = H(−z).  H1(e jω ) = H(e(π−ω)).   If H(e jω)  is a lowpass filter with a passband edge at 

wp, then H1(e jω ) ≈
1, if π – ωp ≤ ω < π,
0, if 0 ≤ ω < π – ωp ,  

 
 
 

  
 hence   H1(e jω)  is a highpass filter.
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Now,   h1[n] = (−1)nh[n] .  The passband edge of the highpass filter is given by  
ω p,HP = π − ωp,LP ,  and the stopband edge is given by  ωs,HP = π − ωs,LP .

4.64  HLP(z) = 1 − α
2

1 + z−1

1 − αz−1

 

 
  

 

 
  ,   GHP(z) = 1− α

2
1 − z−1

1 + αz−1

 

 
  

 

 
  .   Let  β = −α , hence

GHP(z) = 1+ β
2

1 − z−1

1− βz−1

 

 
  

 

 
  .   Therefore  ωc = cos−1(β) = cos−1(−α).

4.65 The magnitude responses of H(z), H(–z), H(z2) and H(–z2) are shown below.

             

The magnitude responses of H(–z)H(z2),  H(–z)H(z2), and H(z)H(–z2) are shown below.

         

4.66 The magnitude responses of H(zM) (solid line) and F1(z) (dashed line) are shown below:

Hence G1(z) = H(zM)F1(z) is a lowpass filter with unity passband magnitude and passband 

edge at wp/M, and a stopband edge at ws/M.

The magnitude responses of H(zM) (solid line) and F2(z) (dashed line) are shown below:
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Hence G2(z) = H(zM)F2(z) is a bandpass filter with unity passband magnitude and passband 

edges at (2π–wp)/M and (2π+wp)/M, and a stopband edges at (2π–ws)/M and (2π+ws)/M.

4.67 v[n] = x[–n] * h[n], and u[n] = v[–n] = x[n] * h[–n].  Hence  y[n] = (h[n] + h[–n]) * x[n].

Therefore  G(e jω) = H(e jω) + H*(e jω).   Hence the equivalent transfer function G(e jω)  is real 
and has zero phase.

4.68  From Eq. (4.81) we observe that the amplitude response   
( 
H (ω)  of a Type 1 FIR transfer 

function is a function of cos(ωn).   Thus,   
( 
H (ω + 2πk)  will be a function of 

cos (ω + 2πk)n[ ]= cos(ωn + 2πkn) = cos(ωn)cos(2πkn)−sin(ωn) sin(2πkn) = cos(ωn), and hence 

  
( 
H (ω)  is a periodic function in ω  with a period 2π.

Likewise, from Eq. (4.91) we note that the amplitude response   
( 
H (ω)  of a Type 3 FIR transfer 

function is a function of sin(ωn).   Thus,   
( 
H (ω + 2πk)  will be a function of 

sin (ω + 2πk)n[ ]= sin(ωn + 2πkn) = sin(ωn)cos(2πkn)−cos(ωn) sin(2πkn) = sin(ωn),  and hence 

  
( 
H (ω)  is a periodic function in ω  with a period 2π.

Next, from Eq. (4.86) we observe that the amplitude response   
( 
H (ω)  of a Type 2 FIR transfer 

function is a function of cos ω(n −
1

2
) 

   
  .   Thus,   

( 
H (ω + 4πk)  will be a function of 

cos (ω + 4πk)(n −
1

2
) 

   
  = cos ω(n −

1

2
) + 4πk(n −

1

2
) 

   
   

= cos ω(n −
1

2
) 

   
  cos 4πk(n −

1

2
) 

   
  − sin ω(n −

1

2
) 

   
  sin 4πk(n −

1

2
) 

   
   = cos (ω + 4πk)(n −

1

2
) 

   
   as 

cos 4πk(n −
1

2
) 

   
   = 1 and sin 4πk(n −

1

2
) 

   
   = 0.  ence   

( 
H (ω)  is a periodic function in ω  with

a period 4π.

Finally, from Eq. (4.96) we observe that the amplitude response   
( 
H (ω)  of a Type 4 FIR transfer

function is a function of sin ω(n −
1

2
) 

   
  .   Thus,   

( 
H (ω + 4πk)  will be a function of 

sin (ω + 4πk)(n −
1

2
) 

   
  = sin ω(n −

1

2
) + 4πk(n −

1

2
) 

   
  

= sin ω(n −
1

2
) 

   
  cos 4πk(n −

1

2
) 

   
  − cos ω(n −

1

2
) 

   
  sin 4πk(n −

1

2
) 

   
  = sin ω(n −

1

2
) 

   
   as 
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cos 4πk(n −
1

2
) 

   
   = 1 and sin 4πk(n −

1

2
) 

   
   = 0.  ence   

( 
H (ω)  is a periodic function in ω  with

a period 4π.

4.69  The zeros given are at  z1 = − 0.5,  z2 =0.3 + j0.5,  z3 = −
1

2
+ j

3

2
.  The remaining zeros are at 

z4 = 1 / z1 = − 2,  z5 = z2 * = 0.3 − j0.5, z6 =1 / z5 = 0.12 − j0.1993,  z7 = z6* = 0.12 + j0.1993, and

z8 = z3* = −
1

2
+ j

3

2
.   Hence, 

  
H(z) = (1 − zii=1

8
C z−1 )

      = 1 − 1.1353z−1 + 0.5635z−2 + 5.6841z−3 + 4.9771z−4 + 5.6841z−5 + 0.5635z−6 −1.1353z−7 + z−8.

4.70  The zeros given are at  z1 = 3,  z2 = j0.8, z3 = j.  The remaining zeros are at z4 = 1 / z1 = 1 / 3,  

z5 = z2 * = − j0.8, z6 = z3* = − j ,  z7 =1 / z2 = − j 0.125,  z8 = z7 * = j0.125,  and z9 = −1.   Hence, 

  
H(z) = (1 − zii=1

9
C z−1 )

= 1 − 2.3333z−1 + 0.8692z−2 − 6.4725z−3 − 4.27z−4 − 4.27z−5 − 6.4725z−6  

+0.8692z−7 − 2.3333z−8 + z−8.

4.71  The zeros given are at z1 = − 0.3 + j0.5;  z2 = j0.8; and z3 = − 0.3.   The remaining zeros are at 

z4 = z1* = − 0.3 − j0.5; z5 = 1 / z1 = − 0.8824 − j1.4786; z6 = z5* = − 0.8824 + j1.4786;  

z7 = z2* = − j0.8;  z8 = 1 / z7 = − j1.25; z9 = z8 * = j1.25; z10 =1 / z3 = −3.3333; z11 = 1; and 

z12 = −1.  Hence, 
  
H(z) = (1 − zii=1

12
C z−1 )  = 1 + 5.998 z−1 +15.1343z−2 + 27.7107z−3 

+ 29.4822z−4 + 23.4343z−5 − 23.4343 z−7 − 23.4343z−8 −29.4822z−9

−27.7107z−10 −15.1343z−11 − 5.998 z−12 − z−13.

4.72  The zeros given are at z1 = −1.2 + j1.4;  z2 =
1

2
+ j

3

2
;  z3 =

1

4
+ j

15

4
.   The remaining zeros 

are at z4 = z1* = −1.2 − j1.4; z5 = 1 / z1 = − 0.3529 − j0.4181; z6 = z5* = − 0.3529 + j0.4181;  

z7 = z2* =
1

2
− j

3

2
;  z8 = z3* =

1

4
− j

15

4
,  and z9 =1.   Hence, 

  
H(z) = (1 − zii=1

9
C z−1 )  

= 1 + 0.6059 z−1 + 1.6235z−2 − 1.9412z−3 + 4.8647z−4 − 4.8647 z−5 + 1.9412z−6  

−1.6235z−7 − 0.6059z−8 − z−9.

4.73   H(z) = h[n]z−n

n =0

N

∑ ,   and H(e jω ) = h[n]e− jωn

n =0

N

∑ .  The frequency response will exhibit 

generalized linear phase if it can be expressed in the form    H(e jω ) =
( 
H (ω) e− jαωe− jβ ,  where 

  
( 
H (ω) , the amplitude function, is a real function of ω , and α  and β  are constants.
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We need to examine the case when the order N is even and when N is odd separately.  Without 

any loss of generality, assume first N = 5.  Then H(z) = h[n]z−n

n =0

5

∑ ,  and 

H(e jω ) = h[0] + h[1]e− jω + h[2]e− j2ω + h[3]e− j3ω + h[4]e− j4ω + h[5]e− j5ω  

= e− j5ω /2 h[0]e j5ω / 2 + h[5]e− j5ω /2 + h[1]e j3ω /2 + h[4]e− j3ω / 2 + h[2]e jω /2 + h[3]e− jω / 2[ ] 
= e− j5ω /2 (h[0]+ h[5]) cos(5ω / 2) + (h[1]+ h[4])cos(3ω / 2) + (h[2]+ h[3]) cos(ω / 2)[ ]  

+ je− j5ω /2 (h[0]− h[5])sin(5ω / 2) + (h[1]− h[4])sins(3ω / 2) + (h[2]− h[3]) sin(ω / 2)[ ] .

Note from the above expression that if h[n]= h[5 − n], 0 ≤ n ≤ 5,  then we have 

  H(e jω ) = e− j5ω / 2 ( 
H (ω ), where   

( 
H (ω) = 2 h[0]cos(5ω / 2) + 2 h[1]cos(3ω / 2) + 2 h[2 cos(ω / 2),  

which is a real function of ω , and as a result, H(e jω )  has linear phase.  Alternately, if 

h[n]= − h[5 − n], 0 ≤ n ≤ 5,  then we have   H(e jω ) = je− j5ω / 2 ( 
H (ω) = e− j5ω /2e jπ /2 ( 

H (ω),  where 

  
( 
H (ω) = 2 h[0]sin(5ω / 2) + 2 h[1]sin(3ω / 2) + 2 h[2 sin(ω / 2),  which is a real function of ω , and 

as a result, H(e jω )  has generalized linear phase.

Next, we assume first N = 6.  Then H(z) = h[n]z−n

n =0

6

∑ ,  and 

H(e jω ) = h[0] + h[1]e− jω + h[2]e− j2ω + h[3]e− j3ω + h[4]e− j4ω + h[5]e− j5ω + h[6]e− j6ω  

= e− j3ω h[0]e j3ω + h[6]e− j3ω + h[1]e j2ω + h[5]e− j2ω + h[2]e jω + h[4]e− jω + h[3][ ] 
= e− j3ω (h[0]+ h[6])cos(3ω) + (h[1]+ h[5]) cos(2ω) + (h[2]+ h[4])cos(ω) + h[3][ ]  

+ e− j3ω (h[0]− h[6]) sins(3ω) + (h[1]− h[5]) sin(2ω) + (h[2]− h[4])sin(ω)[ ] .

Note from the above expression that if h[n]= h[6 − n],  0 ≤ n ≤ 6,  then we have 

  H(e jω ) = e− j3ω ( 
H (ω), where   

( 
H (ω) = 2 h[0]cos(3ω) + 2 h[1]cos(2ω) + 2 h[2]cos(ω) + h[3]  

which is a real function of ω , and as a result, H(e jω )  has linear phase.  Alternately, if 

h[n]= − h[6 − n], 0 ≤ n ≤ 6,  then we have   H(e jω ) = je− j3ω ( 
H (ω ) = e− j3ωe jπ /2 ( 

H (ω),  where 

  
( 
H (ω) = 2 h[0]sin(3ω) + 2 h[1]sin(2ω) + 2 h[2]sins(ω)  which is a real function of ω , and as a 

result, H(e jω )  has generalized linear phase.

4.74  (a)  H2(z)  is linear-phase (also can be seen from the symmetric impulse response).

(b)  H3(z)  is minimum-phase as all its zeros are inside the unit circle.

(c)  H5(z)  is maximum-phase as all its zeros are outside the unit circle.

4.75  G1(z) = (6 − z−1 − 12z−2 )(2 + 5z−1)  = 30(1− 3
2

z−1)(1 + 4
3

z−1)(
2
5

+ z−1).

(a)  The other transfer functions having the same magnitude response are:
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(i) H1(z) = 30(− 3
2

+ z−1)(1+ 4
3

z−1)(
2
5

+ z−1),   (ii) H2(z) = 30(1 − 3
2

z−1)(
4
3

+ z−1)(
2
5

+ z−1),

(iii) H3(z) = 30(1 − 3
2

z−1)(
4
3

+ z−1)(1 + 2
5

z−1),  (iv) H4 (z) = 30(–
3
2

+ z−1)(
4
3

+ z−1)(1 + 2
5

z−1),

(v) H5(z) = 30(–
3
2

+ z−1)(1 + 4
3

z−1)(1 + 2
5

z−1) ,  (vi) H 6(z) = 30(1 − 3
2

z−1)(1 + 4
3

z−1)(1 + 2
5

z−1),

(vii) H 7(z) = 30(–
3
2

+ z−1)(
4
3

+ z−1)(1 + 2
5

z−1).

(b) H7(z)  has a minimum phase response, and G1(z) has a maximum phase response.

(c) The partial energy of the impulse responses of each of the above transfer functions for 
different values of k are given by

k = 0 k = 1 k = 2 k = 3 k = 4

  G1(z) 144 928 1769 5369 5369

  H1(z) 324 3573 3769 5369 5369

  H2 (z) 256 1040 3344 5369 5369

  H3(z) 900 949 4793 5369 5369

  H4(z) 576 4420 4469 5369 5369

  H5(z) 2025 4329 5113 5369 5369

  H6(z) 1600 1796 5045 5369 5369

  H7(z) 3600 4441 5225 5369 5369

The partial energy remains the same for values of k > 2. From the table given above it can be 

seen that  hi[m]
2

m=0

k

∑ ≤ h7[m]
2
,

m=0

k

∑  and hi[m]
2

m=0

∞

∑ = h 7[m]
2
,

m=0

∞

∑  i = 1, 2, . . . , 7.

4.76  A maximum-phase FIR transfer function has all zeros outside the unit circle, and hence, the 
product of the roots is necessarily greater than 1.  This implies that only those FIR transfer 
functions which have the coefficient of the highest power in z–1 (z–6 in the present case) greater
than 1 can have maximum phase.  Thus only H1(z) and H3(z) can be maximum-phase transfer
functions.  Also, maximum-phase transfer functions will have minimum partial-energy (as 
indicated in the solution of Problem 4.65).  Hence, H1(z) is a maximum-phase transfer function
since it has the smallest constant term in comparison with that of H3(z).

Likewise, a minimum-phase FIR transfer function is characterized by: (1) largest constant term,
and (2) the value of the coefficient of the highest power of z–1 being less than 1.  In the present
problem, it can be seen that H2(z) satisfies these two conditions and, is hence, a minimum-phase
transfer function.

Total no. of length-7 sequences having the same magnitude response is 27.  Thus, there exist 

123 other sequences with the same magnitude responses as those given here.

4.77  (a) Type 1:  {h[n]} = a b c d c b a{ },

(b)  Type 2:  {h[n]} = a b c d d c b a{ },
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(c)  Type 3:  {h[n]} = a b c d 0 −d −c −b −a{ },
(d)  Type 4:  {h[n]} = a b c d −d −c −b −a{ }.

4.78  (a)  Type 1: H(z) = −1 − 2 z−1 − 4 z−2 + 5z−3 + 6 z−4 + 5 z−5 − 4 z−6 − 2 z−7 − z−8.   From the zero

plot obtained using the M-file zplane it can be seen that complex-conjugate  zero pairs inside

and outside the unit circle appear in mirror-image symmetry, complex conjugate zero-pair on 

the unit circle appear singly and the zero at z = 1 is of order 2, verifying the observations of 

Section 4.4.4 of text.

(b)  Type 2: H(z) = −1 − 2 z−1 − 4 z−2 + 5z−3 + 6 z−4 + 6 z−5 + 5z−6 − 4 z−7 − 2z−8 − z−9 .  From 

the zero plot obtained using the M-file zplane it can be seen that complex-conjugate  zero 

pair inside and outside the unit circle appear in mirror-image symmetry, complex conjugate 

zero-pair on the unit circle appear singly, there is a zero at z =–1, and the zeros on the real axis

exhibit mirror-image symmetry, verifying the observations of Section 4.4.4 of text.

(c)  Type 3: H(z) = −1 − 2 z−1 − 4 z−2 + 5z−3 + 6 z−4 − 6 z−6 − 5 z−7 + 4 z−8 + 2 z−9 + z−10 .  From

the zero plot obtained using the M-file zplane it can be seen that complex-conjugate  zero 

pair inside and outside the unit circle appear in mirror-image symmetry, complex conjugate 

zero-pair on the unit circle appear singly, there is a zero at z =–1 and at z = 1, verifying the 

observations of Section 4.4.4 of text.

(d)  Type 4:  H(z) = −1 − 2 z−1 − 4 z−2 + 5z−3 + 6 z−4 − 6 z−5 − 5z−6 + 4 z−7 + 2z−8 +z−9.  From 

the zero plot obtained using the M-file zplane it can be seen that complex-conjugate  zero 

pair inside and outside the unit circle appear in mirror-image symmetry, complex conjugate 

zero-pair on the unit circle appear singly, and there is a zero at z = 1, verifying the 

observations of Section 4.4.4 of text.

4.79  H1(z)  is of Type 1 and hence, it has a symmetric impulse response of odd length 2n+1.  Let α

be the constant term of H1(z) .  Then, the coefficient of the highest power of z−1 of H1(z)  is 

also α .

H2(z)  is of Type 2 and hence, it has a symmetric impulse response of even length 2m.   Let β  

be the constant term of H2(z) .  Then, the coefficient of the highest power of z−1 of H2(z)  is 

also β .

H3(z)  is of Type 3 and hence, it has an anti-symmetric impulse response of odd length 2r+1.  

Let γ  be the constant term of H3(z) .  Then, the coefficient of the highest power of z−1 of 

H3(z)  is – γ .
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H4(z)  is of Type 4 and hence, it has an anti-symmetric impulse response of even length 2k.   

Let δ  be the constant term of H4(z) .  Then, the coefficient of the highest power of z−1 of 

H4(z)  is  – δ .

(a) The length of H1(z) H1(z)  is (2n+1)+(2n+1) – 1 = 4n + 1 which is odd.  The constant term

of H1(z) H1(z)  is α2  and the coefficient of the highest power of z−1 of H1(z) H1(z)  is also α2 .

Hence, H1(z) H1(z)  is of Type 1.

(b)  The length of H1(z) H2(z)  is (2n+1)+(2m) – 1 = 2(n + m) which is even.  The constant 

term of H1(z) H2(z)  is αβ  and the coefficient of the highest power of z−1 of H1(z) H2(z)  is 

also αβ .  Hence, H1(z) H2(z)  is of Type 2.

(c)  The length of H1(z) H3(z)  is (2n+1)+(2r+1) – 1 = 2(n + r) + 1 which is odd.  The constant

term of H1(z) H3(z)  is α γ  and the coefficient of the highest power of z−1 of H1(z) H3(z)  is 

also  –α γ .  Hence, H1(z) H3(z)  is of Type 3.

(d)  The length of H1(z) H4(z)  is (2n+1)+(2k) – 1 = 2(n + k)  which is even.  The constant 

term of H1(z) H4(z)  is αδ  and the coefficient of the highest power of z−1 of H1(z) H4(z)  is 

also  –αδ .  Hence, H1(z) H4(z)  is of Type 4.

(e)  The length of H2(z) H2(z)  is (2m)+(2m) – 1 = 4m – 1 which is odd.  The constant 

term of H2(z) H2(z)  is β2  and the coefficient of the highest power of z−1 of H2(z) H2(z)  is 

also β2 .  Hence, H2(z) H2(z)  is of Type 1.

(f)  The length of H3(z) H3(z)  is (2r+1)+(2r+1) – 1 = 4r + 1 which is odd.  The constant term 

of H3(z) H3(z)  is γ 2  and the coefficient of the highest power of z−1 of H3(z) H3(z)  is also 

γ 2 .  Hence, H3(z) H3(z)  is of Type 1.

(g)  The length of H4(z) H4(z)  is (2k)+(2k) – 1 = 4k – 1 which is odd.  The constant term of 

H4(z) H4(z)  is δ2  and the coefficient of the highest power of z−1 of H4(z) H4(z)  is also δ2 .  

Hence, H4(z) H4(z)  is of Type 1.

(h)  The length of H2(z) H3(z)  is (2m)+(2r+1) – 1 = 2(m + r) which is even.  The constant 

term of H2(z) H3(z)  is βγ  and the coefficient of the highest power of z−1 of H2(z) H3(z)  is 

– βγ .  Hence, H2(z) H3(z)  is of Type 4.

(i)  The length of H3(z) H4(z)  is (2r+1)+(2k) – 1 = 2(r + k) which is even.  The constant 

term of H3(z) H4(z)  is γ δ  and the coefficient of the highest power of z−1 of H3(z) H4(z)  is 

also γ δ .  Hence, H3(z) H4(z)  is of Type 2.
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4.80  (a)    
( 
G (ω) =

( 
H (ω)+ δ.   

  

( 
H (ω) = a(n)cos(ωn)

n=0

N / 2

∑   where  a[0] = h[N/2].  Hence

g[n] =
h[n], ∀n except n = N/2,

h[N/2] + δ, n = N / 2.
      Thus m = N/2 and α = δ .

(b) Since   
( 
G (ω) is real and positive hence it can be expressed as    

( 
G (ω) = F(e jω)F * (e jω) .  As 

H(z) is a linear phase filter so is G(z). Therefore G(z) will have roots at z = zo and at  z =1 / zo . 
This means that G(z) will have roots inside the unit circle with reciprocal roots outside the unit 
circle. Hence F(z) can be obtained by assigning to it all the roots that are inside the unit circle. 

Then   F(z−1)  is automatically assigned the reciprocal roots outside the unit circle.

(c) No,   
( 
H (ω)  can not be expressed as the square magnitude of a minimum-phase FIR filter 

because    
( 
H (ω)  takes on negative values too.

4.81  h[n]2

n =0

K

∑ = 0.95 h[n]2

n =0

∞

∑ .  Since H(z) = 1/(1 + αz−1),  hence h[n] = (−α)n µ[n].. Thus

1 − α 2K

1− α2 = 0.95

1− α 2 .   Solving this equation for K we get K = 0.5
log(0.05)
log(α)

.

4.82  (a)  F1(z) = 1 + 2z−1 + 3z−2.   F1(z) has roots at z = –1 ± j 2.   Since H(z) is a linear phase FIR 
transfer function, its roots must exist in reciprocal pairs.  Hence if H(z) has roots at  

z = –1 ± j 2,  then it should also have roots at  z = 
1

−1 ± j 2
= − 1

3
± j

2
3

.   Therefore H(z) 

should atleast have another factor with roots at z = − 1
3

± j
2

3
.   Hence  F2(z) = 3 + 2 z−1 + z−2 ,  

which is the mirrorimage polynomial to F1(z) and  H(z) = F1(z)F2(z)  

= 1+ 2 z−1 + 3z−2( ) 3 + 2 z−1 + z−2( )  = 3 + 8z−1 +14z−2 + 8 z−3 + 3z−4.

(b) F1(z) = 3 + 5z−1 − 4z−2 − 2z−3.   Its mirror-image olynomial is given by 

F2(z) = –2 – 4z−1 + 5z−2 + 3z−3.   Therefore,  H(z) = F1(z)F2(z)

= 3 + 5z−1 – 4z−2 – 2z−3( ) –2 – 4z−1 + 5z−2 + 3z−3( )  

= –6 – 22z−1 + 3z−2 + 54z−3 + 3z−4 – 22z−5 – 6z−6.

4.83  A1(z) =
1 − d1

*z

z − d1
.   A1(z)

2
=

1 − d1
*z( )(1 − d1z*)

(z − d1) z* −d1
*( ) .   Thus,

  
1 − A1(z)

2 =
(z − d1)(z* − d1

*) − (1− d1
*z)(1− d1z*)

(z − d1)(z* − d1
*)
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 =
z 2 + d1

2
− d1z

* − zd1
* −1− d1

2
z 2 + d1z

* + d1
*z

(z − d1)(z* − d1
*)

 =
( z2 −1)(1 − d1

2
)

z − d1
2 .

Hence,   1 − A1(z)
2 > 0,

= 0,
< 0,

        if z >1,
       if z = 1,
       if z <1.

 
 
 

  
  Thus,   A1(z)

2 < 1,
= 1,
> 1,

        if z >1,
       if z = 1,
       if z <1.

 
 
 

  

Thus Eq. (4.132) holds for any first order allpass function.  If the allpass is of higher order it 
can be factored into a product of first order allpass functions.  Since Eq. (4.132) holds true for
each of these factors individually hence it also holds true for the product.

4.84  An m-th order stable, real allpass transfer function A(z) can be expressed as a product of first-

order allpass transfer functions of the form A i(z) =
1 − di

*z

z − di
.  If di is complex, then A(z) has 

another factor of the form A i
' (z) =

1 − diz

z − di
* .   Now,  

A i(e
jω) =

1 − di
*e jω

e jω − d i

= e− jω (1 − di
*e jω )(1 − di

*e jω)

(1 − die
− jω )(1 − di

*e jω)
.   Let di = d i e jθ = α e jθ .   Then,

A i(e
jω) = e−jω (1 − αe− jθe jω)2

1 + α2 − 2αcos(θ − ω)( ) .   Therefore,

arg Ai (e
jω ){ } = −ω + arg 1 − αe− jθ e jω( )2 

  
 
  = −ω + 2 arg 1− αe− jθe jω( ){ }

= −ω + 2 tan −1 αsin(θ − ω)
1 − αcos(θ − ω)

 

 
 
 

 

 
 
 
.

Similarly, arg Ai
' (e jω ){ } = −ω + 2 tan−1 −α sin(θ + ω)

1− α cos(θ + ω)

 

 
 
 

 

 
 
 
.

If di = α  is real, then arg Ai (e
jω ){ } = −ω + 2 tan−1 −α sinω

1− α cosω

 

 
 
 

 

 
 
 
.

Now, for real di, arg Ai (e
j0 ){ } − arg A i(e

jπ){ } = −0 + 2 tan−1(−0) − –π + 2 tan−1(−0){ } = π.

For complex di, arg Ai (e
j0 ){ } + arg A i

' (e j0){ } − arg Ai (e
jπ){ } − arg Ai

' (e jπ){ }
= −0 + 2 tan−1 α sinθ

1− α cosθ

 

 
 
 

 

 
 
 

− 0 + 2 tan−1 −αsin θ
1 − αcosθ

 

 
 
 

 

 
 
 

+ π − 2 tan−1 −αsin θ
1 + αcosθ

 

 
 
 

 

 
 
 

+ π − 2 tan−1 αsin θ
1+ α cosθ

 

 
 
 

 

 
 
 

= 2π.

Now, τ(ω) = − d
dω

arg A(e jω){ }( ).
Therefore, τ(ω)dω

0

π

∫ = − d arg A(e jω ){ }[ ]0

π

∫ = arg A(e j0 ){ } − arg A(e jπ){ }.
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Since arg A(e jω ){ } = arg Ai (e
jω ){ }

i=1

m

∑ , it follows that τ(ω)dω
0

π

∫ = mπ.

4.85   (a)  A1(z) =
d1 + z−1

1 + d1z
−1 .   Thus, A1(e jω) =

d1 + e− jω

1 + d1e− jω =
d1e

jω /2 + e− jω /2

e jω / 2 + d1e
− jω /2 =

α e jβ

α e− j β = e j 2β ,  

where α e jβ = d1e
jω /2 + e− jω /2 = (d1 + 1)cos(ω / 2) + j(d1 −1) sin(ω / 2).   Therefore, phase is 

given by θ(ω ) = 2 β = − 2 tan−1 1 − d1

1 + d1
tan(ω / 2)

 

  
 

  .   For small values of x, tan(x) ≈ x   and 

tan −1(x) ≈ x.  Hence, the approximate expression for the phase at low frequencies is given by 

θ(ω ) ≈ −2
1 − d1

1 + d1

 

  
 

  
ω
2

= −
1 − d1

1 + d1

 

  
 

  ω.   Therefore, the approximate expression for the phase delay

is given by τph(ω) = −
θ(ω)

ω
= δ ≈

1 − d1

1 + d1
 samples.

(b)  For δ = 0.5  samples, d1 =
1 − δ
1 + δ

=
0.5

1.5
=

1

3
.   Then, A1(z) =

1
3

+ z−1

1 + 1
3

z−1
.   Thus, the exact phase 

delay is given by τph(ω) = −
θ(ω)

ω
=

2

ω
1 − d1

1 + d1
tan(ω / 2)

 

  
 

  =
2

ω
0.5 tan(ω / 2)( ).

For a sampling rate of 20 kHz, the normalized angular frequency equivalent of 1 kHz is 

ωo =
103

20 ×103 =
1

20
= 0.05.   The exact phase delay at ωo  is thus 

τph(ωo ) =
2

ωo
0.5tan(ω o / 2)( )=

2

0.05
0.5 tan(0.025)( ) = 0.500078  samples, which is seen to be 

very close to the desired phase delay of 0.5 samples.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

ω     
0 0.05 0.1 0.15 0.2

0.4

0.45

0.5

0.55

0.6

ω
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4.86   A2(e jω ) =
d2 + d1e− jω + e− j2ω

1 + d1e
− jω + d2 e− j2ω =

d2 e jω + d1 + e− jω

e jω + d1 + d 2 e− jω  

=
(d1 + d2 cosω + cosω) + j(d2 sinω − sinω)

(d1 + d2 cosω + cosω) + j(sin ω − d2 sinω)
=

d1 + (d2 +1)cosω( ) + j(d2 − 1)sin ω
d1 + (d2 +1)cosω( ) − j(d2 − 1)sin ω

.  Therefore  

θ(ω ) = 2 tan−1 (d2 − 1)sin ω
d1 + (d2 + 1)cosω

 

  
 

  .   Now, τp (ω) = −
θ(ω)

ω
= −

2

ω
tan−1 (d2 − 1) sinω

d1 + (d 2 +1)cosω
 

  
 

  .

For ω ≅ 0 , sinω = ω  and cosω = 1.   Then τp (ω) = −
2

ω
tan−1 (d2 − 1)ω

d1 + (d2 + 1)

 

  
 

  .   Again, for x ≅ 0,  

tan −1 x ≅ x.   Hence, τp (ω) = −
2

ω
(d2 −1)ω

d1 + (d2 + 1)
= −

2(d2 − 1)

d1 + d2 + 1
= δ.

Now, substituting d1 = 2
2 − δ
1 + δ

 
  

 
   and d2 =

(2 − δ)(1 − δ)

(2 + δ)(1 + δ)
 we can show easily that 

−
2(d2 − 1)

d1 + d 2 +1
= δ.

4.87  Since   G(z)  is non-minimum phase but causal, it will have some zeros outside the unit circle. Let

  z = α  be one such zero.  We can then write G(z) = P(z)(1 – αz−1)  = P(z)(−α* +z−1)
1 −αz−1

−α * +z−1

 

 
  

 

 
  ,

Note that 

  

1− αz−1

−α* + z−1

 

 
  

 
  is a  stable first order allpass function. If we carry out this operation for

all zeros of G(z) that are outside the unit circle we can write G(z) = H(z)A(z) where H(z) will 
have all zeros inside the unit circle and will thus be a minimum phase function and A(z) will be
a product of first order allpass functions, and hence an allpass function.

4.88  H(z) = (z +1.4)(z2 + 2z + 4)
(z + 0.8)(z − 0.6)

.   In order to correct for magnitude distortion we require the 

transfer function G(z) to satisfy the following property G(e jω) = 1

H(e jω)
.  Hence,  one possible

solution is  Gd(z) = 1
H(z)

= (z + 0.8)(z − 0.6)
(z +1.4)(z2 + 2z + 4)

.   Since Gd(z)  has poles outside the unit circle. 

it is not stable. Therefore we require a stable transfer function with magnitude response same as
Gd(z) . Using the technique of the previous problem we thus get:  

G(z) = (z + 0.8)(z − 0.6)
(z +1.4)(z2 + 2z + 4)

(z2 + 2z + 4)
(4z2 + 2z +1)

(z +1.4)
(1.4 z + 1)

= (z + 0.8)(z − 0.6)
(4z2 + 2z +1)(1.4 z + 1)

 is the desired stable 

solution such that G(e jω) H(e jω) = 1.

4.89   (a)  G(z) = H(z) A(z) where A(z) is an allpass function.   Then, 
  
g[0] = lim

z→∞
G(z) .

g[0] = lim
z→∞

G(z)  = lim
z→∞

H(z)A(z)  
  
= lim

z→∞
H(z)A(z)  = lim

z→∞
H(z) lim

z→∞
A(z)
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         ≤ lim
z→∞

H(z)       because lim
z→∞

A(z) < 1    (see Problem 4.71)

           ≤ h[0]

(b)  If   λ l  is a zero of H(z), then 
  
λ l <1,  since H(z) is a minimum-phase causal stable transfer

function which has all zeros inside the unit circle.  We can express   H(z) = B(z) (1 − λ l z
−1). It 

follows that B(z) is also a minimum-phase causal transfer function.

Now consider the transfer function 
  
F(z) = B(z) (λ l

* − z−1) = H(z)
(λ l

* − z−1)

(1− λl z−1)
.   If h[n], b[n], and

f[n] denote, respectively, the inverse z-transforms of H(z), B(z), and F(z), then we get

  
h[n] = b[0], n = 0

b[n] − λl b[n −1], n ≥ 1,
 
  

and 
  
f[n]=

λ l
* b[0], n = 0,

λ l
* b[n]− b[n −1], n ≥1.

 
 
 

  

Consider 

  

ε = h[n] 2

n=0

m

∑ − f[n]2

n=0

m

∑ = b[0]2 − λ l
* 2

b[0]2 + h[n]2

n =1

m

∑ − f[n]2

n =1

m

∑ .

Now 
  
h[n] 2 = b[n]2 + λ l

2
b[n −1] 2 − λ l b[n −1]b *[n]− λ l

* b *[n −1]b[n],  and

  
f[n] 2 = λl

2
b[n]2 + b[n −1]2 − λ l b[n −1]b * [n]− λl

* b *[n −1]b[n],

Hence, 

  

ε = b[0] 2 − λ l
2

b[0] 2 + b[n] 2 + λ l
2

b[n −1]2 
  

 
  

n=1

m

∑ − λ l
2

b[n]2 − b[n −1] 2 
  

 
  

n =1

m

∑

  
= 1 − λ l

2 
  

 
  b[m] 2.

Since 
  
λ l <1,  ε > 0, i.e, h[n]2

n =0

m

∑ > f[n] 2

n=0

m

∑ .   Hence, h[n]2

n =0

m

∑ ≥ g[n]2

n=0

m

∑ .

4.90  
  
H(z) =

(z + 3)(z − 2)

(z − 0.25)(z + 0.5)
 = G(z)A(z) 

  
=

(3z + 1)(1 − 2z)

(z − 0.25)(z + 0.5)

(z + 3)(z − 2)

(3z +1)(1 − 2z)

Therefore  
  
G(z) =

(3z + 1)(1 − 2z)

(z − 0.25)(z + 0.5)
.  The inverse z-transforms of these causal transfer 

functions are given by   h[n] ={1, 0.75, −6.0625, 1.6093, –1.16015, L}, and

    g[n]= {− 6, 2.5, – 0.375, 0.40625, – 0.1484, 0.0879, L}, respectively.  It can be 

seen that g[n] 2
n=0

m∑  is bigger than h[n] 2
n=0

m∑  for all values of  m.

4.91  See Example 4.13.

(a) HBS(z) = 1
4

(1 + z−2)2.   Thus, HBP(z) = z−2 − 1
4

(1 + z−2 )2  = − 1
4

(1 − z−2)2 .

(b) HBS(z) = 1
16

(1+ z−2 )(−1 + 6z−2 − z−4 ).   Thus, HBP(z) = z−4 − 1
16

(1 + z−2)(−1 + 6z−2 − z−4 )
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 = 1
16

1 − 4z−2 + 6z−4 − 4z−6 + z−8{ } = 1
16

(1 − z−2 )4 .

(c) HBS(z) = 1
32

(1+ z−2 )2 (−3 +14z−2 − 3z−4) .  Thus, 

HBP(z) = z−4 − 1
32

(1 + z−2)2(−3 +14z−2 − 3z−4 )  = 1
32

3 −8z−2 +10z−4 − 8z−6 + 3z−8{ }
  = 1

32
3 −8z−2 +10z−4 − 8z−6 + 3z−8{ }.

4.92  H0(z) = A0 (z)+ A1(z),   and  H1(z) = A0(z) – A1(z), where A0(z) and A1(z) are allpass 
functions of orders M and N, respectively, with no common factors.  Hence, the orders of H0(z)

and H1(z) are M+N.  Now, we can write A0(z) =
z– MD0 (z–1)

D0(z)
, and  A1(z) =

z–ND1(z
–1)

D1(z)
.   

Then, H0(z) = P(z)
D(z)

=
z−MD0(z−1)D1(z)+ z−N D0(z)D1(z−1)

D0(z)D1(z)
, and

H1(z) = Q(z)
D(z)

=
z−MD0 (z−1)D1(z) – z−ND0 (z)D1(z

−1)

D0 (z)D1(z)
.

Since P(z) is of degree M+N and  z–(M+N)P(z–1) = z–(M+N) zMD0(z)D1(z–1) + zND0 (z–1)D1(z)( )
= z–ND0 (z)D1(z

–1) + z–MD0(z–1)D1(z) = P(z).   Hence P(z) is symmetric. Similarly one can 

prove that Q(z) is anti-symmetric.

4.93  H0(z) = 1
2

A0 (z) + A1(z)[ ],   H1(z) = 1
2

A0(z) – A1(z)[ ].     Thus, H0(z)H0 (z–1) + H1(z)H1(z
–1)

= 1
4

A0(z) + A1(z)[ ] A0 (z–1)+ A1(z–1)[ ]+ 1
4

A0(z) – A1(z)[ ] A0 (z–1)– A1(z–1)[ ].
= 

1
4

A0(z)A0 (z–1)+ A0(z)A1(z
–1) + A1(z)A0 (z–1)+ A1(z)A1(z–1)[ ]

+ 1
4

A0(z)A0 (z–1) – A0(z)A1(z–1)– A1(z)A0(z–1)+ A1(z)A1(z–1)[ ]
= 1

2
A0(z)A0(z–1) + A1(z)A1(z

–1)[ ]= 1.   Thus, H0(e jω)
2

+ H1(e jω )
2

= 1  implying that

  H0 (z)  and   H1(z)  form a power complementary pair.

4.94  H0(e jω)
2

= 
1
4

A0 (e jω )A0
*(e jω) + A1(e

jω)A0
* (e jω )+ A0 (e jω )A1

*(e jω) + A1(e jω)A1
*(e jω){ }.

Since A0(z) and A1(z) are allpass functions, A0(e jω) = e jφ0(ω)   and A1(e jω ) = e jφ1(ω). 

Therefore  H0(e jω)
2

= 1
4

2 + e j(φ0(ω)−φ1(ω)) + e− j(φ0 (ω)−φ1(ω)){ } ≤1  as maximum values of

e j(φ0(ω)−φ1(ω))  and e− j(φ0 (ω)−φ1(ω))  are 1.  H0(z) is stable since A0(z) and A1(z) are stable 

transfer functions.  Hence, H0(z) is BR.
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4.95  H(z) = 1
M

Ak (z)
k=0

M−1

∑ .   Thus, H(z)H(z−1) = 1

M2 Ak (z)
k=0

M−1

∑
r=0

M−1

∑ A r(z
−1) .  Hence,

H(e jω)
2

= 1

M2 e j(φk (ω)−φ r (ω))

k=0

M−1

∑
r=0

M−1

∑ ≤1 .  Again H(z) is stable since {Ai(z)} are stable 

transfer functions.   Hence, H(z) is BR.

4.96  HBP(z) = 1 − α
2

1− z−2

1− β(1+ α)z−1 + αz−2

 

 
  

 

 
   and HBS(z) = 1 − α

2
1− 2βz−1 + z−2

1 − β(1 + α)z−1 + αz−2 .

HBS(z) + HBP(z)  = 
1 − α − z−2 + αz−2 + 1− 2βz−1 + z−2 + α − 2αβz−1 + αz−2

2(1 − β(1 + α)z−1 + αz−2 = 1.

Hence HBP(z) and HBS(z)  are allpass complementary.

4.97  H(z)H(z−1)+ H(−z)H(−z−1) = K.   On the unit circle, this reduces to 

H(e jω)H(e− jω )+ H(−e jω )H(−e− jω) = K,  or equivalently, H(e jω)
2

+ H(−e jω )
2

= K,  as H(z) is a

real-coefficient transfer function.  Now, H(−e jω )
2

= H(e j(π+ω))
2
.   Hence, for ω = π / 2 , the 

power-symmetric condition reduces to  

H(e jπ / 2 )
2

+ H(e j(π+π / 2))
2

= H(e jπ / 2 )
2

+ H(e j(2π−π / 2))
2

 = K.  Since H(z) is a real-coefficient 

transfer function, H(e jω)
2

 is an even function of ω , and thus, H(e jπ / 2 )
2

= H(e j(2π−π / 2))
2
.   

As a result, 2 H(e jπ / 2)
2

= K,  from which we obtain 10 log10 2 + 20log10 H(e jπ / 2 ) =10 log10 K,  

or 
  
20 log10 H(e jπ / 2 ) = G(ω) ω=π / 2 = 10log10 K − 3.

4.98  H(z) = A0 (z2) +−1 A1(z2).   Therefore, 

H(z)H(z−1) + H(−z)H(−z−1) = A0(z2 )+ z−1 A1(z2 )[ ] A0(z−2 ) + zA1(z−2)[ ]  

+ A0 (−z)2( ) − z−1 A1 (−z)2( )[ ] A0 (−z)2( )− zA1 (−z)2( )[ ]  

= A0(z2 )A0 (z−2) + z−1A1(z
2 )A0 (z−2 )+ z A0 (z2)A1(z

−2) + A1(z2)A1(z
−2)  

       + A0(z2 )A0 (z−2) − z−1A1(z
2 )A0 (z−2 )− z A0 (z2)A1(z

−2) + A1(z
2)A1(z

−2)  = 4,  as 

A0(z2 )A0 (z−2 ) = A1(z2 )A1(z−2) = 1.

4.99  (a)  Ha(z) =
1

2
− z−1 +

21

2
z−2 −

27

2
z−3 − 5z−4 −

5

2
z−5.   Thus, 

Ha(z)Ha (z−1) = −1.25z5 − 28z3 − 72,75z + 325 − 72,75z−1 − 28 z−3 −1.25z−5  and 

Ha(−z)Ha(−z−1) = 1.25z5 + 28z3 + 72,75z + 325 + 72,75z−1 + 28z−3 + 1.25z−5 .   Hence, 

Ha(z)Ha (z−1) + Ha (−z)Ha (−z−1) = 650.
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(b)  Hb (z) =1 + 3z−1 + 14z−2 + 22z−3 − 12z−4 + 4 z−5.   Thus, 

Hb (z)Hb (z−1) = 4 z5 + 42z3 + 41z + 850 + 41z−1 + 42z−3 + 4 z−5   and 

Hb (−z)Hb(−z−1) = −4 z5 − 42 z3 − 41z + 850 − 41z−1 − 42z−3 − 4 z−5.   Hence, 

Hb (z)Hb (z−1) + Hb(−z)Hb (−z−1) = 1700.

4.100   H(z)H(z−1) = a2(1 + b z−1)(1+ b z) = a2b z + a2 (1+ b2 ) + a2b z−1.   Thus, c = a2b  and 

d = a2(1 + b2) .  Now, H(z)H(z−1) + H(−z)H(−z−1) = cz + d + c z−1 − cz + d − c z−1 = 2 d.  Therefore,

2 d = 2 a2 (1+ b2) = 1.   This condition is satisfied by a = 1/ 2(1 + b2 ) .  For b = 1, then a = 1
2 .  

Other solutions include b = –1 and a = 1
2 , b = 2 and a = 

1

10
.

Since H(z) is a first-order FIR causal FIR transfer function, G(z) = − z−1H(−z−1)  is also a first-

order FIR causal FIR transfer function.  Now, 

H(z)H(z−1) + G(z)G(z−1) = H(z)H(z−1) + − z−1H(− z−1)[ ] − zH(−z)[ ]  

= H(z)H(z−1) + H(−z)H(−z−1) = 1.  Hence H(z) and G(z)  are power-complementary.

4.101  H(z)H(z−1) = (c z + d + cz−1) d2z2 + d1(1 + d2 )z + (1 + d1
2 + d2

2 ) + d1(1 + d2 ) z−1 + d2z−2[ ] .  

Thus, H(z)H(z−1) + H(−z)H(−z−1 ) = 2[cd1(1 + d2 )z2 + 2 c d1(1 + d2 ) + d d 2z2 + d (1 + d1
2 + d2

2 )  

                                           +d d2z−2 + c d1(1 + d2 ) z−2 ] = 1.  Hence, we require 

d d2 + c d1(1 + d2 )= 0,  and 2 cd1(1 + d2) + d (1 + d1
2 + d2

2 ) =1.   Solving these two equations we 

arrive at c =
d2

d2 (1 + d2 )(2 d2 −1 − d1
2 − d2

2 )
 and d = −

1

2 d2 − 1 − d1
2 − d 2

2 .   For d1 = d2 = 1,  we get

c = −
1

2
 and d = 1.

Since H(z) is a third-order FIR causal FIR transfer function, G(z) = − z−3H(− z−1)  is also a third-

order FIR causal FIR transfer function.  Now, 

H(z)H(z−1) + G(z)G(z−1) = H(z)H(z−1) + − z−3H(− z−1)[ ] −z3 H(− z)[ ] 
= H(z)H(z−1) + H(−z)H(−z−1) = 1.  Hence H(z) and G(z)  are power-complementary.

4.102  H(z) =
0.1 + 0.5z−1 + 0.45z−2 + 0.45z−3 + 0.5z−4 + 0.1z−5

1 + 0.9 z−2 + 0.2z−4 =
1

2
A(z2 ) + z−1[ ],  where 

A(z) =
0.2 + 0.9z−1 + z−2

1 + 0.9 z−1 + 0.2 z−2  is a stable allpass function.  Thus, 

H(z)H(z−1) + H(−z)H(−z−1 ) =
1

4
A(z2 ) + z−1[ ] A(z−2 ) + z[ ]+

1

4
A(z2 ) − z−1[ ] A(z−2 ) − z[ ] = 1.

4.103  (a)  H1(z) = 1
1 + α

(1 + αz−1).
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H1(e jω )
2

= 1

(1 + α)2 (1 + αcosω)2 + (αsinω)2{ }  = 
1 + α2 + 2αcosω

(1 + α)2 .   Thus,

d H1(e jω )
2

dω
= –2αsinω

(1 + α)2 < 0,  for a > 0.  The maximum value of H1(e jω )  = 1 at w = 0, and the 

minimum value is at w = π.  On the other hand, if  a < 0, then 
d H1(e jω )

2

dω
> 0,   In this case the 

maximum value of H1(e jω )  = (1 – α)2 /(1+ α)2 > 1 at w = π, and the minimum value is at w = 

0. Hence, H1(z) is BR only for a > 0.

(b)  H2(z) = 1
1+ β

(1 −βz−1).  H2(e jω)
2

= 1 + β2 − 2βcosω
(1 + β)2 .   Thus, 

d H2(e jω)
2

dω
= 2βsinω

(1 + β)2 > 0, for b > 0.  The maximum value of H2(e jω)  = 1 at w = π, and the 

minimum value is at w = 0.  On the other hand, if  b < 0, then 
d H2(e jω)

2

dω
< 0,   In this case the 

maximum value of H2(e jω)  = (1 – β)2 /(1 + β)2 > 1 at w = 0, and the minimum value is at w = 

π. Hence, H2(z) is BR only for b > 0.

(c)  H3(z) = (1+ αz−1)(1 – βz−1)
(1+ α)(1 + β)

.  From the results of Parts (a) and (b) it follows that H3(z) is BR

only for a > 0 and b > 0.

(d)  H4(z) = (1 + 0.4z−1)(1 + 0.5z−1)(1 + 0.6z−1)
3.36

= 1+ 0.4z−1

1.4

 

 
  

 

 
  

1 + 0.5z−1

1.5

 

 
  

 

 
  

1 + 0.6z−1

1.6

 

 
  

 

 
  .  Since 

each individual factors on the right-hand side is BR, H4(z) is BR.

4.104  (a)  H1(z) = 2 + 2 z–1

3 + z–1 = 1
2

1 + 1 + 3z–1

3 + z–1

 

 
  

 

 
  = 1

2
A0 (z) + A1(z)( ),  where A0(z) = 1 and  

A1(z) = 1 + 3z–1

3 + z–1  are stable allpass functions.  In view of Problem 4.80, H1(z) is BR.

(b)  H2(z) = 1 – z–1

4 + 2 z–1 = 1
2

1–
2 + 4 z–1

4 + 2 z–1

 

 
  

 

 
  = 1

2
A0 (z) – A1(z)( ),  where  A0(z) = 1 and 

A1(z) = 2 + 4 z–1

4 + 2 z–1  are stable allpass functions.  In view of Problem 4.79, H1(z) is BR.
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(c)  H3(z) = 1 – z–2

4 + 2 z–1 + 2 z–2 = 1
2

1 –
2 + 2 z–1 + 4z–2

4 + 2 z–1 + 2 z–2

 

 
  

 

 
  ,   where A1(z) = 2 + 2 z–1 + 4z–2

4 + 2 z–1 + 2 z–2  is a 

stable allpass function.  Hence, H3(z) is BR.

(d) H4(z) = 3 + 6 z–1 + 3z–2

6 + 5 z–1 + z–2 = 1
2

1 + 1 + 3z–1

3 + z–1

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1
2

1 + 1 + 2z–1

2 + z–1

 

 
  

 

 
  

 

 
 
 

 

 
 
   which is seen to be a product

of two BR functions.  Hence, H4(z) is BR.

(e)  H5(z) = 3 + 2 z–1 + 3z–2

4 + 2 z–1 + 2 z–2 = 1
2

1+ 2 + 2 z–1 + 4 z–2

4 + 2 z–1 +2 z–2

 

 
  

 

 
  = 1

2
1+ A1(z)( )   where 

A1(z) = 2 + 2 z–1 + 4 z–2

4 + 2 z–1 + 2 z–2  is a stable allpass funcion.  Hence, H5(z) is BR.

(f)  H6(z) = 3 + 9 z–1 + 9 z–2 + 3z–3

12 + 10z–1 + 2 z–2 = 1
2

1 + 1 + 3z–1

3 + z–1

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1
2

1 + 1 + 2z–1

2 + z–1

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1+ z–1

2

 

 
  

 

 
   which is seen

to be a product of three BR functions.  Hence, H6(z) is BR.

4.105 Since  A1(z) and A2(z) are LBR,  aa A1(e jω ) = 1 and A2(e jω) =1 .   Thus, A1(e jω ) = e jφ1(ω),  

and A2(e jω) = e jφ 2(ω).   Now,  A1
1

A2(e jω)

 

 
 
 

 

 
 
 = A1 e–jφ2 (ω)( ).   Thus, A1(e− jφ2(ω)) = 1.   Hence,

A1
1

A2(z)

 

 
  

 

 
   is LBR.

4.106 F(z) = z
G(z) + α

1 + αG(z)

 

 
 

 

 
 .   Thus, F(e jω) = e jω G(e jω )+ α

1 + αG(e jω )

 

 
  

 

 
  = e jω e jφ(ω) + α

1+ αe jφ(ω)

 

 
  

 

 
   since G(z) is LBR.

F(e jω )
2

= e jφ(ω) + α
1+ αe jφ(ω)

2

=
cosφ(ω) + α( )2 + sinφ(ω)( )2

1 + αcosφ(ω)( )2 + α sinφ(ω)( )2  = 1 + 2α cosφ(ω)+ α2

1 + 2α cosφ(ω)+ α2 = 1.

Let z = l be a pole of F(z).  This implies, G(l) = – 1/a or G(λ) = 1/ α .   If  α < 1,  then 

G(λ) > 1,  which is satisfied by the LBR G(z) if λ < 1.   Hence, F(z) is LBR.  The order of F(z) is

same as that of G(z).

G(z) can be realized in the form of a two-pair constrained by the transfer function F(z).
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To this end, we express G(z) in terms of F(z) arriving at G(z) = – α + z–1F(z)

1 – αz–1F(z)
= C + DF(z)

A + BF(z)
,   

where A, B, C, and D, are the chain parameters of the two-pair.  Comparing the two expressions

on the right-hand side we get A = 1,  B = –αz–1,  C = – α,  and D = z–1.   The corresponding 

transfer parameters are given by t11 = –α,  t21 = 1,  t12 = (1 – α2 )z–1,  and t22 = α z–1.

4.107 Let F(z) = G 1
A(z)

 
  

 
  .  Now A(z) being LBR, A(e jω) = e jφ(ω) .  Thus, 

F(e jω) = G
1

A(e jω)

 

 
  

 

 
  = G(e− jφ(ω)) .  Since G(z) is a BR function, G(e− jφ(ω)) ≤ 1.  Hence, 

F(e jω ) = G
1

A(e jω )

 

 
  

 

 
  ≤1.

Let z = ξ  be a pole of F(z).  Hence, F(z) will be a BR function if |ξ | < 1.  Let z = λ  be a pole
of G(z).  Then this pole is mapped to the location z = ξ  of F(z) by the relation

1
A(z) z=ξ

= λ,   or A(ξ) = 1
λ

.   Hence, A(ξ) = 1
λ

>1 because of Eq. (4.129).  This implies, 

λ < 1.   Thus G 1
A(z)

 
  

 
   is a BR function.

4.108 (a) H(z) = 2 + 2z−1

3 + z−1 ,  G(z) = 1 − z−1

3 + z−1 .  Now, H(z)+ G(z) = 2 + 2z−1

3 + z−1 + 1 − z−1

3 + z−1 = 3 + z−1

3 + z−1 = 1.

Next, H(z)H(z−1) + G(z)G(z−1)  = 
2 + 2z−1

3 + z−1
2 + 2z
3 + z

+ 1 − z−1

3 + z−1
1 + z
3 + z

 = 

4 + 4z−1 + 4z + 4 +1 +1 − z−1 − z

(3 + z−1)(3 + z)
 = 1.  Thus, H(e jω)

2
+ G(e jω)

2
= 1

Hence H(z) and G(z) are both allpass-complementary and power complementary.  As a result, 
they are doubly complementary.

(b)  H(z) = 
−1 + z−2

4 + 2z−1 + 2z−2 , G(z) = 
3 + 2z−1 + 3z−2

4 + 2z−1 + 2z−2 .  Note  H(z) + G(z) = 
2 + 2z−1 + 4z−2

4 + 2z−1 + 2z−2  

implying that  H(z) and G(z) are allpass complementary.   Next, H(z)H(z−1) + G(z)G(z−1)

= 
−1 + z−2

4 + 2z−1 + 2z−2
−1 + z2

4 + 2z + 2z2 + 3 + 2z−1 + 3z−2

4 + 2z−1 + 2z−2
3 + 2z + 3z2

4 + 2z + 2z2

= 
1 +1 − z−2 − z2 + 9 + 6z + 9z2 + 6z−1 + 4 + 6z + 9z−2 + 6z−1 + 9

(4 + 2z−1 + 2z−2 )(4 + 2z + 2z2 )
 = 1.  Hence, H(z)

and G(z) are also power complementary.   As a result, they are doubly-complementary.
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4.109 (a)  Ha(z) = 2(1 + z–1 +z–2)

3 + 2 z–1 + z–2 = 1
2

1 + 1 + 2 z–1 + 3z–2

3 + 2 z–1 + z–2

 

 
  

 

 
  .   Its power-complementary transfer 

function therefore is given by Ga(z) = 1
2

1 –
1 + 2 z–1 + 3z–2

3 + 2 z–1 + z–2

 

 
  

 

 
  = 1 – z–2

3 + 2 z–1 + z–2 .

(b)  Hb(z) = 3(1.5 + 6.5 z−1 + 6.5 z−2 +1.5 z−3 )
18 + 21z−1 +8 z−2 + z−3 = 3(1.5 + 6.5 z−1 + 6.5z−2 +1.5z−3)

(2 +z−1)(3 + z−1)(3 + z−1)

 = 1
2

(1 +2z−1)(1+ 3z−1)
(2 + z−1)(3 +z−1)

+ 1 +3z−1

3 + z−1

 

 
 
 

 

 
 
 
.    Its power-complementary transfer 

function therefore is given by  

Gb(z) = 1
2

(1+ 2z−1)(1 + 3z−1)
(2 + z−1)(3 + z−1)

− 1+ 3z−1

3 + z−1

 

 
 
 

 

 
 
 

= −1.5 −3.5z−1 + 3.5z−2 +1.5 z−3

18 + 21z−1 + 8 z−2 + z−3 .

4.110 G0(e jω)
2

+ G1(e jω )
2
 = 

1
4

A0(e jω )+ A1(e jω)
2

+ A0(e jω) − A1(e
jω)

2 
 
 

 
 
 

= 
1
4

A0(e jω) + A1(e
jω)( ) A0

* (e jω )+ A1
*(e jω )( )+ A0(e jω )− A1(e jω)( ) A0

* (e jω) − A1
*(e jω)( ){ }

= 
1

4
{A0 (e jω )A0

* (e jω) + A1(e
jω)A1

*(e jω) + A0 (e jω )A1
*(e jω )+ A1(e jω )A0

* (e jω)

+ A0(e jω)A0
* (e jω )+ A1(e jω )A1

*(e jω )− A0(e jω)A1
*(e jω )− A1(e jω)A0

* (e jω )}

= 1
4

2 A0(e jω)
2

+ 2 A1(e
jω)

2 
 
 

 
 
 

= 1.

4.111  Let the output of the predictor in Figure P4.11(a) be denoted by E(z).  Then analyzing this 
figure we get E(z) = P(z)[U(z) + E(z)]  and U(z) = X(z) − E(z).   From the first equation we 

have E(z) =
P(z)

1 − P(z)
U(z)  which when substituted in the second equation yields 

H(z) =
U(z)

X(z)
= 1 − P(z).

Analyzing Figure P4.11(b) we arrive at Y(z) = V(z) + P(z)Y(z)  which yields 

G(z) =
Y(z)

V(z)
=

1

1 − P(z)
,   which is seen to be the inverse of H(z).

For P(z) = h1z
−1, H(z) = 1 − h1z

−1  and G(z) =
1

1 − h1z
−1 .   Similarly, for P(z) = h1z

−1 + h2z−2,

H(z) = 1 − h1z
−1 − h2z−2   and  G(z) =

1

1 − h1z
−1 − h 2z−2 .

4.112  The z-transform of h1[n]  is given by H1(z) =
5 / 3

1 − 0.5z−1 +
1 / 12

1 + 0.2 z−1 − 1.  Using the M-file 

residuez we arrive at H1(z) =
0.75 + 0.5917z−1 + 0.1z−2

1 − 0.3z−1 − 0.1z−2 =
0.75(1 + 0.5436 z−1)(1 + 0.2453z−1 )

(1 − 0.5 z−1)(1 + 0.2 z−1 )
.
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Since the zeros of the numerator of H1(z)  are inside the unit circle, the inverse system is causal 
and stable.  Hence, the transfer function of the inverse system is given by 

H2(z) = 1− 0.3z−1 − 0.1z−2

0.75 + 0.5917z−1 + 0.1z−2 = 1.3333− 0.4z−1 − 0.1333z−2

1+ 0.7889z−1 + 0.1333z−2   A partial-fraction expansion of

H2(z)  using the M-file residuez yields  H2(z) = 2.9474
1+ 0.5437z−1 − 0.6141

1 + 0.2452z−1 − 1 whose inverse 

z-transform is given by  H2(z) = 2.9474(−0.5437)nµ[n]− 0.6141(−0.2452)n µ[n]− δ[n].

4.113   X1 = A Y2 + BX2,   Y1 = CY2 + D X2 .   From the first equation, Y2 = 1
A

X1 –
B
A

X2.   

Substituting this in the second equation we get 

Y1 = C
1
A

X1 –
B
A

X2
 
  

 
  + DX2 = C

A
X1 + AD – BC

A
X2,   Comparing the last two equations with

Eq. (4.146) we arrive at t11 = C
A

,  t12 = AD – BC
A

,  t21 = 1
A

,  t22 = –
B
A

.

Next, Y1 = t22X1 + t12X2,   Y2 = t21X1 + t22X2.   From the second equation we get 

X1 = –
t22

t21
X2 + 1

t21
Y2.   Substituting this expression in the first equation we get, 

Y1 = t11 –
t22

t21
X2 + 1

t21
Y2

 

 
  

 

 
  + t12X2 =

t11

t21
Y2 +

t12t21 – t11t22

t21
X2.   Comparing the last two 

equations with Eq. (4.149) we arrive at A = 1
t21

,  B = –
t22

t21
,    C =

t11

t21
,   D =

t12t21 – t11t22

t21
.

4.114  From Eq. (4.176a) we note t12 = AD − BC
A

 and  t21 = 1
A

.   Hence, t12 = t21  imply 

A D − BC = 1.

4.115   
Y1

'

Y2
'

 

 
 
 

 

 
 
 =

k1 (1− k1
2 )z−1

1 −k1z
−1

 

 
 
 

 

 
 
 

X1
'

X2
'

 

 
 
 

 

 
 
 ,   

Y1
"

Y2
"

 

 
 
 

 

 
 
 =

k2 (1 − k2
2 )z−1

1 −k2z−1

 

 
 
 

 

 
 
 

X1
"

X2
"

 

 
 
 

 

 
 
 ,   where 

X1
"

X2
"

 

 
 
 

 

 
 
 =

Y1
'

Y2
'

 

 
 
 

 

 
 
 .

Thus, the transfer matrices of the two two-pairs are given by τ1 =
k1 (1 − k1

2)z−1

1 −k1z
−1

 

 
 
 

 

 
 
 , and 

τ2 =
k 2 (1 − k2

2 )z−1

1 −k2z−1

 

 
 
 

 

 
 
 .  The corresponding chain matrices are obtained using Eq. (4.76b) and

are given by Γ1 =
1 k1z

–1

k1 z–1

 

 
 
 

 

 
 
 ,  and Γ2 =

1 k 2z–1

k2 z–1

 

 
 
 

 

 
 
 .   Therefore, the chain matrix of the Γ -

cascade is given by Γ1Γ 2 =
1 k1z

–1

k1 z–1

 

 
 
 

 

 
 
 

1 k2z–1

k 2 z–1

 

 
 
 

 

 
 
 =

1 + k1k 2z−1 k2z−1 + k1z
−2

k1 + k2z−1 k1k2z−1 + z−2

 

 
 
 

 

 
 
 .

Hence using Eq. (4.176a) we arrive at the transfer matrix of the Γ -cascade as
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τ =

k1 + k2z−1

1 + k1k2z−1

z−2(1 − k1
2 )(1 − k1

2)

1 + k1k 2z−1

1

1 + k1k2z−1 −
z−1(k 2 + k1z−1)

1 + k1k2z−1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.

4.116
X1

'

Y1
'

 

 
 
 

 

 
 
 =

1 k1z
–1

k1 z–1

 

 
 
 

 

 
 
 

Y2
'

X2
'

 

 
 
 

 

 
 
 ,   

X1
"

Y1
"

 

 
 
 

 

 
 
 =

1 k2z–1

k2 z–1

 

 
 
 

 

 
 
 

Y2
"

X2
"

 

 
 
 

 

 
 
 ,   where 

Y2
'

X2
'

 

 
 
 

 

 
 
 =

X1
"

Y1
"

 

 
 
 

 

 
 
 .   Therefore,

the chain matrices of the two two-pairs are given by Γ1 =
1 k1z

–1

k1 z–1

 

 
 
 

 

 
 
 ,  and Γ2 =

1 k 2z–1

k2 z–1

 

 
 
 

 

 
 
 .

The corresponding transfer matrices are obtained using Eq. (4.151a) and are given by

τ1 =
k1 (1 − k1

2)z−1

1 −k1z
−1

 

 
 
 

 

 
 
 , and τ2 =

k 2 (1 − k2
2 )z−1

1 −k2z−1

 

 
 
 

 

 
 
 .   The transfer matrix of the t-cascade is 

therefore given by τ = τ2τ1 =
k2 (1 − k2

2)z−1

1 −k2z−1

 

 
 
 

 

 
 
 

k1 (1− k1
2 )z−1

1 −k1z
−1

 

 
 
 

 

 
 
 

=
k1k2 + z−1(1 − k2

2 ) z−1k2(1 − k1
2 ) − z−2k1(1 − k 2

2)

k1 − k2z−1 z−1(1 − k1
2 )+ k1k2z−2

 

 
 
 

 

 
 
 .

Using Eq. (4.151b) we thus arrive at the chain matrix of the t-cascade:

Γ =

1

k1 − k2z−1

−(k1k 2z−1 +1 − k1
2)z−1

k1 − k 2z−1

k1k 2 + z−1(1 − k 2
2)

k1 − k2z−1
z−2

k1 − k 2z−1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.

4.117  (a)  Analyzing Figure P4.13(a) we obtain Y2 = X1 − k mz−1X2  and Y1 = kmY2 + z−1X2  

= k m X1 − kmz−1X2( )+ z−1X2 = kmX1 + 1 − k m
2( )z−1X2 .  Hence, the transfer parameters are given

by τ =
k m (1 − km

2 )z−1

1 −k mz−1

 

 
 
 

 

 
 
 .   Using Eq. (4.176b) we arrive at the chain parameters given by 

Γ =
1 k mz−1

k m z−1

 

 
 
 

 

 
 
 .

(b)   Analyzing Figure P4.13(a) we obtain V1 = km X1 − z−1X2( )  , 

Y1 = V1 + X1 = (1+ km )X1 − k mz−1X2,  and Y2 = V1 + z−1X2 = kmX1 + (1− km)z−1X2.   Hence, the 

transfer parameters are given by τ =
1 + k m −k mz−1

k m (1− km)z−1

 

 
 
 

 

 
 
 .   Using Eq. (4.176b) we arrive at the 

chain parameters given by  Γ =

1
km

−
(1 − k

m
)z−1

km
1− k

m
km

− 1
km

 

 

 
 
 
 
 

 

 

 
 
 
 
 

.
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4.118    For the constrained two pair H(z) = C + DG(z)
A + BG(z)

.  Hence, C = km , D = z–1, A = 1,   B= k mz−1.

Substituting these values of the chain parameters in Eq. (4.151a) we get

t11 = C
A

= km ,  t12 = z−1(1− km
2 ),   t21 = 1, t22 = −k mz−1.

4.119  From the results of Problem 4.117, Part (a), we observe that the chain matrix of the i-th lattice

two-pair is given by Γ i =
1 kiz

−1

k i z−1

 

 
 
 

 

 
 
 ,  i = 1,2,3.   Thus, the chain matrix of the cascade of three 

lattice two-pairs is given by Γ cascade =
1 k1z−1

k1 z−1

 

 
 
 

 

 
 
 

1 k2z−1

k 2 z−1

 

 
 
 

 

 
 
 

1 k3z−1

k3 z−1

 

 
 
 

 

 
 
 

=
1 k1z−1

k1 z−1

 

 
 
 

 

 
 
 

1 + k 2k3z−1 k3z
−1 + k2z−2

k2 + k3z−1 k2k3z−1 + z−2

 

 
 
 

 

 
 
 

=
1 + k2k3z−1 + k1z

−1(k2 + k3z−1) k3z
−1 + k2z−2 + k1z−1(k2k 3 + z−2 )

k1(1 + k2k 3z
−1)+ z−1(k 2 + k3z

−1) k1(k3z−1 + k2z−2 )+ z−1(k2k3 + z−2 )

 

 
 
 

 

 
 
 .  From Eq. (4.181a) 

we obtain A3(z) = C + D
A + B

=
1+ k2k 3z

−1 + k1z−1(k2 + k3z−1) + k3z−1 + k2z−2 + k1z
−1(k 2k3 + z−2 )

k1(1 + k 2k3z−1) + z−1(k2 + k3z−1) + k1(k 3z
−1 + k2z−2) + z−1(k2 k3 + z−2)

=
k1 + (k2k3 + k1k2 + k 3)z−1 + (k1k3 + k 2 + k1k2k3 ) z−2 + k1z

−3

k1 + (k1k3 + k2 + k1k2k 3) z−1 + (k2k 3 + k1k 2 + k3)z−2 + z−3  which is seen to be an allpass 

function.

4.120  Let D(z) =1 + d1z
−1 + d 2z−2 = (1 − λ1z−1)(1 − λ2z−1).   Thus, d2 = λ1λ2  and d1 = –(λ1 + λ2 ).

For stability, λ i < 1,  i = 1, 2.  As a result, d 2 = λ1λ2 <1.

Case 1:  Complex poles: d2 > 0.  In this case, λ2 = λ1
*.   Now,

λ1,λ2 =
−d1 ± d1

2 − 4 d2

2
.   Hence, λ1  and λ2  will be complex, if d1

2 < 4 d2.   In this case,

λ1 = –
d1

2
+ j

2
4 d2 − d1

2 .   Thus, λ1
2

= 1
4

d1
2 + 4 d2 − d1

2( ) = d2 < 1.   Consequently, if the poles 

are complex and d2 < 1, then they are inside the unit circle.

Case 2:  Real poles.  In this case we get –1 < λi < 1,  i = 1, 2.  Since, λ i < 1, it follows then 

d1 < λ1 + λ2 < 2.    Now, −1 <
− d1 ± d1

2 − 4d 2

2
<1,  or ± d1

2 − 4 d2 < 2 + d1.

It is not possible to satisfy the inequality on the right hand side with a minus sign in front of 
the square root as it would imply then d1 < – 2.  Therefore,

d1
2 − 4d 2 < 2 + d1,  or d1

2 − 4 d2 < 4 + d1
2 + 4 d1,  or – d1 <1 + d2. (14)
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Similarly, 
− d1 ± d1

2 − 4 d2

2
< −1,   or  ± d1

2 − 4 d2 > – 2 + d1.   Again it is not possible to 

satisfy the inequality on the right hand side with a plus sign in front of  the square root as it 

would imply then d1 > 2.  Therefore, − d1
2 − 4 d2 > – 2 + d1,  or d1

2 − 4d 2 <2 − d1, or

d1
2 − 4 d2 < 4 + d1

2 − 4d1,  or equivalently, d1 <1 + d2 . (15)

Combining Eqs. (14) and (15) we get d1 < 1 + d2.

4.121  (a) d1  = 0.92 and 1 + d2  =  1.1995.  Since  d1  < 1 + d2 and d 2  < 1, both roots are inside the
unit circle.

(b)  d1  = 0.2 and 1 + d2  =  – 0.43.  Since d 2  > 1 and d1  > 1 + d2 , all roots are not inside the
unit circle.

(c) d1  = 1.4562 and 1 + d2 =1.81.  Since  d1  < 1 + d2 and d 2  < 1, both roots are inside the 
unit circle.

(d) d1  = 2.1843 and 1 + d2  = 1.81.  Since  d1  < 1 + d2 and d 2  < 1, both roots are inside the 
unit circle.

4.122 (a)  A3(z) =

1
12

–
1
4

z–1 –
1
2

z–2 + z–3

1 –
1

2
z–1 –

1

4
z–2 + 1

12
z–3

.   Note, k3 = 1
12

<1.  Using Eq. (4.177) we arrive at 

A2(z) = –0.2098 – 0.4825z–1 + z–2

1 – 0.4825z–1 – 0.2098z–2 .   Here, k2 = 0.2098 < 1.   Continuing this process, we get, 

A1(z) = –0.6106 + z–1

1 – 0.6106z–1 .   Finally, k1 = 0.6106 < 1.   Since ki < 1,  for  i = 3, 2, 1,  Ha(z) is stable.

(b)  A3(z) =
–

1
3

+ 1
6

z–1 + 13
6

z–2 + z–3

1+ 13

6
z–1 + 1

6
z–2 –

1

3
z–3

.   Note, k3 = 1
3

<1.   A2(z) = 1+ 2.5z–1 + z–2

1+ 2.5z–1 + z–2 .   Since 

k2 = 1,  Hb(z) is unstable.

(c) A4(z) =

1
36

+ 5
18

z–1 + 18.5
18

z–2 + 5
3

z–3 + z–4

1 + 5

3
z–1 + 18.5

18
z–2 + 5

18
z–3 + 1

36
z–4

.   Note, k4 = 1
36

< 1.  

A3(z) = 0.2317 + z–1 + 1.6602z–2 + z–3

1 +1.6602z–1 + z–2 + 0.2317z–3 .   Thus, k3 = 0.2317 <1.  

A2(z) = 0.6503+ 1.5096z–1 + z–2

1+ 1.5096z–1 + 0.6503z–2 .   Here, k2 = 0.6503 < 1.   Finally, A1(z) = 0.9147 + z–1

1 + 0.9147z–1 .  

Thus, k1 = 0.9147 <1.   Since ki < 1,  for  i = 4, 3, 2, 1,  Hc(z) is stable.
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(d)  A5(z) =

1
32

+ 5
16

z–1 + 5
4

z–2 + 5
2

z–3 + 5
2

z–4 + z–5

1 + 5

2
z–1 + 5

2
z–2 + 5

4
z–3 + 5

16
z–4 + 1

32
z–5

.   This implies, k5 = 1
32

<1.  

A4(z) = 0.2346 +1.173z–1 + 2.4633z–2 + 2.4927z–3 + z–4

1 + 2.4927z–1 + 2.4633z–2 +1.173z–3 + 0.2346z–4 .   Thus, k4 = 0.2346 <1.   

A3(z) = 0.6225 +1.9952z–1 + 2.3466z–2 + z–3

1 + 2.3466z–1 + 1.9952z–2 + 0.6225z–3 .   Implying k3 = 0.6225 <1.   

A2(z) = 0.8726 +1.8034z–1 + z–2

1+ 1.8034z–1 + 0.8726z–2 .   Hence, k2 = 0.8726 <1.   Finally, A1(z) = 0.9630 + z–1

1 + 0.9630z–1 .  

Thus, k1 = 0.9630 < 1.   Since ki < 1,  for  i = 5, 4, 3, 2, 1,  Hd(z) is stable.

(e)  A5(z) =

1
6

+ 1
3

z–1 + 1
2

z–2 + 2
3

z–3 + 5
3

z–4 + z–5

1 + 5

6
z–1 + 2

3
z–2 + 1

2
z–3 + 1

6
z–4 + 1

6
z–5

.   This implies, k5 = 1
6

< 1.  

A4(z) = 0.2 + 0.4z–1 + 0.6z–2 + 0.8z–3 + z–4

1 + 0.8z–1 + 0.6z–2 + 0.4z–3 + 0.2z–4 .   Thus, k4 = 0.2 < 1.   

A3(z) = 0.25 + 0.5z–1 + 0.75z–2 + z–3

1 + 0.75z–1 + 0.5z–2 + 0.25z–3 .   Hence, k3 = 0.25 <1.   

A2(z) = 0.3333+ 0.6667z–1 + z–2

1+ 0.6667z–1 + 0.3333z–2 .  Here, k2 = 0.3333 < 1.   Finally, A1(z) = 0.5 + z–1

1 + 0.5z–1 .   As a 

result, k1 = 0.5 < 1.   Since ki < 1,  for  i = 5, 4, 3, 2, 1,  He(z) is stable.

4.123 (a)  A4(z) =

1
5

+ 2
5

z–1 + 3
5

z–2 + 4
5

z–3 + z–4

1 + 4

5
z–1 + 3

5
z–2 + 2

5
z–3 + 1

5
z–4

.   Thus, k4 = 1
5

<1. .  

A3(z) = 0.25 + 0.5z–1 + 0.75z–2 + z–3

1 + 0.75z–1 + 0.5z–2 + 0.25z–3 .   Thus, k3  = 0.25 < 1.  Repeating the p rocess, we 

arrive at A2(z) = 0.3333+ 0.6667z–1 + z–2

1+ 0.6667z–1 + 0.3333z–2 .   Thus, k2  = 0.3333 < 1.  Finally, we get 

A1(z) = 0.5 + z–1

1 + 0.5z–1 .   Thus, k1  = 0.5 < 1.  Since ki < 1,  for  i = 5, 4, 3, 2, 1,  Da(z) has all

roots inside the unit circle.
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(b) A3(z) = 0.4 + 0.3z–1 + 0.2z–2 + z–3

1 + 0.2z–1 + 0.3z–2 + 0.4z–3 .  Thus, k3 = 0.4 <1.  A2(z) = 0.2619 + 0.0952z–1 + z–2

1+ 0.0952z–1 + 0.2619z–2 .

This implies, k2 = 0.2619 < 1.   Next, A1(z) = 0.0755 + z–1

1 + 0.0755z–1 .   Hence, k1 = 0.0755 <1.   Since 

ki < 1,  for  i = 3, 2, 1,  Db(z) has all roots inside the unit circle.

4.124 z =
1 + s

1 − s
.  Hence, s =

z − 1

z + 1
.  Thus,  the k-th root in the s-domain is given by

sk =
(zk −1)(zk

* +1)

zk +1
2 =

zk
2

−1 + zk − zk
*

zk + 1
2   where zk is the k-th root in the z-domain.  Hence,

Re{sk} =
zk

2
−1

zk +1
2 .  Since D(z) is a minimum phase polynomial,  zk  < 1.   Therefore,

Re{sk} < 0.  Hence B(s) is a strictly Hurwitz polynomial.

4.125   H(z) = 1 − αz−1.  Hence, using Eq. (4.212) we get 

Φyy(z) = H(z)H(z−1)Φyy(z) = (1 − αz−1)(1 − α z)σ x
2.   Therefore, from Eq. (4.214) we have

  
Pyy(ω) = H(e jω)

2
Pxx(ω) = H(e jω )

2
σx

2 = (1 − α e− jω )(1 − α e jω )σx
2 = (1 + α2 − 2α cosω)σ x

2 .   

Now, H(z)H(z−1) = (1 − αz−1)(1 − α z) = −α z + (1 + α2 ) − α z−1.   Hence, 

φyy[n] = − αδ[n +1] + (1 + α2 )δ[n]− αδ[n −1]( )σ x
2 .

As a result, average power = φyy[0]= (1 + α2 )σx
2.   Note that the average power increases with 

increasing α .

4.126  H(z) =
1

1 − 0.5 z−1 .   H(e jω )
2

=
1

(1 − 0.5e− j ω)(1 − 0.5 e jω )
=

1

1.25 − cosω
.   Hence, rom Eq. 

(4.214) we have 
  
Pyy(ω) = H(e jω)

2
Pxx(ω) =

Pxx(ω)

(1 − 0.5e− jω )(1 − 0.5 e jω )
=

σ x
2

1.25 − cosω
.   Now, 

H(z)H(z−1) =
1

1 − 0.5z−1 ⋅
1

1 − 0.5 z
= −

z−1

(1 − 0.5z−1)(0.5 − z−1)
= −

2 z−1

(1 − 0.5z−1)(1 − 2 z−1)
 

=
4 / 3

1 − 0.5 z−1 −
4 / 3

1 − 2 z−1 .  Therefore,  ϕyy[n] =
4σ x

2

3
(0.5)n µ[n]+ (2)n µ[−n −1]( ).

4.127  (a)  Pyy(ω) = A(e jω)
2

Pxx(ω)  =
A(e jω )

2

1 + d cos(ω)
= 1

1 + d cos(ω)
. (16)

(b) No, The answer does not depend upon the choice of α . However Eq. (16) holds if the 
filter is stable for which we require α  < 1.
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4.128 (a)  
  
φxy[l] = E x[n + l ]y[n]{ } = E x[n + l]x[n]{ } * h[n] = φxx[n] * h[n].  Taking the discrete-

time Fourier transform of both sides  we get Pxy(ω) = Pxx(ω)H(e jω) .  Since  H(e jω )  in 

general is not real, Pxy(ω)  in general is not real.

(b)   φxu[l] = E x[n + l ]u[n]{ } = E {  x[n + l ]h[−n] * y[n]} = φxx[n] * h[n] * h[–n].  Taking the

discrete-time Fourier transform of both sides  we get Pxu(ω) = Pxx(ω)H(e jω)
2

.  Thus, Pxu(ω)

is a real function of ω .

M4.1  From Table 3.2, the DTFT of {n h[n]} is j
dH(e

jω
)

dω
.  Hence, the group delay t(w) using Eq. 

(4.203) can be computed at a set of N discrete frequency points wk = 2πk/N, k = 0, 1, . . . , 
N–1, as follows: {t(wk)} = Re(DFT{n h[n]}/DFT{h[n]}), where all DFTs are N-points in length 
with N greater than or equal to length of {h[n]}.

M4.2  We modify Program 4_2 using the following statements:

b = [-4.8788  9.5631  -4.8788];
x1 = cos(0.2*n);x2=cos(0.5*n);    

0 20 40 60 80
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time index  n

M4.3  We modify Program 4_2 using the following statements:

b = [-13.4866  45.228  -63.8089  45.228  -13.4866];
zi = [0 0 0 0];
x1 = cos(0.2*n);x2=cos(0.5*n);x3 = cos(0.8*n);
y=filter(b,1,x1+x2+x3,zi);

0 20 40 60 80
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time index  n
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M4.4

M4.5 (a) num1 = [0  0.75  2   2  1   0.75];
num2 = [0 -0.75  2  -2  1  -0.75];
den = [3  0  3.5  0  1];
w = 0:pi/255:pi;
h1 = freqz(num1, den, w);
h2 = freqz(num2, den, w);
plot(w/pi, abs(h1).*abs(h1)+abs(h2).*abs(h2));

(b)  Replace the first three lines in the above MATLAB program with the following:

num1 = [1   1.5   3.75   2.75   2.75   3.75   1.5   1];
num2 = [1  -1.5   3.75  -2.75   2.75  -3.75   1.5  -1];
den = [6  0  6.5  0  4.75  0  1];

M4.6 The magnitude response of H(z) is as shown below from which we observe that H(z) is a 
lowpass filter.

By multiplying out the factors of H(z) we get 

H(z) = 0.05634 – 0.000935z–1 + 0.000935z–2 + 0.05634 z–3

1 – 2.1291z–1 +1.783386 z–2 + 0.543463z–3 ,   The corresponding difference 

equation representation is therefore given by 

y[n] = 0.05634x[n]– 0.000935x[n – 1]+ 0.000935x[n – 2]– 0.05634x[n – 3]
–2.1291y[n – 1]+ 1.783386y[n – 2]+ 0.543463y[n – 3].

M4.7  The magnitude response of H(z) is as shown below from which we observe that H(z) is a  
highpass filter.
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By multiplying the factors of H(z) we get

H(z) = 1 − 4 z−1 + 6 z−2 − 4 z−3 + z−4

1− 3.0538 z−1 + 3.8227z−2 − 2.2837z−3 + 0.5472 z−4

The correspondong difference equation is given by
y[n]− 3.0538y[n −1]+ 3.8227y[n − 2]− 2.2837y[n − 3]+ 0.5472 y[n − 4]

= x[n]− 4 x[n −1]+ 6 x[n − 2]− 4 x[n − 3]+ x[n − 4].

M4.8 From Eq. (4.66), we obtain M = –
1

2 log2 (cos(0.12π)
= 4.7599.   We choose M = 5.  A cascade 

of 5 first-order lowpass FIR filter has a transfer function given by G(z) = 1
32

(1 + z–1)5,  whose 

gain response is plotted below:

M4.9 For a cascade of M sections of the first-order highpass FIR filter of Eq. (4.67), the 3-dB 

cutoff frequency wc is given by ωc = 2sin–1 2–1/ 2M( ).   Hence, M = –
1

2 log2 (sin(ωc / 2)
.   

Substituting the value of ωc  we then obtain M = 4.76.  Choose M = 5.   A cascade of 5 first-

order highpass FIR filter has a transfer function given by G(z) = 1
32

(1 – z–1)5,  whose gain 

response is plotted below:
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M4.10 From Eq. (4.72b), we obtain α = 0.32492.   Hence, from Eq. (4.70) we get 

HLP(z) = 0.33754(1 + z–1)

1 – 0.32492 z–1 .   Likewise, from Eq. (4.73) we get HHP(z) = 0.66246(1 – z–1)

1– 0.32492z–1 .

The magnitude responses of  HLP(z) and HHP(z) are show below:

The magnitude response of  HLP(z) + HHP(z) is shown below on the left-hand side, while the 

gain response of HLP (e jω )
2

+ HHP (e jω )
2

 is shown below on the right-hand side:

     

M4.11 From Eq. (4.76) we first obtain b = 0.309017.  From Eq. (4.77) we arrive at two possible 
values of a:  0.6128 and 1.63185 leading to two posible solutions:

HBP
' (z) = 0.1935(1 – z–2 )

1 – 0.4984 z–1 + 0.6128z–2 ,  and HBP
" (z) = –0.3159(1 – z–2 )

1 – 0.813287z–1 +1.63185 z–2 .   It can be 

seen that HBP
" (z)  is unstable.  From Eq. (4.79), the bandstop transfer function corresponding to
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HBP
' (z)  is given by HBS

' (z) = 0.8064(1 – 0.6180z–1 + z–2 )

1 – 0.498383z–1 + 0.6128z–2 .   A plot of the magnitude responses

of HBP
' (z)  and HBS

' (z)  are given below:

      

The magnitude response of  HBP(z) + HBS(z) is shown below on the left-hand side, while the 

gain response of HBP(e jω )
2

+ HBS(e jω)
2

 is shown below on the right-hand side:

      

M4.12 From Eq. (4.76), we first obtain b = 0.309017.  From Eq. (4.77) we arrive at two possible 
values of a:  1.376381 and 0.72654253 leading to two posible solutions: 

HBP
' (z) = 0.1935996(1– z–2 )

1 + 0.94798 z–1 + 0.6128z–2 ,  and HBP
" (z) = –0.3159258(1 – z–2)

1 +1.5469636 z–1 + 1.63185168z–2 .    

It can be seen that HBP
" (z)  is unstable.  A plot of the gain response of HBP

' (z)  is shown below:

M4.13 From Eq. (4.76), we first obtain b = 0.309016.  From Eq. (4.77) we arrive at two possible 
values of a:  0.72654253 and 1.376382 leading to two posible solutions:

165



HBS
' (z) = 0.86327126(1+ 0.618033z–1 + z–2)

1– 0.533531z–1 + 0.72654253z–2 ,   and  HBS
" (z) = 1.188191(1 + 0.618033z–1 + z–2 )

1 – 0.7343424 z–1 +1.376382 z–2 .   

It can be seen that HBS
" (z)  is unstable.  A plot of the gain response of HBS

" (z)  is shown below:

M4.14 (a) Using the following program we arrive at the two plots shown below:

b1 = [2 2]; b2 = [1 -1]; den = [3 1];
w = 0:pi/255:pi;
h1 = freqz(b1, den, w); h2 = freqz(b2, den, w);
sum = abs(h1).*abs(h1)+abs(h2).*abs(h2);
subplot(2,1,1);
plot(w/pi,abs(h1+h2));grid
axis([0 1 0 1.2]);
xlabel('Normalized frequency');ylabel('Magnitude');
title('Illustration of allpass complementary property');
subplot(2,1,2);
plot(w/pi,20*log10(sum));grid
axis([0 1 -10 10]);
xlabel('Normalized frequency');ylabel('Gain, dB');
title('Illustration of power complementary property');

      

(b)  For this part, replace the first line in the above program with the following:

b1 = [–1  0  1]; b2 = [3  2  3]; den = [4  2  2];
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M4.15  (a)

       
(b)

      
(c)

      
(d)
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(e)

      
(f)

      

M4.16 (a) (b)

      

(c) (d)
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(e)

M4.17 (a)  The stability test parameters are
    0.0833   -0.2098   -0.6106

stable = 1

(b) The stability test parameters are
   –0.3333    1.0000    2.0000

stable = 0

(c) The stability test parameters are
    0.0278    0.2317    0.6503    0.9147

stable = 1

(d) The stability test parameters are
    0.0312    0.2346    0.6225    0.8726    0.9630

stable = 1

(e) The stability test parameters are
    0.1667    0.0286    0.3766    0.3208    0.5277

stable =  1

M4.18  (a) The stability test parameters are
    0.2000    0.2500    0.3333    0.5000

stable =  1

(b) The stability test parameters are
    0.4000    0.2619    0.0755

stable = 1

M4.19 H(z) = –
k
4

+ 1+ k
2

 
  

 
  z–1 –

k
4

z–2.   

M4.20 H(z) = –
k 2

4
+

k1

4
z–1 + 1 –

k1

2
+

k2

2

 

 
 

 

 
 z–2 +

k1

4
z–3 –

k2

4
z–4.
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Chapter 5 (2e)

5.1 p(t) = δ(t − nT)
n=−∞

∞

∑ .   Since p(t) is periodic function of time t with a period T, it can be 

represented as a  Fourier series:  p(t) = cne j(2πnt / T)

n=−∞

∞

∑ , where cn = δ(t)e− j(2πnt / T)dt

−T / 2

T/ 2

∫ = 1
T

.

Hence  p(t) = δ(t − nT)
n=−∞

∞

∑ = 1
T

e j(2πnt / T)

n=−∞

∞

∑ .

5.2  Since the signal xa(t) is being sampled at 1.5 kHz rate, there will be multiple copies of the 
spectrum at frequencies given by Fi ± 1500 k, where Fi is the frequency of the i-th sinusoidal 
component in xa(t).  Hence,

F1 = 250 Hz,          F1m = 250, 1250, 1750, . . . . , Hz
F2 = 450 Hz,          F2m = 450, 1050, 1950 . . . . , Hz
F3 = 1000 Hz,        F3m = 1000, 500, 2500 . . . . , Hz
F4 = 2750 Hz, F4m  = 2750, 1250, 250, . . . .,Hz
F5 = 4050 Hz, F5m  = 34050, 1050, 450, . . . .,Hz

So after filtering by a lowpass filter with a cutoff at 750 Hz, the frequencies of the sinusoidal 
components present in ya(t) are 250, 450, 500 Hz.

5.3   One possible set of values are F1 = 450 Hz, F2 = 625 Hz, F3 = 950 Hz and F4 = 7550 Hz. 
Another possible set of values are F1 = 450 Hz, F2 = 625 Hz , F3 = 950 Hz, F4 = 7375 Hz.
Hence the solution is not unique.

5.4   t = nT =
n

4000
.  Therefore, 

x[n]= 3cos
400 π n

4000
 
   

  + 5sin
1200 πn

4000
 
   

  + 6cos
4400π n

4000
 
   

  + 2 sin
5200 π n

4000
 
   

  

= 3cos
πn

10
 
   

  + 5 sin
3 πn

10
 
   

  + 6 cos
11π n

10
 
   

  + 2 sin
13 πn

10
 
   

  

= 3cos
πn

10
 
   

  + 5 sin
3 πn

10
 
   

  + 6 cos
(20 − 9)π n

10
 
   

  + 2sin
(20 − 7)π n

10
 
   

  

= 3cos
πn

10
 
   

  + 5 sin
3 πn

10
 
   

  + 6 cos
9 π n

10
 
   

  − 2 sin
7π n

10
 
   

  .

5.5   Both the channels are sampled at 48.2 kHz. Therefore there are a total of 2× 48200 = 96400 
samples/sec. Each sample is quantized using 15 bits. Hence the total bit rate of the two 
channels after sampling and digitization = 15× 96400 = 1.446 Mb/s.

5.6   h r(t) =
sin(Ωct)

(ΩTt / 2)
.   Thus, h r(nT) =

sin(ΩcnT)

(ΩT nT / 2)
,   Since T = 2π

ΩT
, hence  h r(nT) =

sin
2πΩcn

ΩT

 

 
  

 

 
  

πn
.

If  Ωc = ΩT / 2,  then, h r(nT) = sin(πn)
πn

= δ[n].

5.7   After sampling the spectrum of the signal is as indicated below:
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T = 2π
2Ωm

= π
Ωm

.   As a result, ωc =
Ωmπ
3Ωm

= π
3

.   Hence after the low pass filtering the spectrum 

of the signal will be as shown below:

5.8  (a)  Ω2 = 200 π,  Ω1 =160 π.  Thus, ∆Ω = Ω2 − Ω1 = 40π.   Note ∆Ω  is an integer multiple of 
Ω2 .  Hence, we choose the sampling angular frequency as 

ΩT = 2 ∆Ω = 2(Ω2 − Ω1) = 80 π =
2 × 200 π

M
, which is satisfied for M = 5.    The sampling 

frequency is therefore FT = 40  Hz.
Xp ( jΩ)

Ω
40 π 80 π 120π 160π 200π0−40 π−80 π−160 π

−120 π
↑

M = 5

(b)  Ω2 = 160 π,  Ω1 =120 π.  Thus, ∆Ω = Ω2 − Ω1 = 40π.   Note ∆Ω  is an integer multiple of 
Ω2 .  Hence, we choose the sampling angular frequency as 

ΩT = 2 ∆Ω = 2(Ω2 − Ω1) = 80 π =
2 × 160 π

M
, which is satisfied for M = 4.   The sampling 

frequency is therefore FT = 40  Hz.

Ω
40π 80 π 120 π 160 π 200 π0

Xp ( jΩ)

−40 π−80 π−160 π
−120 π

↑

M = 4
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(c)  Ω2 = 150 π,  Ω1 =110 π.  Thus, ∆Ω = Ω2 − Ω1 = 40π.   Note ∆Ω  is not an integer multiple 
of Ω2 .  Hence, we extend the bandwidth to the left by assuming the lowest frequency to be Ω0
andchoose the sampling angular frequency satisfying the equation 

ΩT = 2 ∆Ω = 2(Ω2 − Ω0 ) =
2 ×150 π

M
, which is satisfied for Ω0 = 100 π  and M = 3.  The 

sampling frequency is therefore FT = 50 Hz.
Xp ( jΩ)

Ω
0

M = 3

50 π− 50 π

5.9  αp = −20log10(1 − δp )  and αs = −20 log10 δs .  Therefore, δp = 1 − 10
−α p / 20

 and δs = 10−αs /20 .

(a)  αp = 0.15,  αs = 43.,   Hence,    δp  =  0.0171 and   δs =  0.0071

(b)  αp = 0.04, αs = 57.   Hence,  δp  =  0.0046   and    δs =  0.0014

(c)   αp = 0.23, αs = 39.   Hence,   δp  =  0.0261  and    δs =  0.0112

5.10 H1(s) = a
s + a

.   Thus, H1(jΩ) = a
jΩ + a

,  and hence, i.e. H1( jΩ)
2

= a2

a2 + Ω2 .

H1(jΩ)
2
  is a monotonically decreasing function with H1(j0)  = 1 and H1(j∞)  = 0.  Let the

3-dB cutoff frequency be given by Ωc .  Then, H1( jΩc )
2

= a2

a2 + Ωc
2 = 1

2
,  and hence, Ωc = a. .

5.11 H2(s) = s
s + a

.   Thus, H2( jΩ) = jΩ
jΩ + a

,  and hence, H2( jΩ)
2

= Ω2

a2 + Ω2 .

H2( jΩ)
2

 is a monotonically increasing function with H2 (j0)  = 0 and H2 (j∞)  = 1. The 3-

dB cutoff frequency is given by 
Ωc

2

a2 + Ωc
2 = 1

2
,  and hence, Ωc = a. .

5.12  H1(s) = a
s + a

= 1
2

1 − s − a
s + a

 
  

 
  ,  and H2(s) = s

s + a
= 1

2
1 + s − a

s + a

 
  

 
  .   Thus, A1(s) = 1 and A2(s) = 

s − a

s + a
.  Since A1( jΩ)  = 1 and A2( jΩ)  = 1 ∀Ω hence A1(s) and A2(s) are both allpass 

functions.

5.13 H1(s) = bs

s2 + bs + Ωo
2 .  Thus,  H1(jΩ) = jbΩ

jbΩ + Ω0
2 − Ω2 ,  hence H1( jΩ)

2 =
b2Ω2

b2Ω2 + (Ω0
2 − Ω2 )2 . 

Now at Ω = 0,  H1( j0)  = 0 and at Ω = ∞,  H1( j∞)  = 0 and at Ω = Ωo,  H1( jΩo )  = 1.  Hence 
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H1(s) has a bandpass response.  The 3-dB frequencies are given by 
b2Ωc

2

b2Ωc
2 + (Ω0

2 − Ω2)2 = 1
2 .  

Thus,  (Ωo
2 − Ωc

2 )2 = b2Ωc
2  or Ωc

4 − (b2 + 2Ωo
2)Ωc

2 + Ωo
4 = 0 .  Hence if Ω1  and Ω2  are the roots 

of this equation, then so are –Ω1, – Ω2, and the product of the roots is Ωo
4 .  This implies 

Ω1Ω2 = Ωo
2 . Also Ω1

2 + Ω2
2 = b2 + 2Ωo

2 . Hence (Ω2 − Ω1)2 = b2  which gives the desired result 

Ω2 − Ω1 = b .

5.14 H2(s) =
s2 + Ωo

2

s2 + bs+ Ωo
2 .  Thus, H2( jΩ) =

Ωo
2 − Ω2

Ωo
2 − Ω2 + jbΩ

, hence, H2( jΩ)
2

=
(Ω2 − Ωo

2 )2

(Ω2 − Ωo
2 )2 + b2Ω2 .

Now, H2( j0) =1, H2( j∞) = 1 and H2( jΩo) =1 .  Hence, H2(s) has a bandstop response.  As in 

the earlier problem one can show that Ω1Ω2 = Ωo
2  and also Ω2 − Ω1 = b .

5.15  H1(s) = 1
2

1 −
s2 − bs + Ωo

2

s2 + bs + Ωo
2

 

 
 
 

 

 
 
  = 

1
2

A1(s)− A2(s){ }  and  H2(s) = 1
2

1 +
s2 − bs+ Ωo

2

s2 + bs+ Ωo
2

 

 
 
 

 

 
 
  = 

1
2

A1(s)+ A2(s){ } .   Thus,  A1(s) = 1 and A2(s) =
s2 − bs + Ωo

2

s2 + bs + Ωo
2 .  Now 

A2( jΩ)
2

=
(Ωo

2 − Ω2 )2 + b2Ω2

(Ωo
2 − Ω2 )2 + b2Ω2  = 1, and is hence A2(s) is an allpass function.  A1(s) is seen 

to be an allpass function.

5.16 Ha( jΩ)
2

= 1

1 + (Ω /Ωc)2N .   
  

d k(1 /Ha( jΩ)
2

)

dΩk = 2N(2N – 1)L(2N – k + 1)
Ω2N– k

Ωc
2N .  Therefore 

d k(1 /Ha( jΩ)
2

)

dΩk

Ω=0

= 0  for k = 1, 2, . . . , 2N–1.   or, equivalently, 
d k(Ha(jΩ)

2
)

dΩk

Ω=0

= 0  for

k = 1, 2, . . . , 2N–1.

5.17  10 log10
1

1 + ε2

 

 
 

 

 
 = –0.5, , which yields ε  = 0.3493.  10 log10

1

A2
 
  

 
  = – 30,  which yields  

A2 = 1000.   Now,  
1

k
=

Ωs

Ω p
=

8

2.1
= 3.8095238   and 

1

k1
=

A2 – 1

ε
=

999

0.3493
= 90.486576.  Then, 

from Eq. (5.33) we get 
  
N =

log10 (1 / k1)

log10(1 / k)
=

90.4866

3.8095
= 3.3684.   Hence choose N = 4 as the order.

5.18  The poles are given by   pl = Ωce j
π(N+2l −1)

2N , l = 1, 2,K,N.   Here, N = 5 and Ωc = 1. Hence

  p1 = e j 6 π/10 = −0.3090  +  j0.9511,    p2 = e j 8 π /10 = −0.8090  + j 0.5878,   p3 = e j10 π/10 = −1,  

  p4 = e j12 π /10 = − 0.8090 - j 0.5878 = p2
* ,  and   p5 = e j 6 π /10 = −0.3090  -  j0.9511= p1

*.
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5.19  From Eq. (5.39) TN (x) = 2 x TN−1(x) − TN −2 (x)  where TN (x)  is defined in Eq. (5.38).

Case 1:  x ≤ 1.   Making use of Eq. (5.38) in Eq. (5.39) we get 

TN (x) = 2 x cos (N −1) ⋅ cos−1(x)( ) − cos (N − 2) ⋅cos−1(x)( )
= 2 x cos (Ncos−1 x − cos−1 x) − cos (N cos−1 x − 2 cos−1 x)

= 2 x cos (N cos−1 x)cos(cos−1 x) + sin(Ncos−1 x)sin(cos−1 x)[ ]
− cos (N cos−1 x)cos(2 cos−1 x) + sin(Ncos −1 x)sin(2 cos−1 x)[ ]
= 2 x cos(Ncos−1 x) ⋅cos( cos−1 x) − cos(Ncos−1 x) ⋅cos(2 cos−1 x)

= 2 x2 cos (Ncos−1 x) − cos (Ncos −1 x) ⋅ 2 cos2( cos−1 x) −1[ ]
= cos (Ncos−1 x) 2 x2 − 2 x2 + 1[ ] = cos (N cos−1 x).

Case 2:  x > 1.   Making use of Eq. (5.38) in Eq. (5.39) we get 

TN (x) = 2 x cosh (N − 1) ⋅ cosh−1(x)( ) − cohs (N − 2) ⋅ cosh−1(x)( ) .  Using the trigonometric 

identities cosh (A − B) = cosh(A)cosh(B) − sinh (A)sinh (B),  sinh (2A) = 2 sinh (A)cosh(A),  and 

cosh (2A) = 2 cosh2 (A) − 1,  and following a similar algebra as in Case 1, we can show 

TN (x) = 2 x cosh (N − 1) ⋅ cosh−1(x)( ) − cohs (N − 2) ⋅ cosh−1(x)( ) = cosh(N cosh−1 x).

5.20  10 log10
1

1 + ε2

 

 
 

 

 
 = –0.5, , which yields ε  = 0.3493.  10 log10

1

A2

 

 
 

 

 
 = – 60,  which yields  A2 = 

1000.  Now,  
1

k
=

Ωs

Ω p
=

8

2.1
= 3.8095238   and 

1

k1
=

A2 – 1

ε
=

999

0.3493
= 90.486576. .  Then, 

from Eq. (5.41) we get N =
cosh−1(1 / k1)

cosh−1(1 / k )
=

cosh−1(90.486576)

cosh−1(3.8095238)
=

5.1983

2.013
= 2.5824.  We thus 

choose N = 3 as the order.

5.21  From Problem 5.18 solution, we observe  
1

k
= 3.8095238 or k = 0.2625, and 

1

k1
= 90.4865769  

or k1 = 0.011051362.  Substituting the value of k in Eq. (5.52a) we get k' =  0.964932.  Then,
from Eq. (5.52b) we arrive at ρo  = 0.017534.  Substituting the value of in Eq. (5.52c) we get
ρ  = 0.017534.  Finally from Eq. (5.51) we arrive at N = 2.9139.  We choose N = 3.

5.22  From Eq. (5.53) BN(s) = (2N – 1)BN–1(s) +s2BN–2 (s),  where B1(s) = s + 1 and B2(s) = s2 +3s +

3.  Thus, B3(s) = 5B2(s)+ s2B1(s) = 5(s2 + 3s + 3)+ s2(s +1) = s3 + 6s2 + 15s + 15,  and 

B4(s) = 7B3(s)+ s2B2(s) = 7(s3 + 6s2 +15s +15) + s2 (s2 + 3s + 3) = s4 +10s3 + 45s2 +105s + 105.

Thus, B5(s) = 9 B4(s) + s2B3 (s) = 9(s4 + 10s3 + 45s2 +105 s + 105) + s2 (s3 + 6 s2 +15s + 15)  

= s5 + 15s4 + 105s3 + 420 s2 + 945 s + 945,  and 
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B6(s) = 11B5(s) + s2B4 (s) = 11(s5 + 15s4 + 105s3 + 420 s2 + 945s + 945, )

+ s2 (s4 + 10s3 + 45s2 + 105s +105) = s6 + 21s5 + 210 s4 + 1260s3 + 4725s2 + 10395s + 10395.

5.23  We use the lowpass-to-highpass transformation given in Eq. (5.59) where now 

Ωp = 2 π(0.2) = 0.4 π  and ˆ Ω p = 2 π(2) = 4 π.   Therefore, from Eq. (5.59) we get the desired 

transformation as 
  
s →

Ω p
ˆ Ω p

s
=

1.6 π2

s
=

15.791367

s
.     Therefore,

  

HHP (s) = HLP (s) s→15.791367

s
=

4.52

15.791367

s
 
   

  
2

+ 3
15.791367

s
 
   

  + 4.52

=
4.52 s2

4.52s2 + 47.3741s + 2.49367
.

5.24  We use the lowpass-to-bandpass transformation given in Eq. (5.61) where now 

Ωp = 2 π(0.16) = 0.32π, ˆ Ω o = 2 π(3) = 6 π,  and ˆ Ω p2 − ˆ Ω p1 = 2 π(0.5) = π.   Substituting these 

values in Eq. (5.59) we get the desired transformation s → 0.32π
s2 + 36 π2

π s

 

 
 

 

 
 =

s2 + 36 π2

3.125 s
.  

Therefore HBP(s) = HLP (s) s→ s2 +36π2

3.125 s
=

0.056
s2 + 36 π2

3.125 s

 

  
 

  

2

+17.95
 

 

 
 

 

 

 
 

s2 + 36π2

3.125s

 

 
 

 

 
 

2

+ 1.06
s2 + 36π2

3.125s

 

 
 

 

 
 + 1.13

 

=
0.056(s4 + 49.61s2 + 70695.62)

s4 + 3.3125s3 + 721.64667 s2 + 1176.95s + 126242.182
.

5.25  ˆ Ω p = 2 π(5) ×106,   ˆ Ω s = 2 π(0.5) × 106 ,   ˆ α p = 0.3  dB and ˆ α s = 45  dB.  From Figure 5.14 we 

observe 10 log10
1

1 + ε2
 
  

 
  = −0.3 , hence, ε2 = 100.03 − 1 = 0.0715193,  or ε = 0.26743.   From 

Figure 5.14 we also note that 10 log10
1

A2
 
  

 
  = −45, and hence A2 = 104.5 = 31622.7766.   Using 

these values in Eq. (5.30) we get k1 =
ε

A2 − 1
= 0,001503898 .

To develop the bandedges of the lowpass prototype, we  set Ωp = 1 and obtain using Eq. (5.59)

Ωs =
ˆ Ω p
ˆ Ω s

=
5

0.5
= 10.   Next, using Eq. (5.29) we obtain k =

Ω p

Ωs
=

1

10
= 0.1.   Substituting the 

values of k and k1  in Eq. (5.33) we get N =
log10 (1 / k1)

log10(1 / k)
= 2.82278.   We choose N = 3 as the 

order of the lowpass filter which is also the order of the highpass filter.

To verify using MATLAB er use the statement         
[N,Wn] = buttord(1,10,0.3,45,'s')

which yields N = 3 and Wn = 1.77828878.
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5.26  ˆ F p1 = 20 ×103,   ˆ F p2 = 45 × 103,   ˆ F s1 = 10 × 103,   ˆ F s2 = 60 ×103,  αp = 0.5  dB and αs = 40  dB.

We observe ˆ F p1
ˆ F p2 = 20 × 45 × 106 = 9 ×108,  and ˆ F s1ˆ F s2 = 10 × 60 × 106 = 6 × 108.   Since 

ˆ F s1ˆ F s2 ≠ ˆ F p1
ˆ F p2 , we adjust the the stopband edge on the left to ˆ F s1 = 15 ×103  in which case 

ˆ F s1ˆ F s2 = ˆ F p1
ˆ F p2 = Fo

2 = 9 ×108.   The angular center frequency of the desired bandpass filter is 

therefore Ωo = 2 π Fo = 2 π × 30 × 103.   The passband bandwidth is 

Bw = ˆ Ω p2 − ˆ Ω p1 = 2 π × 25 ×103.

To determine the banedges of the prototype lowpass filter we set Ωp = 1 and then using Eq. 

(5.62) we obtain Ωs = Ω p

ˆ Ω o
2 − ˆ Ω s1

2

ˆ Ω s1Bw
=

302 − 152

15 × 25
= 1.8.   Thus, k =

Ω p

Ωs
=

1

1.8
= 0.5555555556 .

Now, 10 log10
1

1 + ε2
 
  

 
  = −0.5 , and hence, ε2 = 100.05 − 1 = 0.1220184543,  or   ε = 0.34931140019.

In addition 10 log10
1

A2
 
  

 
  = −40  or A2 = 104 = 10000.   Using these values in Eq. (5.30) we get 

  
k1 =

ε

A2 − 1
= 0.00349328867069.  From Eq. (5.52a) we get 

  k' = 1 − k2 =  0.831479419283,and then from Eq. (5.52b) we get 

  
ρo =

1 − k'

2(1 + k' )
= 0.02305223718137.  Substituting the value of ρo  in Eq. (5.52c) we then get 

  ρ = 0.02305225.   Finally, substituting the values of ρ  and k1  in Eq. (5.51) we arrive at 

N =
2 log10 (4 / k1)

log10(1 / ρ)
= 3.7795.   We choose N = 4 as the order for the prototype lowpass filter.

The order of the desired bandpass filter is therefore 8.

Using the statement [N,Wn]=ellipord(1,1.8,0.5,40,'s') we get N = 4 and 
Wn = 1.

5.27  ˆ F p1 =10 ×106,   ˆ F p2 = 70 × 106 ,   ˆ F s1 = 20 × 106 ,   and  ˆ F s2 = 45 × 106 ,   We observe 

ˆ F p1
ˆ F p2 = 700 ×1012 ,  and  ˆ F s1ˆ F s2 = 900 ×1012.   Since ˆ F p1

ˆ F p2 ≠ ˆ F s1 ˆ F s2 .  we adjust the right 

stopband edge to ˆ F s2 = 35 × 106,  in which case ˆ F p1
ˆ F p2 = ˆ F s1 ˆ F s2 = ˆ F o

2 = 700 × 1012.    The 

stopband bandwidth is Bw = ˆ Ω s2 − ˆ Ω s1 = 2 π × 15 ×106.
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Now, 10 log10
1

1 + ε2
 
  

 
  = −0.5 , and hence, ε2 = 100.05 − 1 = 0.1220184543,  or   ε = 0.34931140019.

In addition 10 log10
1

A2
 
  

 
  = −30  or A2 = 103 = 1000.  Using these values in Eq. (5.30) we get 

  
k1 =

ε

A2 − 1
= 0.01105172361656.

To determine the banedges of the prototype lowpass filter we set Ωs = 1 and then using Eq. 

(5.65) we obtain Ωp = Ωs

ˆ Ω s1Bw
ˆ Ω o

2 − ˆ Ω s1
2 = 0.3157894.   Therefore, k =

Ω p

Ωs
= 0.3157894.    

Substituting the values of k and k1  in Eq. (5.41) we get N =
cosh−1(1 / k1)

cosh−1(1 / k )
= 2.856.   We choose

N = 3 as the order for the prototype lowpass filter.

The order of the desired bandstop filter is therefore 6.

Using the statement [N,Wn] = cheb1ord(0.3157894,1,0.5,30,'s') we get
N = 3 and Wn = 0.3157894.

5.28 From Eq. (5.59), the difference in dB in the attenuation levels at Ωp  and  Ωo  is given by  

20N log10

Ωo

Ωp

 

 
 
 

 

 
 
 .  Hence  for Ωo = 2 Ωp,  attenuation difference in dB is equal to  20N log10 2  =

6.0206 N.  Likewise, for Ωo = 3Ωp,  attenuation difference in dB is equal to  20N log10 3  = 

9.5424 N.  Finally, for Ωo = 4 Ωp, attenuation difference in dB is equal to  20N log10 4  = 

12.0412 N.

5.29  The equivalent representation of the D/A converter of Figure 5.39 reduces to the circuit shown 
below if the   l − th is ON and the remaining bits are OFF, i.e.   a l = 1,  and ak = 0,    k ≠ l .

2
N −1

  2
l

  2
l−1

  2
l−2 2

0

  
a lVR

+

–

GL

Yin

  
V0,l

In the above circuit, Yin is the total conductance seen by the load conductance GL which is 

given by  Yin = 2i

i =0

N−1

∑ = 2N −1.   The above circuit can be redrawn as indicated below:

  
a lVR

+

–

  2
l−1 G

L  Yin − 2
l−1

  
V 0,l
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Using the voltage divider relation we then get 
  
V0,l = 2l −1

Yi + GL
a l VR .   Using the superposition 

theorem, the general expression for the output voltage V0 is thus given by

  

V0 = 2l −1

Yi + GL
al VR = 2l −1a l

RL

1+ (2N −1)RL

 

 
 
 

 

 
 
 VR

l =1

N

∑
l =1

N

∑ .

5.30 The equivalent representation of the D/A converter of Figure 5.40 reduces to the circuit shown 
below if the N-th bit is ON and the remaining bits are OFF, i.e. aN = 1, and ak = 0, k ≠  N.

aNVR

+

–

V0,N
G

2
G

2
GL

which simplifies to the one shown below

aNVR

+

–

V0,N
G

2

G

2
+ GL

Using the voltage-divider relation we then get V0,N =

G
2

G

2
+ GL + G

2

aNVR =
R L

2(R + RL )
aN VR .

The equivalent representation of the D/A converter of Figure 5.40 reduces to the circuit shown 
below if the (N–1)-th bit is ON and the remaining bits are OFF, i.e. aN–1 = 1, and ak = 0, k ≠  
N.

V0 ,N−1

aN−1VR

+

–

G

2
G

2

G

2
G L

G

The above circuit simplifies to the one shown below:

V0,N−1

aN −1V R

+

–

G

2
+ G L

G

G

2
G

2

Its Thevenin equivalent circuit is indicated below:

G
2
+

–

G
2

+ G L

V0, N−1

aN−1

2
VR

from which we readily obtain
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V0,N−1 =

G
2

G + GL

aN −1

2
VR =

RL

2(RL + R)

aN−1

2
VR .

Following the same procedure we can show that if the   l -th bit is ON and the remaining bits are
OFF, i.e.   a l  = 1, and ak = 0, k ≠    l , then

  
V0,l =

RL

2(RL + R)

a l

2N −l VR .

Hence, in general we have

  

V0 =
RL

2(RL + R)

a l

2N− l VR
l =1

N

∑ .

5.31  From the input-output relation of the first-order hold we get the expression for the impulse 

response as h f( t) = δ(nT) +
δ(nT) − δ(nT − T)

T
(t − nT),  nT ≤ t < (n + 1)T.  In the range 0 ≤ t < T ,

the impulse response is given by h f( t) = δ(0) +
δ(0) − δ(−T)

T
t =1 +

t

T
.   Likewise, in the range 

T ≤ t < 2T ,  the impulse response is given by  h f( t) = δ(T) +
δ(T) − δ(T − T)

T
( t − T) = 1 −

t

T
.  

Outside these two ranges, h f( t) = 0.   Hence we have

h f(t) =

1 + t
T

, 0 ≤ t < T,

1− t
T T ≤ t < 2T,

0, otherwise.

 

 

 
  

 

 
 
 

    

t

h f ( t)

1

2

–1

0 T 2T

Using the unit step function µ(t)  we can write 

h f( t) = 1 +
t

T
 
   

  µ(t) − µ(t − T)[ ] + 1 −
t

T
 
   

  µ(t − T) − µ(t − 2T)[ ]

= µ(t) +
t

T
µ(t) −

2(t − T)

T
µ(t − T) + 2 µ(t − T) − µ(t − 2T) +

t − 2T

T
 
   

  µ(t − 2T) + 2 µ(t − 2T) .

Taking the Laplace transform of the above equation we arrive at the transfer function 

H f (s) =
1

s
+

1

Ts2 −
2

T
⋅
e− sT

s2 + 2
e− sT

s
−

e− 2sT

s
+

1

T
⋅

e− 2sT

s2 + 2
e−2 sT

s
=

1 + s T

T
 
   

  
1 − e− sT

s

 

 
 

 

 
 

2

.

Hence, the frequency response is given by 

H f (jΩ) =
1 + jΩT

T
 
   

  
1 − e− jΩT

jΩ

 

 
 

 

 
 

2

= T 1 + Ω2T 2 2sin(ΩT / 2)

ΩT
 
   

  
2

e j ΩTetan−1 ΩT .
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A plot of the magnitude responses of the ideal filter, zero-order hold and the first-order hold is
shown below:

0 1 2 3
0

0.5

1

1.5

Ideal

First-order hold

Zero-order hold

Ω

5.32  From the input-output relation of the linear interpolator we get the expression for the impulse 

response as  h f(t) = δ(nT − T)+ δ(nT) − δ(nT − T)
T

(t − NT),  nT ≤ t < (n + 1)T .   In the range 

0 ≤ t < T , the impulse response is given by h f(t) = δ(−T)+ δ(0)− δ(−T)
T

t,  and in the range 

T ≤ t < 2T ,  the impulse response is given by  h f(t) = δ(0)+ δ(T)− δ(0)
T

(t − T),  Outside these two

ranges, h f( t) = 0.   Hence we have

h f(t) =

t
T

, 0 ≤ t < T,

2 − t
T T ≤ t < 2T,

0, otherwise.

 

 

 
  

 

 
 
 

      

t

h f ( t)

1

2

0 T 2T

Using the unit step function µ(t)  we can write

h f(t) = t
T

µ(t) − µ(t − T)[ ]+ 2 − t
T

 
  

 
  µ(t − T) − µ(t − 2T)[ ]

= t
T

µ(t) − 2(t − T)
T

µ(t − T) + (t − 2T)
T

µ(t − 2T).

Taking the Laplace transform of the above equation we arrive at the transfer function 

H f(s) = 1
s2T

− 2 e−sT

s2T
+ e−2sT

s2T
= T

1 − e−sT

sT

 

 
  

 

 
  

2

.   Hence, the frequency response is given by 

H f( jΩ) = T
1− e− jΩT

jΩT

 

 
  

 

 
  

2

= T
sin(ΩT/ 2)

ΩT / 2

 
  

 
  

2

e− jΩT .

A plot of the magnitude responses of the ideal filter, zero-order hold and the first-order hold is
shown below:
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M5.1 Using the MATLAB statement

[N,Wn] = buttord(2*pi*2100, 2*pi*8000, 0.5, 30, 's')

we arrive at N = 4 and the 3-dB passband edge frequency Wn = 21199.429284  rad/sec.

M5.2 Using the MATLAB statement

[N,Wn] = cheb1ord(2*pi*2100, 2*pi*8000, 0.5, 30, 's')

we arrive at N = 3 and the passband edge frequency Wn =  13194.689145 rad/sec.

M5.3 Using the MATLAB statement

[N,Wn] = ellipord(2*pi*2100, 2*pi*8000, 0.5, 30, 's')

we arrive at N = 3  and the passband edge frequency Wn = 1.3194689145 rad/sec.

M5.4  We use N = 4 and Wn = 21199.429284 computed in Exercise M5.1 in Program M5_2
and use omega = 0:2*pi:2*pi*9000; to evaluate the frequency points.  The gain plot
developed by running Program 5_2 is as shown below:
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M5.5   We use N = 3 computed in Exercise M5.2 and and Fp =  2*pi*2100 and Rp = 0.5
in Program M5_3 and use omega = 0:2*pi:2*pi*8000; to evaluate the frequency 
points.  The gain plot developed by running Program 5_3 is as shown below:
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M5.6   We replace the statement
Rp = input('Passband edge frequency in Hz = '); with
Rs = input('Stopband edge frequency in Hz = '); and replace 
[num,den] = cheby1(N,Rp,Fp,'s'); with
[num,den] = cheby2(N,Rs,Fs,'s'); to modify Program 5_3 and use N = 3 
computed in Exercise M5.2 and  Rs = 30 in the modified Program M5_3 and use w = 
0:2*pi:2*pi*8000; to evaluate the frequency points.

The gain plot developed by running the modified Program 5_3 is as shown below:
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M5.7   We use N = 3 and Wn = 1.3194689145 computed in Exercise M5.3  in Program 
M5_3 and use w = 0:2*pi:2*pi*9000; to evaluate the frequency points.  The gain plot
developed by running Program 5_3 is as shown below:
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M5.8  The MATLAB program used is as given below:

[N,Wn] = buttord(1,10,0.3,45,'s')
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[B,A] = butter(N,Wn,'s')
[num,den] = lp2hp(B,A,2*pi*5e6)
figure(1)
omega = [0: 0.1: 20];
h = freqs(B,A,omega);
gain = 20*log10(abs(h));
plot (omega,gain);grid;axis([0 20 -80 5]);
xlabel('\Omega'); ylabel('Gain, dB')
title('Analog Lowpass Filter')
figure(2)
omega = [0: 10000: 10e6*pi];
h = freqs(num,den,omega);
gain = 20*log10(abs(h));
plot (omega/(2*pi),gain);grid;axis([0 5e6 -80 5]);
xlabel('Frequency in Hz'); ylabel('Gain, dB')
title('Analog Highpass Filter')

HLP (s) =
5.6235

s3 + 3.5566s2 + 6.3246s + 5.6235
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HHP (s) =

s3 + 4.4345 × 10−9 s2 + 9.0568 × 10−2 s + 4.2847 ×10−11

s3 + 3.5333 ×107 s2 + 6.242 × 1014 s + 5.5137 × 1021
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M5.9    The MATLAB program used is as given below:

[N,Wn] = ellipord(1,1.8,0.5,40,'s')
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[B,A] = ellip(N,0.5,40,Wn,'s')
[num,den] = lp2bp(B,A,2*pi*30e3,2*pi*25e3)
figure(1)
omega = [0: 0.01: 4];
h = freqs(B,A,omega);
gain = 20*log10(abs(h));
plot (omega,gain);grid;axis([0 4 -80 5]);
xlabel('\Omega'); ylabel('Gain, dB')
title('Analog Lowpass Filter')
figure(2)
omega = [0: 200: 200e3*pi];
h = freqs(num,den,omega);
gain = 20*log10(abs(h));
plot (omega/(2*pi),gain);grid;axis([0 100e3 -80 5]);
xlabel('Frequency in Hz'); ylabel('Gain, dB')
title('Analog Bandpass Filter')

HLP (s) =
0.01s4 + 0.17921s2 + 0.44866

s4 + 1.1789s3 + 1.7558s2 +1.0845s + 0.47524
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HBP(s) =

1.0002 ×10−2s8 − 2.3081 × 10−12s7 + 5.8434 × 109 s6 − 6.4605 × 10−1 s5 + 6.6313 ×1020 s4

− 3.9221 ×1010s3 + 7.3769 ×1030s2 − 3.1971 × 1020s + 1.5941× 1040

s8 + 1.8519 × 105 s7 +1.8544 ×1011s6 + 2.3943 × 1016 s5 + 1.0942 × 1022 s4

+8.507 × 1026s3 + 2.3411 × 1032s2 + 8.3065 × 1036s + 1.5937 × 1042
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M5.10  The MATLAB program used is as given below:

[N,Wn] = cheb1ord(0.3157894,1,0.5,30,'s')
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[B,A] = cheby1(N,0.5, Wn,'s')
[num,den] = lp2bs(B,A,2*pi*sqrt(700)*10^6,2*pi*15e6)
figure(1)
omega = [0: 0.01: 10];
h = freqs(B,A,omega);
gain = 20*log10(abs(h));
plot (omega,gain);grid;axis([0 4 -70 5]);
xlabel('\Omega'); ylabel('Gain, dB')
title('Analog Lowpass Filter')
figure(2)
omega = [0: 100000: 160e6*pi];
h = freqs(num,den,omega);
gain = 20*log10(abs(h));
plot (omega/(2*pi),gain);grid;axis([0 80e6 -70 5]);
xlabel('Frequency in Hz'); ylabel('Gain, dB')
title('Analog Bandstop Filter')

HLP (s) =
0.022538

s3 + 0.39566 s2 − 0.15306 s + 0.022538
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HBS(s) =

s6 − 2.6591× 10−8s5 + 8.2905 × 1016s4 − 1.4698 × 109 s3

+ 2.2911 ×1033s2 − 2.031 × 1025s + 2.1104 × 1049

s6 + 6.4007 ×108s5 + 2.3884 ×1017s4 + 7.2521× 1025s3

+ 6.6003 × 1033s2 + 4.8881× 1041s + 2.1104 × 1049
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M5.11  The MATLAB program to generate the plots of Figure 5.48 is given below:

% Droop Compensation
w = 0:pi/100:pi;
h1 = freqz([-1/16 9/8 -1/16], 1, w);
h2 = freqz(9, [8 1], w);
w1 = 0;
for n = 1:101
h3(n) = sin(w1/2)/(w1/2);
w1 = w1 + pi/100;
end
m1 = 20*log10(abs(h1));
m2 = 20*log10(abs(h2));
m3 = 20*log10(abs(h3));
plot(w/pi, m3, 'r-',w/pi, m1+m3, 'b--',w/pi, m2+m3,'r-
');grid
xlabel('Normalized frequency');ylabel('Gain, dB');
text(0.43,-0.58,'DAC','sc');text(0.85,-0.58,'IIR','sc');
text(0.85,-1.67,'FIR','sc');
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Chapter 6 (2e)

6.1   From Figure P6.1, we get  w[n] = A(x[n]+ C Du[n]),   and  y[n] = C(A Bx[n]+ u[n]).  These 
two equations can be rewritten as  w[n] = Ax[n]+ A C Du[n],  and  y[n] = CA Bx[n]+ Cu[n].   
The corresponding realization shown below has no delay-free loop:

6.2    (a)

X(z)

Y(z)
X2(z) Y2 (z)Y3( z)X3(z)

k1

W(z)

k2

α1

α 2

Analyzing the above figure we get (1): W(z) = X(z) − α1Y3(z),  (2): Y2 (z) = W(z) + k1Y2(z),  

(3):  Y3(z) = k2Y2(z) + X2(z), and  (4):  Y(z) = α2W(z) + X3(z).

From Eq. (2) we get (5): W(z) = (1 − k1)Y2 (z) .  Substituting Eqs. (3) and (5) in Eq. (1) we get 

(1 − k2 )Y2 (z) = X(z) − α1 k2Y2 (z) + X2 (z)( )  or (6): Y2 (z) =
1

1 − k1 + α1k2
X(z) − α1X2 (z)( ).   

Substituting Eq. (5) in Eq. (4) we get (7):  Y(z) = α2(1 − k1)Y2(z) + X3(z).

A realization based on Eqs. (6), (7) and (3) shown below has no delay-free loops.

X(z)

Y(z)

X2(z )

Y2(z)

Y3(z )

X3( z) k2

α1–
z −1

z −1

1

1 − k1 + α1k2

α2 (1 − k1)

(b)

X(z) Y(z)
X 2(z )Y2 (z) Y3 (z ) X3(z)

δ

γ

β
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Analyzing the above figure we get (1): Y2 (z) = X(z) + δ Y(z),  (2):  Y3(z) = βY2 (z) + X2 (z),  
and  (3):  Y(z) = X3(z) + γ Y2 (z).  From Eqs. (1) and (3) we get 

Y2 (z) = X1(z) + δ X(z) + γ Y2 (z)( ),  which yields (4):  Y2 (z) =
1

1 − δ γ
δ X(z) + X3(z)( ).   Next, 

substituting Eq. (4) in Eq. (3) we get

(5):  Y(z) = X3(z) + γ Y2 (z) = X3(z) +
γ

1 − δ γ
X(z) + δ X3(z)( ) =

1

1 − δ γ
γ X(z) +X3(z)( ).

A realization based on Eqs. (2), (4) and (5) shown below has no delay-free loops.

X(z)

Y(z) X2(z)

Y2 (z)

Y3(z )X3(z)

δ

γ β z −1

z −1

6.3  H(z) =
G1(z)

1 − G1(z)G2(z)
=

1

1 − 2z−1

1 − K

1 − 2 z−1

=
1

(1 − K) − 2 z−1 .   The pole is at z =
2

1 − K
.   Therefore, the 

system is stable if 
2

1 − K
< 1, i.e. if  −1 > K > 3.

6.4

  
From the above figure, we get  W1 = K X + z−1W3,   W2 = (z−1 − α)W1,   

W3 = αW1 − βz−1W1 = (α − βz−1)W1,   and  Y = z−1W2 + βW1.   Substituting the third equation in

the first we get  W1 = KX + z−1(α −βz−1)W1,   or [1 − α z−1 + βz−2 ]W1 = KX.   Next, substituting 

the second equation in the last one we get Y = [z−1(z−1 − α) +β]W1.   From the last two equations

we finally arrive at H(z) = Y
X

= K
β − αz−1 + z−2

1 − αz−1 + βz−2

 

 
  

 

 
  .

(a)  Since the structure employs 4 unit delays to implement a second-order transfer function,
it is noncanonic.

(b)  and (c)  We next form  H(z)H(z−1) = K2 β − αz−1 + z−2

1 − αz−1 + βz−2

 

 
  

 

 
  

β − αz + z2

1 − α z +βz2

 

 
  

 

 
  
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= K2 β −α z−1 + z−2

1 − α z−1 + βz−2

 

 
  

 

 
  

βz−2 − α z−1 +1

z−2 − α z−1 + βz

 

 
  

 

 
  = K2.   Therefore, H(e jω) = K,  for all 

values of ω.   Hence H(e jω)  = 1 if K = 1.

(d)  Note H(z) is an allpass transfer function with a constant magnitude at all values of ω.

6.5

− k 2

k2− k1

X(z)

Y(z)

U(z)

W(z)

z−1

z−1

α1 α2

Analyzing the figure we get (1):  W(z) = X(z) − k1z
−1U(z) + k2z−1W(z),

(2):  U(z) = −k2 W(z) + z−1W(z) = −k2 + z−1( )W(z),   and (3):  Y(z) = α1z
−1U(z) + α2z−1W(z). 

Substituting Eq. (2) in Eq. (1) we get W(z) = X(z) − k1z
−1 −k2 + z−1( )W(z) + k2z−1W(z),  or 

1 − (1 + k1)k2z−1 + k1z−2[ ]W(z) = X(z), or  (4):  W(z) =
1

1 − (1 + k1)k2z−1 + k1z
−2 X(z).  

Substituting Eq. (4) in Eq. (2) we get  (5):  U(z) =
− k2 + z−1

1 − (1 + k1 )k2z−1 + k1z
−2 X(z).   Finally, 

substituting Eqs. (4) and (5) in Eq. (3) we get Y(z) =
(α2 − α1k2 ) z−1 + α1z

−2

1 − (1 + k1) k2 z−1 + k1 z−1 X(z),  or 

H(z) =
(α2 − α1k2 ) z−1 + α1z

−2

1 − (1 + k1) k2 z−1 + k1 z−1 .   For stability we must have k1 <1,  and 

k2(1 + k1) <1 + k1,  or k2 < 1.

6.6

z–1

z–1

z–1
–1–1–1 –1

a1

a2

a3

a4
X(z) Y(z)

S0(z)

S1(z)

S2(z) S3 (z)

S4 (z)

S5(z)

Analysis yields  S0 (z) = X(z)− S1(z),  S1(z) = z−1S2 (z) + z−1S5(z), S2 (z) = a3S0(z) − z−1S2 (z),
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S3(z) = a3z
−1S5(z)− z−1S3(z),   S4 (z) = S0 (z) + z−1S3(z),   S5(z) = a1S4(z)− z−1S5(z),   and 

Y(z) = a4S4 (z).   Eliminating S0(z), S1(z), S2(z), S3(z), S4(z) and S5(z) from these equations we 
get after some algebra

H(z) = Y(z)
X(z)

=
a4(1 + z−1)3

1 + (3 + a1 + a3)z−1 + (3 + 2a1 + 2a3 − a1a2)z−2 + (1+ a1 + a3 − a1a2 − a1a2a3)z−3 .

6.7

R1(z) R 2(z)

W2(z )

W1(z) W3(z)z–1

z–1
z–1

–1

–1

α0

α1 α2 α3

β1

β2

β3

X(z)

Y(z)

Analysis yields  Y(z) = α0X(z)+ β1z
−1R1(z),  W1(z) = X(z) −β2z−1R2(z),

R1(z) = W1(z) + α1β1z
−1R1(z),   W2(z) = β1z

−1R1(z)− β3z−1W3 (z),

R2 (z) = W2(z) + α2β2z−1R2(z),   W3(z) = β2z−1R2 (z) + α3β3z
−1W3(z).

From the third equation we get  W1(z) = (1 − α1β1z
−1)R1(z).   From the sixth equation we get

W3(z) =
β2z−1R2 (z)

1 − α3β3z−1 .   From the fifth equation we get R2 (z) =
W2(z)

1 − α2β2z−1 .

Rewriting the fourth equation we get W2(z) −β3z
−1W3(z) = β1z−1R1(z),  in which we substitute 

the expressions for W3(z) and W1(z) resulting in 

R2 (z) (1 − α2β2z−1) +
β2β3z−1

(1− α3β3z−1)

 
 
 

  

 
 
 

  
= β1z

−1R1(z),  or

R2 (z) =
β1z−1(1− α3β3z−1)

β2β3z−1 + (1− α2β2z−1)(1− α3β3z−1)
R1(z).

Combining W1(z) = X(z) −β2z−1R2(z), W1(z) = (1 − α1β1z
−1)R1(z). and making use of the 

expression for R2(z) we arrive at

R1(z) =
β2β3z−2 + (1− α2β2z−1)(1− α3β3z−1)

β2β3z
−2(1 − α1β1z

−1)+ (1− α1β1z
−1)(1 − α2β2z−1)(1 − α3β3z

−1) + β1β2z−2 (1 − α3β3z−1)
X(z).

Substituting the above in Y(z) = α0X(z)+ β1z
−1R1(z), we finally get

H(z) = Y(z)
X(z)

= α0 +
β1β2β3z

−2 +β1z
−1(1 − α2β2z−1)(1 − α3β3z

−1)

(1 − α1β1z
−1)(1− α2β2z−1)(1− α3β3z−1)

+ β2β3z−2(1 − α1β1z−1)+ β1β2z−2 (1 − α3β3z−1)

.
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6.8

X(z) Y(z)

–1

α0

α1

z–1

z–1 z–1

α2

α3

β1

β2

β3

z–1

β0

W2 (z)

W1(z) W3(z)

W0 (z)

Analysis yields  W0 (z) = X(z)+ β1z
−1W1(z),   W1(z) = β0z−1W0 (z) + β2z−1W2(z),

W2(z) = β1z
−1W1(z)+ β3z−1W3(z),   W3(z) = β2z−1W2(z) −β3z

−1W3(z).

From these equations we get  W3(z) =
β2z−1

1 + β3z−1 W2 (z),  and 

1 + β3z−1 − β2β3z−2

1 + β3z−1

 

 
 
 

 

 
 
 W2(z) = β1z

−1W1(z),   Or, W2(z) =
β1z

−1(1 + β3z−1)

1 +β3z
−1 −β2β3z

−2

 

 
 
 

 

 
 
 W1(z),

In addition, W1(z) =
β0z−1(1+ β3z−1 − β2β3z−2)

1+ β3z−1 − (β2β3 + β1β2)z−2 − β1β2β3z
−3

 

 
 
 

 

 
 
 W0(z).

Now, W0 (z) 1 −
β0β1z

−2(1 +β3z
−1 −β2β3z

−2)

1 +β3z
−1 −β2(β1 + β3)z−2 − β1β2β3z

−3

 

 
 
 

 

 
 
 = X(z),  Hence,

W0 (z) =
1 + β3z−1 − β2 (β1 +β3)z−2 − β1β2β3z−3

1 + β3z
−1 − (β1β2 +β2β3 + β0β1)z−2 − β1β3(β2 + β0 )z−3 + β0β1β2β3z

−4

 

 
 
 

 

 
 
 X(z),

W1(z) =
β0z−1(1 +β3z

−1 −β2β3z
−2)

1+ β3z−1 − (β1β2 + β2β3 + β0β1)z−2 − β1β3(β2 +β0)z−3 +β0β1β2β3z−4

 

 
 
 

 

 
 
 X(z),

W2(z) =
β1β0z−2(1 + β3z−1)

1 +β3z
−1 − (β1β2 +β2β3 + β0β1)z−2 − β1β3 (β2 + β0 )z−3 + β0β1β2β3z

−4

 

 
 
 

 

 
 
 X(z),

W3(z) =
β0β1β2z−3

1 + β3z−1 − (β1β2 + β2β3 + β0β1)z−2 − β1β3(β2 + β0)z−3 +β0β1β2β3z−4

 

 
 
 

 

 
 
 X(z).

Finally, Y(z) = α3β0z−1W0 (z) + α0β1z
−1W1(z) + α2β2z−1W2(z)+ α1β3z−1W3 (z).   Substituting the

expressions for W0(z), W1(z), W2(z) and W3(z) in the above we get

H(z) = Y(z)
X(z)

=

α3β0z−1 + (α3β3β0 + α0β1β0 )z−2 + (α0β0β1β3 + α2β1β2β0 − α3β2β1β0 − α3β0β2β3)z−3

+(−α3 + α2 −α0 + α1)β0β1β2β3z
−3

1 +β3z
−1 −(β1β2 + β2β3 + β0β1)z−2 − β1β3(β2 + β0 )z−3 + β0β1β2β3z

−4
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6.9

X(z) Y(z)
1

1 − z−1

1

1− z −1
W(z) U(z) −k 1

k1 k2

Analysis yields  (1):  W(z) = X(z) + k1Y(z),  (2):  U(z) =
1

1 − z−1 W(z) + k2Y(z),  and

(3):  Y(z) =
−k1

1 − z−1 U(z).   Substituting Eq. (2) in Eq. (3) we get

(4):  Y(z) =
−k1

1 − z−1
1

1 − z−1 W(z) + k 2Y(z)
 
  

 
  = −

k1

(1 − z−1 )2
W(z) −

k1k 2

1 − z−1 Y(z).  Substituting

Eq. (1) in Eq. (4) we then get  Y(z) = −
k1

(1 − z−1)2 X(z) + k1Y(z)[ ] −
k1k2

1 − z−1 Y(z)  

= −
k1

(1 − z−1)2 X(z) −
k1

1 − z−1
k1 + k2 − k 2z−1

1 − z−1

 

 
 
 

 

 
 
 
Y(z) , or 

1 +
k1(k1 + k2 − k2z−1)

(1 − z−1)2

 

 
 
 

 

 
 
 
Y(z) = −

k1

(1 − z−1)2 X(z).  Hence, 

H(z) =
Y(z)

X(z)
= −

k1

1 + k1(k1 + k2 )[ ] − (2 + k1k 2) z−1 + z−2 .

6.10  (a)    A direct form realization of 

H(z) = 1 − 3.5 z−1 + 4.9z−2 − 3.43z−3 +1.2005z−4 − 0.16807 z−5
 and its transposed structure aare

shown below:

z −1 z −1 z −1
z −1 z −1

–3.5 4.9 –3.43 1.2005 –0.16807

x[n]

y[n]

–3.54.9–3.431.2005–0.16807

x[n]

y[n]z −1 z −1 z−1 z−1 z−1

(b)  A cascade realization of 

H(z) = (1 − 0.7 z−1)(1 − 0.7 z−1)(1 − 0.7 z−1)(1 − 0.7 z−1)(1 − 0.7 z−1)  is shown below:

x[n] y[n]
z −1 z −1 z −1 z −1 z −1

–0.7 –0.7 –0.7 –0.7 –0.7

(c)  A cascade realization of  H(z) = (1 − 0.7 z−1)(1 − 1.4 z−1 + 0.49z−2 )(1 − 1.4 z−1 + 0.49z−2 )  is 
shown below:
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x[n] y[n]z−1 z−1 z−1 z −1 z −1
–0.7

–1.4 –1.4

0.49 0.49

(d)  A cascade realization of H(z) = (1 − 2.1z−1 + 1.47z−2 − 0.343 z−3 )(1 −1.4z−1 + 0.49 z−2 )  is 
shown below:

x[n] y[n]z−1 z −1 z −1 z −1 z −1

–1.4

0.49

–2.1 0.98

–0.343

6.11  (a)  H(z) = h[0]+ h[3]z−3 + h[6]z−6( ) + z−1 h[1] + h[4]z−3 + h[7]z−6( ) + z−2 h[2] + h[5]z−3( ).   
Hence, E 0(z) = h[0]+ h[3]z−3 + h[6]z−6,  E1(z) = h[1]+ h[4]z−3 + h[7]z−6,  E 2(z) = h[2]+ h[5]z−3.

(b)
Figure is same as in Figure 6.9 with h[8] = 0.

6.12 (a)  H(z) = h[0]+ h[2]z−2 + h[4]z−4 + h[6]z−6( ) + z−1 h[1] + h[3]z−2 + h[5]z−4 + h[7]z−6( ).   
Hence, E 0(z) = h[0]+ h[2]z−2 + h[4]z−4 + h[6]z−6, E1(z) = h[1]+ h[3]z−2 + h[5]z−4 + h[7]z−6 .

(b)

X(z) Y(z)

h[0]

h[1]

h[2]

h[4] h[6]

h[3]

h[5]

h[7]
z−2 z−2 z−2

z −1

6.13 (a)   H(z) = h[0]+ h[4]z−4( ) + z−1 h[1] + h[5]z−4( )+ z−2 h[2] + h[6]z−4( ) + z−3 h[3] + h[7]z−4( ).   
Hence, E 0(z) = h[0]+ h[4]z−4, E1(z) = h[1]+ h[5]z−4,  

E 2(z) = h[2]+ h[6]z−4 , E3(z) = h[3]+ h[7]z−4.
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(b)

z−1 z−1 z−1

z −4

h[0]

h[2]

h[4]

h[6]

h[1]

h[3]

h[5]

h[7]

6.14
x[n]

y[n]

z −1

z −1 z− 1 z −1 z− 1

z− 1 z −1 z− 1

−1 −1 −1 −1

h[0] h[1] h[2] h[3]

6.15
x[n]

y[n]

z −1

z−1 z −1 z −1
z −1

z −1
z −1 z −1

−1 −1 −1 −1

h[0] h[1] h[2] h[3]

z −1

h[4]

−1

6.16  Consider first the case of N = 4. 

H(z) = b0 + b1z
−1 1 + +b2z−1 1 + b3z−1 1+ b4z−1( )( )( ) = b0 + b1z−1 1+ +b2z−1 1 + b3z

−1 + b3b4z−2( )( )
= b0 + b1z−1 1+ b2z−1 + b2b3z−2 + b2b3b4z−3( )
= b0 + b1z−1 + b1b2z−2 + b1b2b3z−3 + b1b2b3b4z−4 = h[0]+ h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 .

Comparing like powers of z−1 on both sides, we obtain h[0]= b0 , h[1] = b1, h[2]= b1b2 , 

h[3] = b1b2b3 , h[4] = b1b2b3b4.   Solving these equations we get b0 = h[0],  b1 = h[1],  b2 = h[2]
h[1]

,

b3 = h[3]
h[2]

,  and b 4 = h[4]
h[3]

.   In the general case, we have

b0 = h[0],  b1 = h[1], and b k = h[k]
h[k −1]

,  2 ≤ k ≤ N.

A nested realization of H(z) for N = 7 is shown below:
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z −1 z−1 z−1
x[n] y[n]

z −1 z−1 z −1

b0

b1 b2 b3 b 4 b5

z −1
b6 b7

6.17   G(z) = z−N / 2 − H(z).  A canonic realization of both G(z) and H(z) is as indicated on next page
for  N = 8.

z −1

z −1
z−1

z −1 z −1 z −1

z −1

G(z)

H(z)

z −1 −1

h[0] h[1] h[2] h[3] h[4]

6.18  Without any loss of generality, assume M = 5 which means N = 11.  In this case the transfer 

function is given by H(z) =  

z−5 h[5] + h[4](z + z−1) + h[3](z2 + z−2 ) + h[2](z3 + z−3) + h[1](z4 + z−4) + h[0](z5 + z−5)[ ] .

Now, the recursion relation for the Chebyshev polynomial is given by 

Tr (x) = 2 x Tr−1(x) − Tr−2 (x),  for r ≥  2 with T0 (x) =1  and  T1(x) = x.   Hence, 

T2 (x) = 2 x T1(x) − T0 (x) = 2 x2 − 1,   T3(x) = 2 x T2(x) − T1(x) = 2 x(2 x2 − 1) − x = 4 x3 − 3x,

T4 (x) = 2 x T3 (x) − T2 (x) = 2 x(4 x3 − 3x) − (2 x2 −1) = 8x4 − 8 x2 +1,

T4 (x) = 2 x T3 (x) − T2 (x) = 2 x(4 x3 − 3x) − (2 x2 −1) = 8x4 − 8 x2 +1,

We can thus rewrite the expression inside the square brackets given above as

h[5]+ 2h[4]T1
z + z−1

2

 

 
 

 

 
 + 2h[3]T2

z + z−1

2

 

 
 

 

 
 + 2h[2]T3

z + z−1

2

 

 
 

 

 
 

+2h[1]T4
z + z−1

2

 

 
 

 

 
 + h[0]T5

z + z−1

2

 

 
 

 

 
 

= h[5]+ 2h[4]
z + z−1

2

 

 
 

 

 
 + 2h[3] 2

z + z−1

2

 

 
 

 

 
 

2

− 1
 

 

 
 

 

 

 
 + 2h[2] 4

z + z−1

2

 

 
 

 

 
 

3

− 3
z + z−1

2

 

 
 

 

 
 

 

 

 
 

 

 

 
 

     + 2h[1] 8
z + z−1

2

 

 
 

 

 
 

4

− 8
z + z−1

2

 

 
 

 

 
 

2

+ 1
 

 

 
 

 

 

 
 + 2h[0] 16

z + z−1

2

 

 
 

 

 
 

5

− 20
z + z−1

2

 

 
 

 

 
 

3

+ 5
z + z−1

2

 

 
 

 

 
 

 

 

 
 

 

 

 
 
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= a[n]
z + z−1

2

 

 
 

 

 
 

n =0

5

∑
n

,   where  a[0]= h[5] − 2 h[3] + 2 h[1],   a[1]= 2 h[4] − 6 h[2] +10 h[0],  

a[2] = 4 h[3] −16 h[1],   a[3]= 8 h[2] − 40h[1],   a[4]= 16h[1],  and  a[5] = 32 h[0].

A realization of H(z) = z−5 a[n]
z + z−1

2

 

 
 

 

 
 

n=0

5

∑
n 

 

 
 

 

 

 
   = a[0]z−5 + a[1]z−4 1 + z−2

2

 

 
 

 

 
  

+ a[2]z−3 1 + z−2

2

 

 
 

 

 
 

2

+a[3]z−2 1 + z−2

2

 

 
 

 

 
 

3

+ a[4]z−1 1 + z−2

2

 

 
 

 

 
 

4

+ a[5]
1 + z−2

2

 

 
 

 

 
 

5

is thus as shown below:

6.19  Consider H(z) =
P(z)

D(z)
=

P1(z)

D1(z)
⋅

P2 (z)

D2(z)
⋅

P3(z)

D3(z)
.  Assume all zeros of P(z) and D(z) are complex.

Note that the numerator of the first stage can be one of the 3 factors, P1(z), P2(z), and P3(z), the
numerator of the second stage can be one of the remaining 2 factors, and the numerator of the 
third stage is the remaining factor.  Likewise, the denominator of the first stage can be one of 
the 3 factors, D1(z), D2(z), and D3(z), the denominator of the second stage can be one of the 
remaining 2 factors, and the denominator of the third stage is the remaining factor.  Hence, 

there are  (3!)2 = 36 different types of cascade realizations.

If the zeros of P(z) and D(z) are all real, then P(z) has 6 real zeros and D(z) has 6 real zeros.  In

this case then there are (6!)2 = 518400  different types of cascade realizations.

6.20  H(z) =
Pi (z)

D i(z)
i=1

K

∏ .   Here the numerator of the first stage can be chosen in K
1

 
   

   ways, the 

numerator of the second stage can be chosen in K −1
1

 
   

   ways, and until the there is only 

possible choice for the numerator of the K-th stage.  Likewise, the denominator of the first 

stage can be chosen in K
1

 
   

   ways, the denominator of the second stage can be chosen in 

K −1
1

 
   

   ways, and until the there is only possible choice for the denominator of the K-th stage.

Hence the total number of possible cascade realizations are equal to

  

K
1

 
   

  
2 K −1

1
 
   

  
2 K − 2

1
 
   

  
2
L 2

1
 
   

  
2 1

1
 
   

  
2

= (K!)2

6.21  A canonic direct form II realization of H(z) = 3 + 4 z−1 − 2 z−2

1+ 3 z−1 + 5 z−2 + 4 z−4  is shown on next page:
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x[n] y[n]z
–1 z–1 z–1 z–1

z
–1

–3 –5 –4

3

4

–2

A canonic direct form IIt  realization of H(z) is as indicated below:

x[n] y[n]z–1 z–1 z–1
z–1 z–1

–3–5–4

3

4

–2

6.22  (a)  A cascade realization of H1(z) = 0.3 − 0.5 z−1

1 + 2.1z−1 − 3z−2

 

 
  

 

 
  

2 + 3.1z−1

1 + 0.67 z−1

 

 
  

 

 
   is shown below:

x[n] y[n]z
–1

z
–1 z–1

–2.1 3

0.3 –0.5

–0.67

2
3.1

A cascade realization of  H1(z) = 2 + 3.1z−1

1 + 2.1z−1 − 3z−2

 

 
  

 

 
  

0.3 − 0.5 z−1

1 + 0.67 z−1

 

 
  

 

 
   is shown below:

x[n] y[n]z
–1

z
–1

z
–1

–2.1 3

0.3

–0.5

–0.67

2 3.1

(b)  A cascade realization of  H2(z) =
4.1z (z − 1

3
)

(z + 0.3)(z − 0.5)

 

 

 
 
  

 

 

 
 
  

z2 + 0.4
z2 − z − 0.1

 

 
  

 

 
   

= 4.1 −1.3667z−1

1 − 0.2 z−1 − 0.15z−2

 

 
  

 

 
  

1 + 0.4 z−2

1 − z−1 + 0.1z−2

 

 
  

 

 
   is shown below:

z
–1

z–1x[n] y[n]z
–1 z

–1

4.1 –4.1/3

0.2 0.15

0.4

–0.1
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A cascade realization of  H2(z) = 1+ 0.4 z−2

1− 0.2 z−1 − 0.15 z−2

 

 
  

 

 
  

4.1 −1.3667 z−1

1− z−1 + 0.1z−2

 

 
  

 

 
   is shown below:

z
–1

z
–1x[n]

y[n]

z
–1

z
–1

4.1 –4.1/3

0.2 0.15

0.4

–0.1

(c)  A cascade realization of  H3(z) = 3 − 2.1z−1

1 + 0.52 z−1

 

 
  

 

 
  

2.7 + 4.2 z−1 − 5z−2

1 +z−1 − 0.34 z−2

 

 
  

 

 
   is shown below:

z
–1x[n] y[n]z

–1
z
–1

–0.52

3

–2.1

2.7 4.2
–5

–1 0.34

A cascade realization of  H3(z) = 2.7 + 4.2 z−1 − 5z−2

1+ 0.52z−1

 

 
  

 

 
  

3 − 2.1z−1

1 + z−1 − 0.34 z−2

 

 
  

 

 
   is shown below:

z–1z–1x[n]

y[n]

z–1 z–1

–0.52

3 –2.12.7 4.2
–5

–1 0.34

6.23  (a)  A partial-fraction expansion of H1(z)  in z−1 obtained using the M-file residuez gives 

H1(z) = 0.6 − 0.07z−1 −1.55z−2

1 + 2.77z−1 −1.593 z−2 − 2.01z−3 = 0.4454
1 + 3.0755z−1 − 0.1571

1− 0.9755z−1 + 0.3117
1 + 0.67 z−1  whose

realization yields the Parallel Form I structure shown below:

z
–1

x[n] y[n]

z–1

z
–1

–3.0755

0.9755

–0.67

0.4454

–0.1571

0.3117
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A partial-fraction expansion of H1(z)  in  z  obtained using the M-file residue gives

H1(z) = 0.6 z3 − 0.07z2 −1.55z
z3 + 2.77z2 −1.593z − 2.01

= 0.6 + −1.3699
z + 3.0755

+ 0.1533
z − 0.9755

+ −2088
z + 0.67

= 0.6 + −1.3699z−1

1 + 3.0755z−1 + 0.1533z−1

1− 0.9755z−1 + −2088z−1

1 + 0.67 z−1 ,  whose realization yields the Parallel Form II

structure shown below:

z
–1

x[n] y[n]

z
–1

z
–1

–3.0755

0.9755

–0.67

0.6

–1.3699

–0.1533

–0.2088

 (b)  A partial-fraction expansion of H2(z)  in z−1 obtained using the M-file residuez gives 

H2(z) =
4.1z4 − 1.3667z3 + 1.64 z2 − 0.5467z

z4 −1.2z3 + 0.15z2 + 0.13z − 0.015

=
7.5709

1 − 0.8873z−1 +
−3.7014

1 − 0.5z−1 +
3.2458

1 + 0.3 z−1 +
−3.0153

1 − 0.1127z−1  whose realization yields the Parallel 

Form I structure shown below:

z−1

z−1

z−1

z−1

x[n] y[n]

7.5709

0.8873
–3.7014

0.5
3.2458

–0.3
–3.0153

0.1127
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A partial-fraction expansion of H2(z)  in  z  obtained using the M-file residue gives 

H1(z) = 4.1+ 6.7176
z − 0.8873

+ −1.8507
z − 0.5

+ −0.9737
z + 0.3

+ −0.3398
z − 0.1127

 

= 4.1 + 6.7176 z−1

1 − 0.8873z−1 + −1.8507 z−1

1 − 0.5z−1 + −0.9737z−1

1+ 0.3z−1 + −0.3398z−1

1 − 0.1127 z−1  whose realization yields the 

Parallel Form II structure shown below:

z−1

z−1

z−1

x[n] y[n]

0.8873

0.5

–0.3

0.1127

z−1

4.1

6.7176

–1.8507

–0.9737

–0.3398

 (c)  A partial-fraction expansion of H3(z)  in z−1 obtained using the M-file residuez gives

H3(z) =
8.1 + 6.93z−1 − 23.82z−2 +10.5 z−3

1 + 1.52 z−1 + 0.18z−2 − 0.1768z−3  = −59.3891 +
−24.2434

1 +1.2681z−1 +
77.0449

1 + 0.52z−1 +
14.6876

1 − 0.2681z−1

 whose realization yields the Parallel Form I structure shown below:

z−1

z−1

z−1

x[n] y[n]

–59.3891

–24.2434

77.0449

14.6876

–1.2681

–0.52

0.2681
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A partial-fraction expansion of H3(z)  in  z  obtained using the M-file residue gives

H3(z) = 8.1 + 30.7434
z +1.2681

+ −40.0633
z + 0.52

+ 3.938
z − 0.2681

= 8.1 + 30.7434z−1

1 +1.2681z−1 + −40.0633z−1

1 + 0.52z−1 + 3.938 z−1

1− 0.2681z−1

whose realization yields the Parallel Form II structure shown below:

z−1

z−1

z−1

x[n] y[n]

–1.2681

–0.52

0.2681

8.1

30.7434

–40.0633

3.938

6.24  A cascade realization based on the factorization 

H(z) = z−1

1+ 0.8z−1 + 0.5 z−2

 

 
  

 

 
  

0.44 + 0.362 z−1 + 0.02z−2

1 − 0.4 z−1

 

 
  

 

 
   is indicated below:

z
–1x[n] y[n]z

–1
z
–1

z
–1

–0.8 –0.5

0.44 0.362
0.02

0.4

6.25  (a)  H(z) =
2 + 0.1z−1

1 + 0.4 z−1 ⋅
3 + 0.2 z−1

1 − 0.3z−1 ⋅
1

1 − 0.2 z−1 =
6 + 0.7 z−1 + 0.02 z−2

1 − 0.1z−1 − 0.14z−2 + 0.024 z−3 .

(b)  y[n] = 6 x[n]+ 0.7 x[n −1]+ 0.02x[n − 2]+ 0.1y[n −1]+ 0.14 y[n − 2]− 0.024 y[n − 3].

(c)  A cascade realization of H(z) is shown below:

z−1

z−1
z−1x[n] y[n]

2

0.1

–0.4

3

0.2

0.3 0.2

(d)  A parallel form I realization of H(z) is obtained by making a partial-fraction expansion in

using M-File residuez H(z) = 1.6667
1+ 0.4 z−1 + 11

1 − 0.3 z−1
−6.6667

1− 0.2 z−1 ,
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whose realization is shown below:

z−1

z−1

z−1

x[n] y[n]

–0.4

0.3

0.2

1.6667

11

–6.6667

(e)  h[n] =1.6667(−0.4)n µ[n]+ 11(0.3)n µ[n]− 6.6667(0.2)nµ[n].

6.26   (a)  Y(z) = 1
1− 0.4 z−1 − 0.3z−1

1 − 0.4 z−1 = 1 − 0.3 z−1

1− 0.4 z−1 .   X(z) = 1
1− 0.2 z−1 .   Thus, 

H(z) = Y(z)
X(z)

= (1− 0.3z−1)(1 − 0.2 z−1)
1 − 0.4 z−1 = 1 − 0.5 z−1 + 0.06 z−2

1 − 0.4 z−1 .

(b)  y[n] = x[n]− 0.5 x[n −1] + 0.06x[n − 2]+ 0.4 y[n −1].

(c)

z−1z−1x[n] y[n]

0.4

–0.5
0.06

(d)  A partial-fraction expansion of H(z) in  z−1 obtained using M-file residuez is given 

by H(z) = 0.875z−1 − 0.15 + 0.125
1 − 0.4 z−1  whose realization yields the Parallel Form I structure as 

indicated below:

z−1

z−1x[n] y[n]

0.4

0.875

–0.15

0.125

(e)  The inverse z-transform of H(z) yields h[n] = 0.875δ[n −1]− 0.15δ[n] + 0.125(0.4)n µ[n].

203



(f)  X(z) = 1
1− 0.3z−1 − 0.4 z−1

1 − 0.3z−1 = 1 − 0.4 z−1

1 − 0.3 z−1 .   Therefore 

Y(z) = H(z)X(z) = (1− 0.3z−1)(1 − 0.2 z−1)
1 − 0.4z−1

 

 
  

 

 
  

1 − 0.4 z−1

1 − 0.3 z−1

 

 
  

 

 
  = 1 − 0.2 z−1,  whose inverse

z-transform yields y[n] = δ[n]− 0.2 δ[n −1].

6.27  Figure P6.11 can be seen to be a Parallel Form II structure.  A partial-fraction expansion of 

H(z) = 3 z2 +18.5z + 17.5
(z + 0.5)(z + 2)

 in z obtained using the M-file residue is given by 

H(z) = 3 + 5
z + 2

+ 6
z + 0.5

.   Comparing the coefficients of the expansion with the corresponding

multiplier coefficients in Figure P6.11 we conclude that the multiplier coefficient 2 should be 
replaced with 6 and the multiplier coefficient 0.5 should be replaced with – 0.6.

6.28  Figure P6.11 can be seen to be a Parallel Form I structure.  A partial-fraction expansion of 

H(z) = 3 z(5 z −1)
(z + 0.5)(4 z +1)

= 3.75−1.5z−1

1+ 0.75z−1 + 0.125z−2  in z−1 obtained using the M-file residuez is 

given by H(z) = 13.5
1+ 0.5z−1 − 9.5

1 + 0.25z−1 .   Comparing the coefficients of the expansion with the

corresponding multiplier coefficients in Figure P6.11 we conclude that the multiplier 
coefficient A = 13.5  and the multiplier coefficient B = –0.25.

6.29  The difference equation corresponding to the transfer function H(z) = Y(z)
X(z)

= 1 + α + β
1 + αz−1 +β z−2  

is given by y[n]+α y[n −1]+β y[n − 2] = (1 + α + β)x[n],  which can be rewritten in the form 
y[n]= x[n]+ α(x[n]− y[n −1]) + β(x[n]− y[n − 2]).  A realization of H(z) based on this equation is
thus as shown below:

6.30   (a)  The difference equation corresponding to the transfer function 

H(z) = Y(z)
X(z)

=
(1+ α1 + α2)(1+ 2 z−1 + z−2 )

1 − α1 z−1 + α2z−2  is given by 

y[n]+ α1 y[n −1]− α2y[n − 2]= (1 + α1 + α2 )(x[n]+ 2 x[n −1]+ x[n − 2]),  which can be rewritten as

y[n] = (x[n]+ 2 x[n −1]+ x[n − 2]) + α1 (y[n −1]− x[n]− 2 x[n −1]− x[n − 2])  

−α2 (y[n − 2]− x[n]− 2 x[n − 1]− x[n − 2]).   Denoting w[n] = x[n]+ 2 x[n −1]+ x[n − 2],
the difference equation representation becomes 
y[n] = w[n]+ α1(y[n −1]− w[n]) − α2(y[n − 2] − w[n]).  A realization of H(z) based on the last two
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equations is as indicated below where the first stage realizes w[n] while the second stage realizes
y[n].

An interchange of the two stages leads to an equivalent realization shown below:

Finally, by delay sharing the above structure reduces to a canonic realization as shown below:

(b)  The difference equation corresponding to the transfer function 

H(z) = Y(z)
X(z)

=
(1 − α2)(1− z−2 )

1 − α1z
−1 + α2z−2  is given by 

y[n]− α1y[n −1]+ α2y[n − 2]= (1 − α2)(x[n]− x[n − 2])  which can be rewritten as 

y[n] = α1y[n −1]− α2y[n − 2]+ x[n]− α2x[n]− x[n − 2]− α2x[n − 2]  

= α1y[n −1]− α2 (x[n]− x[n − 2]+ y[n − 2]) + (x[n]− x[n − 2]).   Denoting w[n] = x[n]− x[n − 2], we 

can rewrite the last equation as y[n] = α1y[n −1]− α2 (w[n] + y[n − 2]) + w[n].   A realization of 
H(z) based on the last two equations is as shown below:

An interchange of the two stages leads to an equivalent realization shown below:
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Finally, by delay sharing the above structure reduces to a canonic realization as shown below:

6.31  (a)  From the structure of Figure P.6/14 it follows that HN(z) =
Y1

X1
=

C + DHN−1(z)

A + BHN−1(z)
,  from 

which we get  HN−1(z) =
C − AHN(z)

B HN (z)− D
.   Substituting the expression for HN(z) we then arrive 

at   HN−1(z) =

C 1+ diz
−i

i=1

N

∑
 

 
 
 

 

 
 
 − A piz

−i

i=0

N

∑
 

 
 
 

 

 
 
 

B piz
− i

i=0

N

∑
 

 
 
 

 

 
 
 − D 1 + diz

−i

i=1

N

∑
 

 
 
 

 

 
 
 

 

  
=

(C − Ap0 )+ (Cd1 − Ap1)z−1 +L+ +(CdN−1 − ApN−1)z−N +1 + +(CdN − ApN )z−N

(Bp0 − D) +(Bp1 − Dd1)z−1 +L+ (BpN −1 − DdN−1)z−N +1 + (BpN − Dd N)z−N .  

Substituting the values A = 1, B = dNz–1, C = p0, and D = pNz–1, we get HN–1(z)

  
=

(p0 − p0 )+ (p0d1 − p1)z−1 +L+ (p0dN −1 − pN−1)z−N +1 + (p0dN − pN)z−N

(dNp0 − pN )z−1 + (dNp1 − pNd1)z−2 +L+ (dNp N−1 − pNdN −1)z
−N + (d NpN − pNd N)z−N−1  

  
=

(p0d1 − p1)+ (p0d2 − p2 )z−1 +L+ (p0dN−1 − pN−1)z−N+2 +(p0d N − pN )z−N+1

(p0dN − p N) + (p1dN − pNd1)z−1 +L+ (pN −1dN − pNdN −1)z−N+1

  
=

p0' +p1' z−1 + L+ pN−2' z−N+2 + pN−1' z−N+1

1 + d1' z−1 + L+ dN−1' z−N+1   where

pk ' =
pkdk+1 − pk+1

p0dN − pN
,    k = 0,1,K,N −1,  and  dk ' =

pkdN − pNdk

p0dN − pN
,     k = 1,2,K,N −1.

(b)  From the chain parameters, we obtain for the first stage  t11 = C
A

= p0,   

t12 = AD − BC
A

= (pN − p0dN )z−1,   t21 = 1
A

=1,   and  t22 = − B
A

= −d Nz−1.   The 

corresponding input-output relations are then given by
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Y1 = p0X1 + (pN − p0dN ) z−1 = p0(X1 − dN z−1X2 ) + pNz−1X2,

Y2 = X1 − dN z−1X2.   Substituting the second equation into the first we rewrite it as 

Y1 = p0Y2 + pNz−1X2.   A realization of the two-pair based on the last two equations is 
therefore as indicated below:

Except for the first stage, all other stages require 2 multipliers.  Hence the total number of 
multipliers needed to implement an N-th order transfer function HN(z) is 2N+1.  The total 
number of two-input adders required is 2N while the overall realization is canonic requiring N 
delays.

6.32  From H3(z) =
0.44z−1 + 0.362 z−2 + 0.02z−3

1 + 0.4 z−1 + 0.18z−2 − 0.2 z−3 ,  using Eq. (6.135) we arrive at 

H2(z) = 22 +18.1z−1 + z−2

1+ 4.8z−1 + 8.8 z−2 .   Repeating the procedure we obtain H1(z) = 1.0593 +z−1

1 + 0.7746 z−1 .   

From H3(z), H2(z) and H1(z) we then arrive at the cascaded lattice  realization of H3(z) as 

shown below:

z–1 z–1 z–1

0.2

0.44

0.02

–3.8

22 –0.7746

1.0593

6.33  (a)  From H3(z) = 0.6 − 0.07z−1 −1.55z−2

1 + 2.77z−1 −1.593 z−2 − 2.01z−3  (Note the change in the labelling of the 

transfer function)  using Eq. (6.135) we arrive at H2(z) = −1.4362 − 0.4927z−1 + z−2

1 − 0.1167z−1 − 2.5833z−2 .   

Repeating the procedure we obtain H1(z) = 0.2436 + z−1

1 + 0.5127z−1 .   From H3(z), H2(z) and H1(z) we 

then arrive at the cascaded lattice  realization of H3(z) as shown below:

z
–1

z
–1

z
–1

2.01

0.6

2.5833

–1.4362

–0.5127

0.2436

x[n]

y[n]
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(b) From H4(z) = 4.1− 1.3667z−1 + 1.64z−2 − 0.5467z−3

1− 1.2 z−1 + 0.15z−2 + 0.13z−3 − 0.015 z−4  (Note the change in the labelling 

of the transfer function)  using Eq. (6.135) we arrive at 

H3(z) = 57.7772+ 16.6667z−1 −17.5561z−2 + z−3

1 − 0.3333z−1 + 0.4 z−2 − 0.1333z−3 . Repeating the procedure we obtain 

H2(z) = 4.1284 − 4.6735z−1 +z−2

1+ 0.2170z−1 − 0.2230z−2 ,   and H2(z) = −2.8997+ z−1

1− 0.4296z−1 .   From H4(z) , H3(z), H2(z) 

and H1(z) we then arrive at the cascaded lattice  realization of H3(z) as shown below:

z
–1

z
–1

z
–1

x[n]

y[n]
z
–1

0.015

0.6

0.1333

57.7772

0.223

4.1284

0.4296

–2.8997

(c)  From H3(z) = 8.1 + 6.93z−1 − 23.82 z−2 +10.5z−3

1+ 1.52z−1 + 0.18z−2 − 0.1768z−3    using Eq. (6.135) we arrive at 

H2(z) = −0.4511− 2.1185z−1 + z−2

1 +1.4403z−1 − 3.3873z−2 .  Repeating the procedure we obtain  H2(z) = 2.7827 + z−1

1+ 10.866 z−1 .

From H3(z), H2(z) and H1(z) we then arrive at the cascaded lattice  realization of H3(z) as 
shown below:

z
–1

z
–1

z
–1

x[n]

y[n]

0.1768

8.1

3.3873

–0.4511

–10.866

2.7827

6.34  When HN(z) is an allpass transfer function of the form 

  

HN(z) = AN(z) =
dN + dN−1z

–1 + L+ z–N

1+ d1z
–1 +L + dNz–N ,  then from Eq. (6.135a), the numerator coefficients 

of HN–1(z) are given by pk' =
p0d k+1 − pk +1

p0dN − pN
=

dNdk +1 − dN –k –1

d N
2 −1

,  and from Eq. (6.135b) the 

denominator coefficients of HN–1(z) are given by 

d' N−k −1 =
pN−k−1d N − dN−k−1

p0d N − pN
=

d k+1dN − d N– k–1

dN
2 −1

= pk' ,  implying HN–1(z) is an allpass 

transfer function of order N–1.  Since here pN = 1 and p0 = dN, the lattice structure of Problem

6.31 then reduces to the lattice structure employed in the Gray-Markel realization procedure.
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6.35  (a)  Consider the realization of Type 1B allpass transfer function. From its transfer parameters 

given in Eq. (6.62b) we arrive at  Y1 = z−1X1 + (1 + z−1)X2 = z−1(X1 + X2) + X2,  and 

Y2 = (1− z−1)X1 − z−1X2 = X1 − z−1(X1 + X2 ).  A realization of the two-pair based on these two

equations is as shown below which leads to the structure of Figure 6.36(b).

(b)  From the transfer parameters of Type 1At allpass given in Eq. (6.62c) we obtain 

Y1 = z−1X1 + X2, and Y2 = (1− z−2 )X1 − z−1X2 = X1 − z−1(z−1X1 + X2) = X1 − z−1Y1.  A 

realization of the two-pair based on these two equations is as shown below which leads to the 

structure of Figure 6.36(c).

(c)  From the transfer parameters of Type 1Bt allpass given in Eq. (6.62d) we obtain 

Y1 = z−1X1 + (1 − z−1)X2 = z−1(X1 − X2) + X2,   and 

Y2 = (1+ z−1)X1 − z−1X2 = X1 + z−1(X1 − X2 ).  A realization of the two-pair based on these two

equations is as shown below which leads to the structure of Figure 6.36(d).

6.36 (a)  A cascade connection of three Type 1A first-order allpass networks is a shown below 

which is seen to require 6 delays:

Simple block-diagram manipulations results in the structure shown below:

By delay-sharing between adjacent allpass sections we arrive at the following equivalent 

realization requiring now 4 delays.

(b) A cascade connection of three Type 1At first-order allpass networks is a shown below which

is seen to require 6 delays:
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By delay-sharing between adjacent allpass sections we arrive at the following equivalent 

realization requiring now 4 delays.

6.37  Analyzing the structucture of Figure P6.14 we obtain

z
–1

X(z) Y(z)

–1

–1

aW(z)

U(z)

(1):  W(z) = X(z) − z−1U(z),   (2)  U(z) = a W(z) + z−1U(z),  and (3):  Y(z) = −W(z) + U(z).

From Eq. (2) we obtain  (4):  U(z) =
a

1 − z−1 W(z).  Substituting Eq. (4) in Eq. (3) we get 

(5):  Y(z) = −
1 − a − z−1

1 − z−1

 

 
 

 

 
 W(z).   Substituting Eq. (4) in Eq. (1) we get

(6):  X(z) =
1 − z−1 + az−1

1 − z−1

 

 
 

 

 
 W(z).   From Eqs. (5) and (6) we finally get 

H(z) =
Y(z)

X(z)
=

−(1 − a) +z−1

1 − (1 − a)z−1 .

6.38   We realize A2(z) =
d1d2 + d1 z−1 + z−2

1+ d1 z−1 + d1d 2 z−2  in the form of a constrained three-pair as indicated 

below:
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t11 t 12 t13
t21 t 22 t23
t31 t 32 t33

 

 

 
 
 

 

 

 
 
 

X1

X2
X3 Y3

Y2

Y1

d1

–d 2

From the above figure, we have 
Y1
Y2
Y3

 

 

 
 
 

 

 

 
 
 

=
t11 t12 t13
t21 t22 t23
t31 t32 t33

 

 

 
 
 

 

 

 
 
 

X1
X2
X3

 

 

 
 
 

 

 

 
 
 
,  and X2 = d1 Y2 , X3 = −d2 Y3.   

From these equations, after some algebra we get A2(z) =
Y1

X1
= N(z)

D(z)
,  where

D(z) =1 − d1 t22 + d2 t33 + d1d2 (t23t32 − t22 t33), and

N(z) = t11 − d1 (t11t22 − t12 t21)+ d2 (t11t33 − t13t31)

+ d1d2 t21(t12 t33 − t13 t32 )+ t31(t22 t13 − t12t23)+ t11(t23t32 − t22 t33){ }.
Comparing trhe denominator of the desired allpass transfer function with D(z) we get

t22 = z−1, t33 = 0, t23 t32 = z−2.   Next, comparing trhe numerator of the desired allpass transfer 

function with N(z) we get  t11 = z−1, t12 t21 = z−1(z−2 −1), t13t31 = 0, and 

t32( t11t23 − t21t13)+ t31( t22 t13 − t12 t23)= 1.  Substituting the appropriate transfer parameters

        from the previous equations into the last equation we simplify it to t13 t21t32 + t31t12 t23 = z−4 −1.

Since t13 t31 = 0,  either t13 = 0,  or t31 = 0.  (Both cannot be simultaneously equal to zero, as this

will violate the condition t13 t21t32 + t31t12 t23 = z−4 −1.

Consider the case t13 = 0.   Then the equation above reduces to  t31t12 t23 = z−4 −1.   From this 

equation and  t23t32 = z−2.   it follows that 

t32 = z−2, t23 = 1, t31t12 = z−4 − 1 = (z−1 − 1)(z−1 +1)(z−2 + 1).

There are four possible realizable sets of values of t21 and t31 satisfying the last equation and 

t12 t21 = z−1(z−2 −1).   These lead to four different realizable transfer matrices for the three-pair:

Type 2A:  
z−2 z−2 −1 0
z−1 z−1 1

z−2 +1 z−2 0

 

 

 
 
 

 

 

 
 
 
, Type 2B:  

z−2 z−1 +1 0
z−1(z−1 −1) z−1 1

(z−2 +1)(z−1 −1) z−2 0

 

 

 
 
 

 

 

 
 
 
,

Type 2C:  
z−2 z−1 −1 0

z−1(z−1 +1) z−1 1
(z−2 +1)(z−1 +1) z−2 0

 

 

 
 
 

 

 

 
 
 
, Type 2D:  

z−2 1 0
z−1(z−2 −1) z−1 1

z−4 −1 z−2 0

 

 

 
 
 

 

 

 
 
 
.

A realization of each Type 2 allpass structures is obtained by implementing its respective 

transfer matrix, and then constraining the Y2 and X2 variables through the multiplier d1 and  
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constraining the Y3 and X3 variables through the multiplier –d2 resulting in the four structures 

shown in Figure 6.38 of text.

It can be easily shown that the allpass structures obtained for the case t31 = 0   are precisely the 

transpose of the structures of Figure 6.38.

6.39 A cascade connection of two Type 2D second-order allpass networks is a shown below which

is seen to require 8 delays:

By delay-sharing between adjacent allpass sections we arrive at the following equivalent 

realization requiring now 6 delays.

The minimum number of multipliers needed to implement a cascade of M Type 2D second-

order allpass sections is thus 4 + 2(M–1) = 2(M + 1).

6.40 We realize  A2(z) =
d2 + d1 z−1 + z−2

1+ d1 z−1 + d2 z−2  in the form of a constrained three-pair as indicated in 

the figure in the solution of Problem 6.46.  Comparing the numerator and the denominator of 

the Type 3 allpass transfer function with  N(z) and D(z) given in the solution of Problem 6.46 

we arrive at  t11 = z−2, t22 = z−1, t33 = z−2, t23 t32 = z−2, t23t32 = z−1(z−2 − 1),

t13 t31 = z−4 −1, t13t21t32 + t13t21t32 = z−3(z−2 −1) + z−1(z−4 −1).  To solve the last four 

equations, we preselect t23 and t32 satiasfying t23t32 = z−2, and then determine realizable values

for  t12, t21, t13, and t31,
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Choice #1:  t23 = z–1,  t32 = z–2.  This leads to four possible realizable sets of values of  t12, t21,

t13, and t31, satisfying the constraint equations given earlier and resulting in the transfer 

matrices given below:

Type 3A:  
z−2 z−2 −1 z−2 − 1
z−1 z−1 z−1

z−2 +1 z−2 z−2

 

 

 
 
 

 

 

 
 
 
,   Type 3B:  

z−2 z−1 +1 z−1 +1
z−1(z−1 – 1) z−1 z−1

(z−1 −1)(z−2 +1) z−2 z−2

 

 

 
 
 

 

 

 
 
 
,

Type 3C:  
z−2 z−1 −1 z−1 −1

z−1(z−1 +1) z−1 z−1

(z−1 +1)(z−2 +1) z−2 z−2

 

 

 
 
 

 

 

 
 
 
,   Type 3D:  

z−2 1 1
z−1(z−2 −1) z−1 z−1

z−4 −1 z−2 z−2

 

 

 
 
 

 

 

 
 
 
.

A realization of each Type 3 allpass structures is obtained by implementing its respective 

transfer matrix, and then constraining the Y2 and X2 variables through the multiplier d1 and  

constraining the Y3 and X3 variables through the multiplier –d2.  Realizations of Types 3A, 3C

and 3D allpass are shown in Figure 6.38 of text.  The realization of Type 3B allpass is shown 

below:

Choice #2:  t23 = 1,  t32 = z–3.  This leads to four possible realizable sets of values of  t12, t21, 

t13, and t31, satisfying the constraint equations given earlier and resulting in the transfer 

matrices given below:

      Type 3E: 
z−2 z−1(z−2 −1) z−2 −1
1 z−1 1

z−2 +1 z−3 z−2

 

 

 
 
 
 

 

 

 
 
 
 
,Type 3F: 

z−2 z−1(z−1 + 1) z−1 +1
z−1 −1 z−1 1

(z−1 −1)(z−2 +1) z−3 z−2

 

 

 
 
 
 

 

 

 
 
 
 
,

     Type 3G: 
z−2 z−1(z−1 − 1) z−1 −1

z−1 +1 z−1 1
(z−1 +1)(z−2 +1) z−3 z−2

 

 

 
 
 
 

 

 

 
 
 
 
,  Type 3H: 

z−2 z−1(z−1 −1) z−1 − 1
z−2 −1 z−1 1
z−4 −1 z−3 z−2

 

 

 
 
 
 

 

 

 
 
 
 
.

Realization of Types 3H is shown in Figure 6.38 of text.   The realizations of Types 3E, 3F and

3G allpass are shown below:

Choice #3:  t23 = z–2,  t32 = z–1.  The structures in this case are the transpose of the Types 

3A, 3B, 3C and 3D allpass networks of Choice #1 given above.

Choice #4:  t23 = z–3,  t32 = 1.  The structures in this case are the transpose of the Types 

3E, 3F, 3G and 3H allpass networks of Choice #2 given above.

6.41 A cascade connection of two Type 3H second-order allpass networks is a shown below which

is seen to require 8 delays:
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By delay-sharing between adjacent allpass sections we arrive at the following equivalent 

realization requiring now 7 delays.

The minimum number of multipliers needed to implement a cascade of  M Type 3H second-

order allpass sections is thus 4 + 3(M–1) = 3M + 1.

6.42  From the transfer parameters given in Eq. (6.52d) we arrive at the input-output relations of the 

two-pair as (1):  Y1 = kmX1 + z−1X2 ,  and  (2)  Y2 = (1− km
2 )X1 − k mz−1X2.   A three-multiplier

realization based on these two equations is shown below:

z
–1

X1

X2

Y2

Y1

− k m

k m

1 −k m
2

6.43  Eq. (2) in the solution given above can be rewritten as 

Y2 = X1 − k m
2 X1 − kmz−1X2 = X1 − km (kmX1 + z−1X2 ) .  Substituting Eq. (1) of the solution 

given above in this equation we then get  (3):  Y2 = X1 − k m
2 X1 − kmz−1X2 = X1 − kmY1.

A realization based on Eq. (3) and Eq. (1) in the solution given above results in the lattice 

structure shown below:
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z
–1

X1

X2

Y2

Y1

− km

km

Analyzing the above structure we obtain Y1 = kmX1 + z−1X2 ,  and 

Y2 = X1 − kmY1 = X1 − km kmX1 + z−1X2( ) = (1 − km
2 )X1 − kmz−1X2 .   Hence, the transfer

parameters of the lattice two-pair are given by

t11 = km ,  t12 = z−1,  t21 = 1 − km
2 ,  t22 = −kmz−1.

The corresponding chain parameters are obtained using Eq. (4.176b) and are given by

A =
1

1− km
2 ,  B =

kmz−1

1− km
2 ,  C =

km

1− km
2 ,  D =

z−1

1− km
2 .

X1

Y1

W1

S1

− k1

k1

− k2

k2

z−1 z−1

Hence, the input-output relation of the all-pole cascaded lattice structure given above can be 

expressed as:  
X1(z)

Y1(z)
 
 
 

 
 
 =

1

(1 − k2
2)(1− k1

2 )

1 k2z−1

k2 z−1

 

 
 
 

 

 
 
 

1 k1z−1

k1 z−1

 

 
 
 

 

 
 
 

W1(z)

S1(z)
 
 
 

 
 
 ,  from which we

obtain H r(z) =
W1(z)

X1(z)
=

(1 − k2
2)(1 − k1

2)

1 + k1(1+ k2 )z−1 + k2z−2 .   

X1

Y1

W1

S1

− k1

k1

− k 2

k2

z−1
z−1

Likewise, from Section 6.8.1, we arrive at the input-output relation of the all-pole cascaded 

lattice structure given above as: 
X1(z)

Y1(z)
 
 
 

 
 
 =

1 k2z−1

k2 z−1

 

 
 
 

 

 
 
 

1 k1z−1

k1 z−1

 

 
 
 

 

 
 
 

W1(z)

S1(z)
 
 
 

 
 
 ,  from which we

obtain Hs(z) =
W1(z)

X1(z)
=

1

1+ k1(1 + k2) z−1 + k2z−2 .

Now for a second-order all-pole transfer function can also be expressed in terms of its poles as 

H(z) =
1

1 − 2 rcosωoz−1 + r2z−2 .    Comparing the denominator of  H(z) with that of Hs(z)  
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and H r(z)  we observe k2 = r2  and k1(1 + k2) = −2 r cosωo.   As r ≅ 1,  

k1 = −
2r cosωo

1+ r2 = −cosωo .

At the true resonance peak, we have H(e jωr ) =
1

(1 − r2) sinωo
.   Likewise, at ω = ωr , 

Hs(e jωr ) =
1

(1 − k2) 1 − k1
2

.   As r → 1,  k2 = r2 → 1,  and hence, the gain Hs(e jωr )  

becomes excessively large.  In the case of the all-pole structure realized using the reverse lattice

two-pairs, as r → 1,  k2 = r2 → 1,  

(1 − k1
2)(1 − k2

2 ) = (1 − k1
2)(1 − k2)(1+ k2 ) ≅ 2(1 − k1

2)(1− k2 ).   Hence, at ω = ωr , 

H r(ejω r ) ≅
2(1− k1

2 )(1− k2)

(1 − k2) 1 − k1
2

= 2 1− k1
2 = 2 sin ωo .   This indicates that the gain at the 

peak resonance is approximately independent of the pole radius as long as the pole angle is 

constant and the radius is close to 1.

6.44  (a)  H1(z) = 2 + z−1 + 2 z−2

1 − 0.75z−1 + 0.125z−2 .   Choose, A2(z) = 0.125 − 0.75z−1 + z−2

1− 0.75z−1 + 0.125 z−2 .   Note 

k2 = A2 (∞) = d2 = 0.125 <1.   Using Eq. (6.71) we next determine the coefficients of A1(z) 

arriving at  A1(z) = 0.66667 + z−1

1 − 0.66667z−1 .   Here, k1 = A1(∞) = d1' = −0.66667,   Hence, 

k1 = 0.66667 < 1.   Therefore, A2(z) and hence H1(z) is stable.

To determine the feed-forward coefficients we use  α1 = p2 = 2,  α2 = p1 − α1d1 = 2.5,  

α3 = p0 − α1d2 − α2d1' = 3.41667.   Final realization of H1(z) is thus as shown below:

  
X1

  
Yo

  z
–1

  z
–1

–0.125

0.125 –0.66667

0.66667

2 2.5 3.41667

(b) H2(z) = 1 + 2 z−1 + 3 z−2

1− z−1 + 0.25z−2 .   Thus, A2(z) = 0.25 −z−1 +z−2

1− z−1 + 0.25z−2 .   Note k2 = A2 (∞) = d2 = 0.25 < 1.  

Using Eq. (6.71) we next determine the coefficients of A1(z) arriving at  A1(z) = –0.8 +z−1

1 − 0.8z−1 .   

Here, k1 = A1(∞) = −0.8.   Thus, k1 = 0.8 < 1.    Therefore, A2(z) and hence H2(z) is stable.
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To determine the feed-forward coefficients we use  α1 = p2 = 3,  α2 = p1 − α1d1 = 5,  

α3 = p0 − α1d2 − α2k1 = 4.25.   Final realization of H2(z)  is thus as shown below:

  
X1

  
Yo

  z –1
  z

–1

–0.25

0.25 –0.8

0.8

3 5 4.25

(c) H3(z) = 2 + 5 z−1 + 8 z−2 + 3z−3

1 + 0.75z−1 + 0.5z−2 + 0.25z−3 .   This implies, A3(z) = 0.25+ 0.5z−1 + 0.75z−2 + z−3

1 + 0.75z−1 + 0.5z−2 + 0.25z−3 .

Note k3 = A3(∞) = d3 = 0.25 <1.   Using Eq. (6.71) we next determine the coefficients of A2(z)

arriving at  A2(z) =

1
3

+ 2
3

z−1 +z−2

1+ 2

3
z−1 + 1

3
z−2

.   Note k2 = A2 (∞) = d2' = 1 /3 <1.   Using Eq. (6.71) we 

next determine the coefficients of A1(z) arriving at  A1(z) = 0.5 +z−1

1 + 0.5 z−1 .   Thus, 

k1 = A1(∞) = d1" = 0.5 <1.   Since ki < 1 for i = 3, 2, 1, A3(z) and hence H3(z) is stable.

To determine the feed-forward coefficients we make use of Eq. (6.98) and obtain α1 = p3 = 3,  

α2 = p2 − α1d1 = 5.75,   α3 = p1 − α1d2 − α2d1' = − 1
3

.   α4 = p0 − α1d3 − α2d2' −α3d1" = − 1
2

.   

Final realization of H3(z)  is thus as shown below:

  z
–1

  z
–1

  z
–1

  
X1

  
Y

o

0.25

–0.25 –1/3

1/3

–0.5

0.5

3 5.75 –1/3 –1/2

(d) H4(z) = 1 +1.6 z−1 + 0.6 z−2

1− z−1 − 0.25z−2 + 0.25z−3 .   This implies A3(z) = 0.25 − 0.25z−1 −z−2 + z−3

1 − z−1 − 0.25z−2 + 0.25z−3 .   Note

k3 = A3(∞) = d3 = 0.25 <1.   Using Eq. (6.71) we next determine the coefficients of A2(z) 

arriving at A2(z) = −1+ z−1

1 −z−1 .   Note k2 = A2 (∞) = d2' = 0.   Using Eq. (6.71) we next determine

the coefficients of A1(z) arriving at A1(z) = −1 +z−1

1− z−1 .   k1 = A1(∞) = d1" = −1.   Since 

k1 = 1,A3(z) and hence H4(z) is unstable.  Feed-forward coefficients are next determined using
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Eq. (6.98) and are given by α1 = 0, α2 = 0.6, α3 = 2.2, α4 = 3.2.   Final realization of H4(z)  is 
thus as shown below:

  
X1

  
Yo

  z
–1

  z
–1

  z
–1

–0.25

–1

0.6 2.2 3.2

(e) H5(z) = 3 +1.5 z−1 + z−2 + 0.5z−3

1 −1.8333z−1 +1.5 z−2 − 0.5833z−3 + 0.0833z−4 .  Hence, 

A4(z) = 0.0833− 0.5833z−1 +1.5 z−2 −1.8333z−3 + z−4

1 −1.8333z−1 +1.5z−2 − 0.5833z−3 + 0.0833z−4 .  Note k4 = A4 (∞) = d4 = 0.0833 < 1.   

Using Eq. (6.71) we next determine the coefficients of A3(z) arriving at 

A3(z) = 0.433595 +1.38466 z−1 −1.7972z−2 +z−3

1 −1.7972 z−1 +1.38466z−2 − 0.433595z−3 .   Thus, k3 = A3(∞) = d3' = 0.433595 <1.   

Continuing this process we obtain A2(z) = 0.74558 −1.4739 z−1 + z−2

1− 1.4739z−1 + 0.74558z−2 .   Thus, 

k2 = A2 (∞) = d2' = 0.74558 <1.   Finally we arrive at A1(z) = −0.84436 + z−1

1− 0.84436 z−1 .   This implies 

k1 = A1(∞) = d1' ' ' = −0.84436.   Since ki < 1 for i = 4, 3, 2, 1, A4(z) and hence H5(z) is stable.

Feed-forward coefficients are next determined using Eq. (6.98) and are given by 
α1 = 0, α2 = 0.5, α3 = 1.89859, α4 = 3.606, α5 = 4.846.

6.45  (a)  H1(z) = 0.6 − 0.07z−1 −1.55z−2

1 + 2.77z−1 −1.593 z−2 − 2.01z−3 . Hence 

A3(z) = −2.01−1.593 z−1 + 2.77 z−2 + z−3

1 + 2.77z−1 − 1.593z−2 − 2.01z−3 .  Note k3 = A3(∞) = −2.01.   Using Eq. (6.47) we 

then arrive at A2(z) = −1.3074 + 0.1421z−1 +z−2

1 + 0.1421z−1 −1.3074z−2 .  Note k2 = A2 (∞) = −1.3074.   Using Eq. 

(6.47) again we next arrive at A1(z) = −2.0434 +z−1

1− 2.0434z−1 .   Note k1 = A1(∞) = −2.0434.  Since 

ki > 1, 1 ≤ i ≤ 3,  A3(z)  and hence, H1(z)  is an unstable transfer function.  Next using Eq. 

(6.79) we arrive at the feed-forward multipliers: α1 = 0,   α2 = −1.55,   α3 = 0.1503,  and 

α4 = 0.4306.

Note that if Program 6_4 is used to realize H1(z) , the following error 
message will appear: ??? Error using ==> tf2latc

The IIR system is unstable
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z−1 z−1
z−1

x[n]

y[n]

2.01 1.3074

–1.3074 –2.0434

2.0434

–1.55 0.1503 0.4306

(b)  H2(z) = 4.1− 1.3667z−1 + 1.64z−3 − 0.5467z−4

1−1.2 z−1 + 0.15 z−2 + 0.13z−3 − 0.015 z−4 .   Hence, 

A4(z) = −0.015 + 0.13z−1 + 0.15z−2 −1.2 z−3 + z−4

1 −1.2 z−1 + 0.15z−2 + 0.13z−3 − 0.015z−4 .   Note A4(∞) = k4 = −0.015.  Using Eq. 

(6.47) we then arrive at A3(z) = 0.112 + 0.1523z−1 −1.1983z−2 +z−3

1 −1.1983z−1 + 0.1523z−2 + 0.112 z−3 .   Note 

A3(∞) = k 3 = 0.112 .  Using Eq. (6.47) again we next arrive at 

A2(z) = 0.2902 −1.2308z−1 + z−2

1− 1.2308z−1 + 0.2902z−2 .   Note A2(∞) = k2 = 0.2902 .  Using Eq. (6.47) we 

finally arrive at A1(z) = −0.9540+ z−1

1 − 0.9540 z−1 .   Note A1(∞) = k1 = −0.9540.  Since ki < 1,  

1 ≤ ki ≤ 4,  A4(z)  and hence, H2(z)  is a stable transfer function.

The feed-forward multipliers α i{ }  are determined using the following equations:

α1 = p4 = −0.5467,   α2 = p3 − α1d1 = 0.9840,   α3 = p2 − α1d2 − α2d1
' = 1.2611,  

α4 = p1 − α1d3 − α2d2
' −α2d3

" = 0.1067,  and α5 = p0 − α1d4 − α2d3
' − α2d2

" − α3d1
"' = 3.7175,

The lattice and feed-forward multipliers can also be obtained using Program 6_4 yielding

Lattice parameters are
 -0.9540    0.2902    0.1120   -0.0150

Feedforward multipliers are
3.7175    0.1067    1.2611    0.9840   -0.5467

z−1 z−1 z−1

x[n]

y[n]

z−1

–0.015

0.015

0.112

–0.112

0.2902

–0.2902

–0.954

0.954

–0.5467 0.984 1.2611 0.1067 3.7175
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(c)  H3(z) = 8.1 + 6.93z−1 − 23.82 z−2 +10.5z−3

1+ 1.52z−1 + 0.18z−2 − 0.1768z−3 .  Hence, 

A3(z) = −0.1768+ 0.18z−1 +1.52z−2 + z−3

1+1.52z−1 + 0.18z−2 − 0.1768 z−3 .   Note A3(∞) = k 3 = −0.1768 .  Using Eq. (6.47) 

we then arrive at  A2(z) = 0.4632 +1.6019 z−1 + z−2

1+ 1.6019z−1 + 0.4632z−2 .   Note A2(∞) = k2 = 0.4632 .  Using Eq.

(6.47) again we next arrive at A1(z) = 1.0948 + z−1

1 +1.0948 z−1 .   Note A1(∞) = k1 = 1.0948 . Since 

k1 >1,  A3(z) , and hence, H3(z)  are unstable transfer functions.  Next using Eq. (6.79) we 

arrive at the feed-forward multipliers:  α1 = 10.5,   α2 = −39.78,   α3 = 68.7636,   and  

α4 = −46.8999.

Note that if Program 6_4 is used to realize H3(z) , the following error message will appear: 
??? Error using ==> tf2latc
The IIR system is unstable

z−1 z−1

x[n]

y[n]

z−1

–0.1768

0.1768

0.4632

–0.4632

1.0948

–1.0948

10.5 –39.78 68.7636 –46.8999

6.52  H(z) = 0.5634(1+ z−1)(1 −1.10166 z−1 +z−2)
(1 − 0.683 z−1)(1 −1.4461z−1 + 0.7957z−2)

.

(a)  Direct canonic form - H(z) = 0.05634(1 − 0.10166 z−1 − 0.10166 z−2 + z−3)
1− 2.1291z−1 +1.78339 z−2 − 0.54346 z−3 .

X(z) Y(z)

z–1

z–1

z–1

2.1291

– 1.7833863

– 0.5434631

– 0.10166

– 0.10166

Hardware requirements: # of multipliers = 5, # of two-input adders = 6, # of delays = 3.

(b)  Cascade Form
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X(z) Y(z)

z–1 z–1

z–1

0.683 1.4461

– 0.7957

– 1.0166

0.05634

Hardware requirements: # of multipliers = 5, # of two-input adders = 6, # of delays = 3.

(c) Gray-Markel Form -

  z–1   z –1   z–1

  
X1

  
α1   

α2   
α3   

α4

  
Yo

  
− d3

  
d 3

  − d1"

  d1"
  
− d2'

  
d

2
'

0.05634

d3 = −0.5434631,   d2
' = 0.8881135,    d1

" = − 0.8714813.

α1 = p3 = 1,   α2 = p2 − α1d1 = 2.02744,   α3 = p1 − α1d2 − α2d1
' = 1.45224,

α4 = p0 − α1d3 − α2d2
' − α3d1

" = 1.00702.
Hardware requirements: # of multipliers = 9, # of two-input adders = 6, # of delays = 3.

(d) Cascaded Lattice Structure -

Using Eqn. (6.152) we obtain H2(z) =
p0

' + p1
' z−1 + p2

' z−2

1+ d1
' z−1 + d2

' z−2 = 1.3136 −1.2213z−1 + z−2

1 −1.4152 z−1 +1.1197z−2 .

and  H1(z) =
p0

" + p1
"z−1

1 + d1
"z−1 = –1.3546 +z−1

1− 0.1015z−1 .   The final structure is as shown below:

  X1

  
Yo   z

–1
  z

–1
  z

–1

p0

p3

–d3   
−d1"  

− d2'

p0' p0
"

where  p0 = 0.5634,   d3 = −0.54346,   p3 = 0.5634,   p0
' =1.3136,   d2

' =1.1197,

p0
" = –1.3546,  and  d1

" = – 0.1015.

6.47  (a) A partial fraction expansion of G(z) is of the form G(z) = d +
υi

z − λ ii=1

N /2

∑ +
υi

*

z − λ i
*

i =1

N / 2

∑ .   If we

define H(z) = d
2

+
υi

z − λ ii=1

N / 2

∑ ,  then we can write  G(z) = H(z) + H*(z), where H*(z) represents the

transfer function obtained from H(z) by conjugating its coefficients.
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(b)  In this case, the  partial fraction expansion of G(z) is of the form 

G(z) = d +
ρ i

z − ξi
+

i=1

Nr

∑ υi

z − λ ii=1

N c / 2

∑ +
υi

*

z − λ i
*

i=1

Nc / 2

∑ ,  where Nr and Nc are the number of real poles 

ξi 's and complex poles λ i 's, respectively, with residues ρi 's and υi 's.  We can thus decompose 

G(z) as G(z) = H(z) + H*(z), where H(z) = d
2

+
ρi / 2

z − ξi
+

i=1

Nr

∑ υi

z − λii=1

N c / 2

∑ .

(c)  An implementation of real coefficient G(z) is thus simply a parallel connection of two 
complex filters characterized by transfer functions H(z) and H*(z) as indicated in the figure 
below:

H(z)

H  (z)*

x[n]
y[n]

= 0

However, for a real valued input x[n], the output of H(z) is the complex conjugate of H*(z).  As
a result, two times the real part of the output of H(z) is the desired real-valued sequence y[n] 
indicating that single complex filter H(z) is sufficient to realize G(z) as indicated below:

H(z)x[n]
y[n]

2

6.48  From H(z) = Y(z)
X(z)

= A + jB

1 + (α + β) z−1 , we arrive at the difference equation representation

y re[n]+ jyim[n]= – (α + jβ) yre[n − 1]+ jy im[n −1]( ) + Ax[n]+ jB x[n],  which is equivalent to a set

of two difference equations involving all real variables and real multiplier coefficients:
y re[n]= – α yre[n −1]+β yim[n −1]+ A x[n],  and yim [n] = – βyre[n − 1]– αyim[n −1]+ B x[n].

A realization of H(z) based on the last two equations is shown below:

z–1

z–1

x[n] yre[n]

yim [n]

–α

–α

–β

β

A

B

To determine the transfer function Yre(z)/X(z), we take the z-transforms of the last two 

difference equations and arrive at (1 +α z−1)Yre(z) – β z−1 Yim(z) = AX(z),  and 

222



βz−1 Yre(z)+ (1 + αz−1)Yim(z) = BX(z).  Solving these two equations we get 

Yre(z)

X(z)
= A + (Aα + Bβ) z−1

1 + 2α z−1 + (α2 + β2 )z−2 ,  which is seen to be a second-order transfer function.

6.49   An m-th order complex allpass function is given by      

            

  

Am(z) =
αm

* + αm−1
* z−1 +L+ α1

*z−(m−1) + αm
* z−m

1 + α1z
−1 + α2z−2 +L + αm−1z

−(m−1) + αmz−m .

To generate an (m–1)-th order allpass we use the recursion                 

Am−1(z) =
Pm−1(z)

Dm−1(z)
= z

Am(z)− km
*

1− kmAm(z)

 

 
 
 

 

 
 
 .

Substituting the expression for Am(z) in the above we obtain after some algebra

  Pm−1(z) = z[αm
* + αm−1

* z−1 + αm−2
* z−2 +L+ α1

*z−(m−1) + z−m

  − αm
* (1 + α1z

−1 + α2z−2 +L + αm−1z
−(m−1) + αmz−m)]

     
  
= (αm−1

* − αm
* α1)+ (αm−2

* − αm
* α2) z−1 +L+ (α1

* − αm
* αm−1) z−(m−2) + (1 − αm

2
)z−(m−1),

  Dm−1(z) = 1+ α1z
−1 + α2z−2 + L+ +αm−1z−(m−1) + αmz−m

  −αm(αm
* + αm−1

* z−1 + αm−2
* z−2 +L+ +α1

*z−(m−1) + z−m)

  
= (1− αm

2
)+ (α1 − αmαm−1

* ) z−1 + (α2 − αmαm−2
* ) z−2 + L+ (αm−1 − αmα1

*) z−(m−1) .

Hence, Am–1(z) is a complex allpass function of order m–1 given by

  

Am−1(z) =
βm−1

* + βm−2
* z−1 +L +β1

*z−(m−2) + z−(m−1)

1+ β1z
−1 +β2z−2 +L+ βm−2z−(m−2) +βm−1z

−(m−1) ,

where  βk =
αk − αmαm−k

*

1− αm
2 ,   k = 1, 2, . . . , m–1.

To develop a realization of Am(z) we express Am(z) in terms of Am–1(z):

Am(z) =
Y1

X1
=

k m
* − z−1Am−1(z)

1 + kmz−1Am−1(z)
,

and compare it with Eq. (6.73) resulting in the following expressions for the transfer 

parameters of  the two-pair:  t11 = k m
* ,   t22 = −k mz−1,   and t12 t21 = (1 − k mk m

* )z−1.   As in the 

case of the realization of a real allpass function, there are many possible choices for t12 and t21.

We choose  t12 = (1 − k mkm
* )z−1, t21 =1.   The corresponding input-output relations of the two-

pair  Y1 = km
* X1 + (1− km

* km )z−1X2 = km
* (X1 − k mz−1X2) + z−1X2 ,  and Y2 = X1 − k mz−1X2.

A realization of Am(z) based on the above two-pair relations is indicated below:
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  A m–1(z)

  
X1

  
Y1

  
– km

  z
–1

  
Y2

  
X2

  
k

m
*

Am (z) →

By continuing this process, we arrive at a cascaded lattice realization of a complex allpass 

transfer function.

6.50   (a)  H1(z) = 2 + 2 z−1

3 + z−1 = 1
2

1 + 1 + 3z−1

3 + z−1

 

 
  

 

 
  = 1

2
A0(z) + A1(z)( ),   where A0(z)  = 1 and

A1(z)  = 
1 + 3z−1

3 + z−1 .

(b)  H2(z) = 1 −z−1

4 + 2 z−1 = 1
2

1 − 2 + 4 z−1

4 + 2 z−1

 

 
  

 

 
  = 1

2
A0(z)− A1(z)( ),  where  A0(z)  = 1 and

A1(z)  = 
2 + 4 z−1

4 + 2 z−1 .

   (c)  H3(z) = 1− z−2

4 +2 z−1 + 2 z−2 = 1
2

1− 2 + 2z−1 + 4 z−2

4 + 2 z−1 + 2 z−2

 

 
  

 

 
  = 1

2
A0 (z)− A1(z)( ),  where  A0(z)  = 1 

and A1(z)  = 
2 +2 z−1 + 4 z−2

4 + 2 z−1 + 2 z−2 .

      (d) H4(z) = 3 + 9z−1 + 9 z−2 + 3z−3

12 +10z−1 + 2 z−2 = 1
2

3 + 9 z−1 + 9 z−2 + 3 z−3

(3 + z−1)(2 + z−1)

 

 
  

 

 
  = 1

2
z−1 1 +3 z−1

3 +z−1

 

 
  

 

 
  + 1+ 2 z−1

2 +z−1

 

 
  

 

 
  

 

 
 
 

 

 
 
 

= 1
2

A0(z) + A1(z)( ),  where  A0(z)  = z−1 1+ 3z−1

3 + z−1

 

 
  

 

 
   and A1(z)  = 

1 + 2 z−1

2 + z−1

 

 
  

 

 
  .

6.51   (a)  From the equation given we get

  y[2l] = h[0]x[2l ]+ h[1]x[2l −1]+ h[2]x[2l − 2]+ h[3]x[2l − 3]+ h[4]x[2l − 4]+ h[5]x[2l − 5],  and

  y[2l + 1] = h[0]x[2l +1] + h[1]x[2l ]+ h[2]x[2l −1]+ h[3]x[2l − 2] + h[4]x[2l − 3]+ h[5]x[2l − 4].

 Rewriting the above two equations in a matrix form we arrive at

  

y[2l ]
y[2l +1]

 
  

 
  = h[0] 0

h[1] h[0]
 
  

 
  

x[2l ]
x[2l +1]

 
  

 
  + h[2] h[1]

h[3] h[3]
 
  

 
  

x[2l − 2]
x[2l −1]

 
  

 
  

  
+ h[4] h[3]

h[5] h[4]
 
  

 
  

x[2l − 4]
x[2l − 3]

 
  

 
  +

0 h[5]
0 0

 
  

 
  

x[2l − 6]
x[2l − 5]

 
  

 
  ,

which can be alternately expressed as

  Yl = H0Xl + H1Xl −1 + H2X l −2 + H3X l −3,
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where 
  
Yl = y[2l ]

y[2l +1]
 
  

 
  ,  

  
X l = x[2l]

x[2l + 1]
 
  

 
  , H0 = h[0] 0

h[1] h[0]
 
  

 
  ,  H1 = h[2] h[1]

h[3] h[3]
 
  

 
  ,  

H2 = h[4] h[3]
h[5] h[4]

 
  

 
  ,  and H3 = 0 h[5]

0 0
 
  

 
  .

(b) Here   y[3l ]= h[0]x[3l]+ h[1]x[3l −1]+ h[2]x[3l − 2]+ h[3]x[3l − 3]+ h[4]x[3l − 4]+ h[5]x[3l − 5],

  y[3l +1]= h[0]x[3l + 1]+ h[1]x[3l ]+ h[2]x[3l −1] + h[3]x[3l − 2]+ h[4]x[3l − 3]+ h[5]x[3l − 4],  and

  y[3l + 2] = h[0]x[3l + 2]+ h[1]x[3l +1]+ h[2]x[3l ]+ h[3]x[3l −1]+ h[4]x[3l − 2] + h[5]x[3l − 3].

 Rewriting the above two equations in a matrix form we arrive at

  

y[3l ]
y[3l +1]
y[3l + 2]

 

 
 
 

 

 
 
 =

h[0] 0 0
h[1] h[0] 0
h[2] h[1] h[0]

 

 
 
 

 

 
 
 

x[3l ]
x[3l +1]
x[3l + 2]

 

 
 
 

 

 
 
 +

h[3] h[2] h[1]
h[4] h[3] h[2]
h[5] h[4] h[3]

 

 
 
 

 

 
 
 

x[3l − 3]
x[3l − 2]
x[3l − 1]

 

 
 
 

 

 
 
 

  

+
0 h[2] h[1]
0 0 h[2]
0 0 0

 

 
 
 

 

 
 
 

x[3l − 6]
x[3l − 5]
x[3l − 4]

 

 
 
 

 

 
 
 ,

which can be alternately expressed as   Yl = H0Xl + H1Xl −1 + H2X l −2,  where

  

Yl =
y[3l]

y[3l + 1]
y[3l + 2]

 

 
 
 

 

 
 
 ,   

  

X l =
x[3l ]

x[3l +1]
x[3l + 2]

 

 
 
 

 

 
 
 ,   H0 =

h[0] 0 0
h[1] h[0] 0
h[2] h[1] h[0]

 

 
 
 

 

 
 
 ,   H1 =

h[3] h[2] h[1]
h[4] h[3] h[2]
h[5] h[4] h[3]

 

 
 
 

 

 
 
 ,  and

H2 =
0 h[2] h[1]
0 0 h[2]
0 0 0

 

 
 
 

 

 
 
 .

(c)  Following a procedure similar to that outlined in Parts (a) and (b) above, we can shw that here 

  Yl = H0Xl + H1Xl −1 + H2X l −2,  where

  

Yl =

y[4l ]
y[4l +1]
y[4l + 2]
y[4l + 3]

 

 

 
 
 

 

 

 
 
 
,   

  

X l =
x[4l]

x[4l + 1]
x[4l + 2]
x[4l + 3]

 

 

 
 
 

 

 

 
 
 
,   H0 =

h[0] 0 0 0
h[1] h[0] 0 0
h[2] h[1] h[0] 0
h[3] h[2] h[1] h[0]

 

 

 
 
 

 

 

 
 
 
,

H1 =
h[4] h[3] h[2] h[1]
h[5] h[4] h[3] h[2]

0 h[5] h[4] h[3]
0 0 h[5] h[4]

 

 

 
 
 

 

 

 
 
 
,   and  H2 =

0 0 0 h[5]
0 0 0 0
0 0 0 0
0 0 0 0

 

 

 
 
 

 

 

 
 
 
.

6.52   (a)    d0 y[2l ]+ d1 y[2l −1]+ d2 y[2l − 2] + d3 y[2l − 3]+ d4 y[2l − 4]

  = p0 x[2l] + p1 x[2l −1]+ p2 x[2l − 2]+ p3 x[2l − 3]+ p4 x[2l − 4],

  d0 y[2l +1] + d1 y[2l]+ d2 y[2l −1]+ d3 y[2l − 2]+ d 4 y[2l − 3]

  = p0 x[2l + 1]+ p1 x[2l]+ p2 x[2l −1]+ p3 x[2l − 2] + p4 x[2l − 3],

 Rewriting the above two equations in a matrix form we arrive at

  

d0 0
d1 d 0

 
  

 
  y[2l]

y[2l +1]
 
  

 
  +

d 2 d1
d3 d2

 
  

 
  y[2l − 2]

y[2l −1]
 
  

 
  +

d4 d3
0 d4

 
  

 
  y[2l − 4]

y[2l − 3]
 
  

 
  

= 
  

p0 0
p1 p0

 
  

 
  x[2l ]

x[2l +1]
 
  

 
  +

p2 p1
p3 p2

 
  

 
  x[2l − 2]

x[2l − 1]
 
  

 
  +

p4 p3
0 p4

 
  

 
  x[2l − 4]

x[2l − 3]
 
  

 
  ,
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which can be alternately expressed as   D0Yl + D1Yl −1 + D2Yl −2 = P0Xl + P1Xl −1 + P2X l −1,  

where 
  
Yl = y[2l ]

y[2l +1]
 
  

 
  ,  

  
X l = x[2l]

x[2l + 1]
 
  

 
  , D0 =

d0 0
d1 d0

 
  

 
  ,  D1 =

d2 d1
d3 d2

 
  

 
  ,  D2 =

d4 d3
0 d 4

 
  

 
  ,

P0 =
p0 0
p1 p0

 
  

 
  ,   P1 =

p2 p1
p3 p2

 
  

 
  ,  and  P2 =

p4 p3
0 p4

 
  

 
  .

(b)

  

d0 0 0
d1 d 0 0
d2 d1 d0

 

 

 
 
 

 

 

 
 
 

y[3l]
y[3l + 1]
y[3l + 2]

 

 
 
 

 

 
 
 +

d3 d2 d1
d 4 d3 d2
0 d4 d3

 

 

 
 
 

 

 

 
 
 

y[3l − 3]
y[3l − 2]
y[3l −1]

 

 
 
 

 

 
 
 +

0 0 d4
0 0 0
0 0 0

 

 

 
 

 

 

 
 

y[3l − 6]
y[3l − 5]
y[3l − 4]

 

 
 
 

 

 
 
 

= 

  

p0 0 0
p1 p0 0
p2 p1 p0

 

 

 
 
 

 

 

 
 
 

x[3l ]
x[3l +1]
x[3l + 2]

 

 
 
 

 

 
 
 +

p3 p2 p1
p4 p3 p2
0 p4 p3

 

 

 
 
 

 

 

 
 
 

x[3l − 3]
x[3l − 2]
x[3l −1]

 

 
 
 

 

 
 
 +

0 0 p4
0 0 0
0 0 0

 

 

 
 

 

 

 
 

x[3l − 6]
x[3l − 5]
x[3l − 4]

 

 
 
 

 

 
 
 ,

which can be alternately expressed as   D0Yl + D1Yl −1 + D2Yl −2 = P0Xl + P1Xl −1 + P2X l −1,  

where 

  

Yl =
y[3l]

y[3l + 1]
y[3l + 2]

 

 
 
 

 

 
 
 ,  

  

X l =
x[3l ]

x[3l +1]
x[3l + 2]

 

 
 
 

 

 
 
 ,  D0 =

d0 0 0
d1 d0 0
d2 d1 d0

 

 

 
 
 

 

 

 
 
 
,  D1 =

d3 d2 d1
d 4 d3 d2
0 d4 d3

 

 

 
 
 

 

 

 
 
 
,

D2 =
0 0 d4
0 0 0
0 0 0

 

 

 
 

 

 

 
 ,  P0 =

p0 0 0
p1 p0 0
p2 p1 p0

 

 

 
 
 

 

 

 
 
 
,   P1 =

p3 p2 p1
p4 p3 p2
0 p4 p3

 

 

 
 
 

 

 

 
 
 

,   and  P2 =
0 0 p4
0 0 0
0 0 0

 

 

 
 

 

 

 
 .

(c)

  

d0 0 0 0
d1 d 0 0 0
d2 d1 d0 0
d3 d 2 d1 d0

 

 

 
 
 
 

 

 

 
 
 
 

y[4l ]
y[4l +1]
y[4l + 2]
y[4l + 3]

 

 

 
 
 

 

 

 
 
 

+

d4 d3 d2 d1
0 d4 d3 d2
0 0 d 4 d3
0 0 0 d4

 

 

 
 
 
 

 

 

 
 
 
 

y[4l − 4]
y[4l − 3]
y[4l − 2]
y[4l −1]

 

 

 
 
 

 

 

 
 
 

= 

  

p0 0 0 0
p1 p0 0 0
p2 p1 p0 0
p3 p2 p1 p0

 

 

 
 
 
 

 

 

 
 
 
 

x[4l ]
x[4l +1]
x[4l + 2]
x[4l + 3]

 

 

 
 
 

 

 

 
 
 

+

p4 p3 p2 p1
0 p4 p3 p2
0 0 p4 p3
0 0 0 p4

 

 

 
 
 
 

 

 

 
 
 
 

x[4l − 4]
x[4l − 3]
x[4l − 2]
x[4l −1]

 

 

 
 
 

 

 

 
 
 

,

which can be alternately expressed as    D0Yl + D1Yl −1 = P0X l + P1X l −1,  where

  

Yl =

y[4l ]
y[4l +1]
y[4l + 2]
y[4l + 3]

 

 

 
 
 

 

 

 
 
 
,  

  

X l =
x[4l]

x[4l + 1]
x[4l + 2]
x[4l + 3]

 

 

 
 
 

 

 

 
 
 
,  D0 =

d0 0 0 0
d1 d0 0 0
d2 d1 d0 0
d3 d2 d1 d0

 

 

 
 
 
 

 

 

 
 
 
 
,  D1 =

d 4 d3 d2 d1
0 d4 d3 d2
0 0 d4 d3
0 0 0 d 4

 

 

 
 
 
 

 

 

 
 
 
 

,

P0 =

p0 0 0 0
p1 p0 0 0
p2 p1 p0 0
p3 p2 p1 p0

 

 

 
 
 
 

 

 

 
 
 
 
,   and  P1 =

p4 p3 p2 p1
0 p4 p3 p2
0 0 p4 p3
0 0 0 p4

 

 

 
 
 
 

 

 

 
 
 
 

.

6.53   We first rewrite the second-order block-difference equation 

                         D0Yl + D1Yl −1 + D2Yl −2 = P0Xl + P1Xl −1 + P2X l −1,

as two separate  equations:   Wl = P0Xl + P1Xl −1 + P2X l −1,  and 

                       Yl = –D0
−1D1Yl −1 – D0

−1D2Yl −2 + D0
−1Wl .
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A cascade realization of the IIR block digital filter based on the above two equations is thus as 
shown below:

  Wl

  Yl  Xl

∆

∆

∆

∆

D0
–1

D
1

D2
P

2

P1

P
0

By interchanging the locations of the two block sections in the above structure we get an 
equivalent realization as indicated below:

  Yl  Xl

∆

∆

P
2

P1

P0

∆

∆

D
0

–1

D1

D
2

Finally, by delay-sharing the above structure reduces to a canonic realization as shown below:

∆

∆

P
2

P1

P
0   

Yl  
Xl D

0
–1

D
1

D
2

6.54 By setting αsin θ = ±β  in Eq.  (6.138), the state-space description of the sine-cosine generator 

reduces to 

  

s1[n +1]
s2[n +1]

 
  

 
  =

cosθ ±1

m β2

α2 cosθ

 

 

 
 
 

 

 

 
 
 

s1[n]
s2[n]

 
  

 
  ,  which leads to the three-multiplier structure 

shown below:
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  s2 [n]   s1[n ]  s1[n +1]  s2 [n + 1]
  z–1   z–1

cos θ cos θ

  mβ2 / α2

±1

6.55 By setting α = ±βsinθ  in Eq.  (6.138), the state-space description of the sine-cosine generator 

reduces to 
  

s1[n +1]
s2[n +1]

 
  

 
  = cosθ ±sin2 θ

m1 cosθ
 
  

 
  

s1[n]
s2[n]

 
  

 
  ,  which leads to the three-multiplier structure 

shown below:

  s2[n]   s1[n ]  s1[n + 1]
  s2[n +1]

  z–1   z–1

cosθ cosθ

  m1

± sin2θ

6.56 Let 
β
α

= −1 + cosθ
sinθ

.   Then 
α
β

sin θ= −sin2 θ
cosθ +1

= cos2 θ− 1
cosθ+ 1

= cosθ −1,   and, − β
α

sinθ = cosθ +1.

Substituting these values in Eq. (6.138) we arrive at 
s1[n +1]
s2[n +1]

 
  

 
  = cosθ cosθ −1

cosθ +1 cosθ
 
  

 
  

s1[n]
s2[n]

 
  

 
  ,

These equations can be alternately rewritten as

s1[n +1]= cosθ s1[n]+ s2[n]( ) − s2[n],  and s2[n +1] = cosθ s1[n]+ s2[n]( )+ s1[n].  A realization 
based on the last two equations results in a single-multiplier structure as indicated below:

  s2[n]
  s1[n]  s1[n + 1]

  s2[n + 1]
  z–1   z–1

cosθ

–1

6.57
s1[n +1]
s2[n +1]

 
  

 
  =

0
α(C − cosθ)

βsin θ
0 0

 

 

 
 
 

 

 

 
 
 

s1[n +1]
s2[n +1]

 
  

 
  +

C
α(1 − C cosθ)

βsinθ

–
β
α

sinθ cosθ

 

 

 
 
 
 

 

 

 
 
 
 

s1[n]
s2[n]

 
  

 
  .

If C = 0, choose  α = βsinθ .  Then
s1[n +1]
s2[n +1]

 
  

 
  = 0 – cosθ

0 0
 
  

 
  

s1[n +1]
s2[n +1]

 
  

 
  + 0 1

−1 cosθ
 
  

 
  

s1[n]
s2[n]

 
  

 
  ,   which can be realized with two 

multipliers as shown below:
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s2 [n]   s1[n ]

  s1[n +1]  s2 [n +1]
  z –1   z–1

cosθ

–cosθ

–1

The above structure can be modified to yield a single multiplier realization as  indicated on 
next page:

  s2[n]   s1[n]  s1[n +1]  s2[n + 1]
  z–1   z–1

cosθ

–1

  z–1

6.58 If C = 1, then 
s1[n +1]
s2[n +1]

 
  

 
  =

0
α(1 − cosθ)

βsinθ
0 0

 

 

 
 
 

 

 

 
 
 

s1[n +1]
s2[n +1]

 
  

 
  +

1
α(1− cosθ)

βsinθ

–
β
α

sinθ cosθ

 

 

 
 
 
 

 

 

 
 
 
 

s1[n]
s2[n]

 
  

 
  .

Choose   α = βsinθ.   This leads to 
s1[n +1]
s2[n +1]

 
  

 
  = 0 1− cosθ

0 0
 
  

 
  

s1[n +1]
s2[n +1]

 
  

 
  + 1 1 − cosθ

–1 cosθ
 
  

 
  

s1[n]
s2[n]

 
  

 
  .

A two-multiplier realization of the above equation is shown below:

  s2[n]   s1[n]
  s1[n +1]  s2[n +1]

  z–1   z –1

cosθ

–1

–cosθ1

To arrive at an one-multiplier realization we observe that the two equations describing the sine-
cosine generator are given by s1[n +1]= (1 − cosθ)s2[n +1]+ s1[n]+ (1 − cosθ)s2[n], and 

s2[n +1] = – s1[n]+ cosθs2[n].   Substituting the second equation in the first equation we arrive at
an alternate description in the form

s1[n +1]= – cosθs2[n +1]+ s2[n],

s2[n +1] = – s1[n]+ cosθs2[n].

A realization of above is identical to the single-multiplier structure of Problem 6.64,

6.59 From Figure P6.17(a), the output-input relation of the channel is given by
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Y1(z)
Y2(z)

 
  

 
  =

1 H12(z)
H21(z) 1

 
  

 
  

X1(z)
X2(z)

 
  

 
  .

Likewise, the output-input relation of the channel separation circuit of Figure P6.17(b) is given

by  
V1(z)
V2(z)

 
  

 
  =

1 –G12(z)
–G21(z) 1

 
  

 
  

Y1(z)
Y2(z)

 
  

 
  .   Hence, the overall system is characterized by

V1(z)
V2(z)

 
  

 
  =

1 –G12(z)
–G21(z) 1

 
  

 
  

1 H12(z)
H21(z) 1

 
  

 
  

X1(z)
X2 (z)

 
  

 
   = 

            
1 – H21(z)G12(z) H12(z) − G12(z)
H21(z)− G21(z) 1 – H12(z)G21(z)

 
  

 
  

X1(z)
X2 (z)

 
  

 
  .

The cross-talk is eliminated if V1(z) is a function of either X1(z) or X2(z), and similarly, if 

V2(z) is a function of either X1(z) or X2(z),   From the above equation it follows that if H12(z) 

= G12(z), and H21(z) = G21(z), then V1(z) = 1 – H21(z)G12(z)( )X1(z),  and 

V2 (z) = 1– H12(z)G21(z)( )X2(z).  Alternately, if G12(z) = H21
−1(z),  and G21(z) = H12

−1(z),  then 

V1(z) =
H12(z)H21(z) −1

H21(z)

 

 
  

 

 
  X2 (z),  and V2 (z) =

H12(z)H21(z)−1

H12(z)

 

 
  

 

 
  X1(z).

M6.1  (a)  H1(z) = (1− 0.3261z−1)(1 − 3.0666z−1)(1 + 4.748 z−1 + 7.4388z−2 )  

                                  ×(1 −1.0935z−1 +z−2)(1 + 0.6383z−1 + 0.1344z−2) .

(b)  H2(z) = (1 + 3.5585z−1)(1 + 0.281z−1)(1 − z−1)(1−1.4078z−1 + 2.0338 z−2 )   

                                  ×(1 + 0.2604 z−1 + z−2 )(1 − 0.6922 z−1 + 0.4917z−2 )

M6.2  (a)    G(z) = 1.5(1+ 3 z−1 + 4 z−2)(1 + 0.6667z−1 + 0.3333z−2 )
(1 −z−1 + 0.5z−2 )(1 −z−1 + 0.3333z−2)

.

(b)  G(z) = Ga(z)Gb(z)  where  Ga(z) = 1.5(1 + 3z−1 + 4 z−2 )
1 − z−1 + 0.5z−2 ,  and 

Gb(z) = 1+ 0.6667z−1 + 0.3333z−2

1− z−1 + 0.3333z−2 .   Alternately, we can write G(z) = Gc(z)Gd(z)   where 

Gc(z) = 1.5(1 + 0.6667z−1 + 0.3333z−2)
1 −z−1 + 0.5 z−2 ,  and Gd(z) = 1 + 3 z−1 + 4 z−2

1− z−1 + 0.3333z−2 .

(c)   Parallel form I is obtained using the M-file residuez resulting in the partial fraction 

expansion in z−1 of G(z) given by

G(z) = 12 + −35.25 − j71.25
1 −(0.5 − j0.5)z−1 + −35.25 + j71.25

1− (0.5 + j0.5)z−1 + 30 + j147.22
1 − (0.5 − j0.2887)z−1 + 30 − j147.22

1− (0.5 + j0.2887)z−1  

                                 = 12 + −70.5 − 36 z−1

1 − z−1 + 0.5 z−2 + 60 + 55z−1

1 − z−1 + 0.3333z−2 .
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Parallel form II is obtained using the M-file residue resulting in the partial fraction 

expansion in z of G(z) given by

G(z) = 1.5 + (−53.25 + j18)z−1

1 − (0.5 + j0.5)z−1 + (−53.25 − j18)z−1

1 −(0.5 − j0.5)z−1 + (57.50 − j64.9519)z−1

1 − (0.5 + j0.2887)z−1 + (57.50 + j64.9519)z−1

1 − (0.5 − j0.2887)z−1

                                   = 1.5 + −106.5 z−1 + 35.25z−2

1 − z−1 + 0.5z−2 + 115 z−1 − 20 z−2

1 −z−1 + 0.333 z−2 .

M6.3  (a)  H(z) = 2(1 − 0.6667z−1 + 0.3333z−2 )(1+ 0.5z−1 + 0.25z−2)
(1 − 0.5 z−1 + 0.5z−2)(1 +z−1 + 0.3333z−2 )

.

(b)  H(z) = Ha(z)Hb (z)  where Ha(z) = 2 (1− 0.6667z−1 + 0.3333z−2 )
1− 0.5z−1 + 0.5 z−2 ,  and 

Hb(z) = 1 + 0.5z−1 + 0.25z−2

1 +z−1 + 0.3333z−2 .   Alternately, we can write  H(z) = Hc(z)dH(z)  where 

Hc(z) = 2 (1 − 0.6667z−1 + 0.3333z−2 )
1 +z−1 + 0.3333z−2 ,   and Hd(z) = 1 + 0.5z−1 + 0.25z−2

1− 0.5z−1 + 0.5 z−2 .

(c)   Parallel form I is obtained using the M-file residuez resulting in the partial fraction 

expansion in z−1 of H(z) given by H(z) = 1+ 0.1622 − j0.286
1− (0.25 − j0.6614)z−1 + 0.1622 + j0.286

1− (0.25 + j0.6614)z−1  

 + 0.3378 − j1.2093
1 + (0.5 + j0.2887)z−1 + 0.3378 + j1.2093

1 + (0.5 − j0.2887)z−1  = 1 + 0.3243 − 0.4595z−1

1 − 0.5z−1 + 0.5 z−2 + 0.6757 − 0.3604 z−1

1 + z−1 + 0.3333z−2 .

Parallel form II is obtained using the M-file residue resulting in the partial fraction 

expansion in z of H(z) given by H(z) = 2 + (−0.5135 + j0.1022)z−1

1 − (0.25 + j0.6614)z−1 + (−0.5135 − j0.1022)z−1

1 − (0.25 − j0.6614)z−1  

                                                                 + (−0.1532 − j1.2795)z−1

1+ (0.5 − j0.2887)z−1 + (−0.1532 + j1.2795)z−1

1+ (0.5 + j 0.2887)z−1

= 2 + −1.027 z−1 + 0.1216z−2

1 − 0.5 z−1 + 0.5 z−2 + −0.3063z−1 + 0.5856z−2

1+ z−1 + 0.3333z−2 .

M6.4  Using Program 6_4 we obtain:

Lattice parameters are

-0.8364    0.7980   -0.5143    0.1667

Feedforward multipliers are

63.6358  170.1598  144.1143   57.0000   12.0000

M6.5  Using Program 6_4 we obtain:
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Lattice parameters are

0.3481    0.1801    0.2571    0.1667

Feedforward multipliers are

12.7136   -3.8223    2.5810   -2.0000    4.0000

M6.6  (a)  Using Program 6_6 we obtain the following error message:

??? Error using ==> tf2latc

The FIR system has a zero on the unit circle

(b)  Using Program 6_6 we obtain the following error message:

??? Error using ==> tf2latc

The FIR system has a zero on the unit circle

M6.7   (a)  Using roots we first determine the poles of the denominator of the lowpass transfer 

function G(z) which are then paired using the pole interlacing property resulting in the parallel 

allpass decomposition given by 

G(z) = 1
2

0.1302 − 0.3486z−1 + z−2

1 − 0.3486z−1 + 0.1302z−2 + −0.0868 + 0.6216 z−1 − 0.6367z−2 +z−3

1 − 0.6367z−1 + 0.6216z−2 − 0.0868z−3

 

 
 
 

 

 
 
 

.

(b)  Hence, the power-complementary highpass transfer function  H(z) is given by 

H(z) = 1
2

0.1302 − 0.3486z−1 + z−2

1 − 0.3486z−1 + 0.1302z−2 − −0.0868 + 0.6216 z−1 − 0.6367z−2 +z−3

1 − 0.6367z−1 + 0.6216z−2 − 0.0868z−3

 

 
 
 

 

 
 
 

= 0.1085(1− 4.9928z−1 + 9.9891z−2 − 9.9891z−3 + 4.9928z−4 + z−5 )
1 − 0.9853z−1 + 0.9738z−2 − 0.3864z−3 + 0.1112 z−4 − 0.0113z−5 .

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

|H(ejω)|2|G(ejω)|2

|H(ejω)|2 + |G(ejω)|2
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M6.8   (a)  Using roots we first determine the poles of the denominator of the highpass transfer 

function G(z) which are then paired using the pole interlacing property resulting in the parallel 

allpass decomposition given by 

G(z) = 1
2

0.5776 + 0.6976 z−1 + z−2

1 + 0.6976z−1 + 0.5776z−2 − 0.3974 +1.1635z−1 + 1.0052z−2 + z−3

1 +1.0052z−1 + 1.1635z−2 + 0.3974 z−3

 

 
 
 

 

 
 
 

.

(b)  Hence, the power-complementary lowpass transfer function H(z) is given by 

H(z) = 1
2

0.5776 + 0.6976z−1 + z−2

1 + 0.6976z−1 + 0.5776z−2 + 0.3974 +1.1635z−1 +1.0052z−2 +z−3

1+1.0052z−1 +1.1635z−2 + 0.3974z−3

 

 
 
 

 

 
 
 

= 0.4875(1+ 1.3594z−1 + 2.2098z−2 + 2.2098 z−3 +1.3594z−4 + z−5 )
1+ 1.7028z−1 + 2.4423z−2 +1.7896 z−3 + 0.9492z−4 + 0.2295z−5 .

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω /π

|H(ejω)|2

|G(ejω)|2

|G(ejω)|2 + |H(ejω)|2

M6.9  (a)  Using roots we first determine the poles of the denominator of the bandpass transfer 

function G(z) which are then paired using the pole interlacing property resulting in the parallel 

allpass decomposition given by 

G(z) = 1
2

0.5874 − 0.5154 z−1 + z−2

1 − 0.5154z−1 + 0.5874 z−2 − 0.6159 + 0.7531z−1 + z−2

1 + 0.7531z−1 + 0.6159 z−2

 

 
 
 

 

 
 
 

(b) Hence, the power-complementary bandstop transfer function H(z) is given by 

H(z) = 1
2

0.5874 − 0.5154 z−1 + z−2

1 − 0.5154z−1 + 0.5874 z−2 + 0.6159 + 0.7531z−1 + z−2

1 + 0.7531z−1 + 0.6159 z−2

 

 
 
 

 

 
 
 

                = 1.2033
1 + 0.3013z−1 +1.6183z−2 + 0.3013z−3 + z−4

1 + 0.2377z−1 + 0.8152 z−2 + 0.1294 z−3 + 0.3618z−4

 

 
  

 

 
  .
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(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

|G(ejω)|2 |H(ejω)|2

|G(ejω)|2 + |H(ejω)|2

M6.10  The MATLAB program for the simulation of the sine-cosine generator of Problem 6.56 is 
given below:

s10 = 0.1; s20 = 0.1; a = 0.9;
y1 = zeros(1,50);y2 = y1;
for n = 1:50;
y1(n) = a*(s10 + s20) - s20;y2(n) = a*(s10 + s20) + s10;
s10 = y1(n);s20 = y2(n);
end
k = 1:1:50;
stem(k-1,y1/abs(y1(7)));axis([0 50 -1.1 1.1]);
xlabel('Time index n');ylabel('Amplitude');
pause
stem(k-1,y2/y2(3));axis([0 50 -1.1 1.1]);
xlabel('Time index n');ylabel('Amplitude');

The plots generated by the above program for initial conditions s1[–1] = s2[–1] = 0.1
are shown below:

      

The outputs are zero for zero initial conditions.  Non-zero initial conditions of equal values 
appear to have no effects on the outputs.  However, unequal initial conditions have effects on the
amplitudes and phases of the two output sequences.

M6.11  The MATLAB program for the simulation of the sine-cosine generator of Problem 6.57 is 
given below:
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s10 = .1; s20 = 1; a = 0.9;
y1 = zeros(1,50);y2 = y1;
for n = 1:50;
y1(n) = -s20 + a*s10;y2(n) = -a*y1(n) + s10;
s10 = y1(n);s20 = y2(n);
end
k = 1:1:50;
stem(k-1,y1/y1(11));axis([0 50 -1.1 1.1]);
xlabel('Time index n');ylabel('Amplitude');
pause
stem(k-1,y2/y2(14));axis([0 50 -1.1 1.1]);
xlabel('Time index n');ylabel('Amplitude');

The plots generated by the above program for initial conditions s1[–1] = s2[–1] = 0.1 are 
shown below:

  

The outputs are zero for zero initial conditions.  Non-zero initial conditions of equal values 
appear to have no effects on the outputs.  However, unequal initial conditions have effects on the
amplitudes and phases of the two output sequences.

M6.12  Since the single multiplier sine-cosine generator of Problem 6.58 is identical to the single-
multiplier structure of Problem 6.64, the simulation program given above in the solution of 
Problem M6.12 also holds here.
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Chapter 7 (2e)

7.1  δp = 1 −10−αp /10  and δs = 10−α s /10 .

(a)  αp = 0.15 and αs = 41.  Hence δp = 1 −10−0.15/ 20 = 0.017121127  and 

δs = 10−41/ 20 = 0.0089125 .

(b)  αp = 0.23 and αs = 73. Hence,  δp = 1 −10−0.035 / 20 = 0.0261322146  and 

δs = 10−73/ 20 = 0.000223872.

7.2    αp = −20 log10(1 − δp )  and αs = − 20log10(δs ) .

(a)  δp = 0.01 and  δs = 0.01.  Hence, αp = −20 log10(1 − 0.01) = 0.0873 dB and 

αs = − 20log10(0.01) = 40  dB.

(b)  δp = 0.035  and δs = 0.023.   Hence, αp = −20 log10(1 − 0.035) = 0.3094537 dB and 

αs = − 20log10(0.023) = 32.76544  dB.

7.3 G(z) = H2(z) or equivalently, G(e jω) = H2 (e jω).  G(e jω) = H2(e jω) = H(e jω )
2

.    Let δp and

δs  denote the passband and stopband ripples of H(e jω) , respectively.  Also, let δp,2 = 2 δp,  

and  δs,2  denote the passband and stopband ripples of G(e jω) , respectively.  Then 

δp,2 = 1 − (1 −δ p)2,  and δs,2 = (δs )2 .   For a cascade of M sections, δp,M = 1− (1 − δp )M , and 

δs,M = (δs)
M .

7.4 

HLP(e jω )

  ω

  
ωp   ωs

π
–ωp– ωs

– π

δs

1 + δp
1 – δp

0   ω

HHP(e
j ω

)

π– π

δs

1 + δp1 – δp

π − ωpπ − ωs–(π – ω s )– (π – ωp )
0

Therefore, the passband edge and the stopband edge of the highpass filter are given by 
ω p,HP = π − ωp ,  and ωs,HP = π − ωs,  respectively.

7.5
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HLP(e jω )

  ω

  
ωp   ωs

π
–ωp–ωs

–π

δs

1+ δp
1 –δp

0   ω

G(e jω )

π–π

δs

1 + δ p1 – δp

0 ωo
ωo +ωsωo + ω pωo − ω p

ωo − ω s

Note that G(z) is a complex bandpass filter with a passband in the range 0 ≤ ω ≤ π .  Its 
passband edges are at ω p,BP = ωo ± ωp, and stopband edges at ωs,BP = ω o ± ωs.   A real 

coefficient bandpass transfer function can be generated according to 

GBP(z) = HLP(e jωoz) + HLP (e– jωo z)  which will have a passband in the range 0 ≤ ω ≤ π  and 

another passband in the range – π ≤ ω ≤ 0.   However because of the overlap of the two spectra
a simple formula for the bandedges cannot be derived.

7.6   (a)  hp(t) = ha (t) ⋅ p(t)  where p(t) = δ(t − nT)
n= −∞

∞
∑ . Thus, hp(t) = ha (nT)δ(t − nT)

n=−∞

∞
∑ .  

We also have, g[n] = ha (nT).    Now, Ha (s) = ha (t) e−st

−∞

∞

∫ dt  and 

Hp(s) = hp(t)e−st

−∞

∞

∫ dt = ha(nT)δ(t − nT)e−st

−∞

∞

∫ dt
n= −∞

∞
∑ = ha (nT)e−snT

n=−∞

∞
∑ .   

Comparing the above expression with G(z) = g[n]z−n

n= −∞

∞
∑ = ha(nT)z−n

n=−∞

∞
∑ ,  we conclude

that G(z) = Hp(s)
s= 1

T
ln z

.

We can also show that a Fourier series expansion of p(t) is given by p(t) =
1

T
e− j(2πkt /T).

k= −∞

∞
∑

Therefore, hp(t) =
1

T
e− j (2πkt /T)

k=−∞

∞
∑

 

  
 

  ha(t) =
1

T
ha (t)

k= −∞

∞
∑ e− j(2πkt /T).   Hence, 

Hp(s) =
1

T
Ha

k=−∞

∞
∑ s + j

2πkt

T
 
 

 
 .  As a result, we have 

(1):  G(z) =
1

T
Ha

k= −∞

∞
∑ s + j

2πkt

T
 
 

 
 s= 1

T
ln z

.

(b)  The transformation from s-plane to z-plane is given by z = esT .   If we express 

s = σo + jωo ,  then we can write z = re jω = eσoTe jΩ oT.    Therefore, 
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z =
< 1, for σo < 1,

= 1, for σo = 1,

> 1, for σo > 1.

 
 
 

 
 

  Or in other words, a point in the left-half s-plane is mapped onto a 

point inside the unit circle in the z-plane, a point in the right-half s-plane is mapped onto a 
point outside the unit circle in the z-plane, and a point on the jω -axis in the s-plane is mapped
onto a point on the unit circle in the z-plane.  As a result, the mapping has the desirable 
properties enumerated in Section 7.1.3.

(c)  However, all points in the s-plane defined by s = σo + jωo ± j
2πk

T
,    k = 0,,1,2,K , are  

mapped onto a single point in the z-plane as z = eσoTe
j(Ωo ±2πk

T
) T

= eσoTe jΩoT .  The 
mapping is illustrated in the figure below

1  σ   −1

jΩ zIm

zRe

z -plane-planes

T
3π

π
T

– T
3π

– π
T

Note that the strip of width 2π/T in the s-plane for values of s in the range −π / T ≤ Ω ≤ π / T  
is mapped into the entire z-plane, and so are the adjacent strips of width 2π/T.  The mapping is 
many-to-one with infinite number of such strips of width 2π/T.

It follows from the above figure and also from Eq. (1) that if the frequency response 

Ha (jΩ) = 0  for Ω ≥
π
T

,  then G(e jω) =
1

T
H a( j

ω
T

),  for ω ≤ π, and there is no aliasing.

(d)  For z = e jω = e jΩT .  Or equivalently, ω = ΩT.

7.7    Ha(s) = A
s + α

.   Then ha (t) = Ae−α tµ(t)  where µ(t)  is the unit step function.  Hence, 

g[n]= ha(nT) = Ae−αnTµ[n].  Thus, G(z) = A e−αnTz−n

n=0

∞

∑ = A
1 − e−αTz−1 ,  provided e−αT < 1.

7.8   From Problem 7.7 we recall that if Ha(s) = A
s + α

 then G(z) = A

1− e−αTz−1 .   We can express

Ha(s) = λ
λ2 + (s + β)2

= 1
2 j

1
s +β − jλ

 

 
  

 

 
  − 1

2 j
1

s +β + jλ

 

 
  

 

 
  .   Hence,
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G(z) = 1
2 j

1

1 − e− (β− jλ)Tz−1 − 1

1− e−(β+ jλ )Tz−1

 

 
  

 

 
  = 1

2 j
−e−βTe− jλTz−1 + e−βTe jλTz−1

(1− e−(β− jλ )Tz−1)(1− e−(β+ jλ )Tz−1)

 

 
 
 

 

 
 
 

= 1
2 j

z−1e−βT (e jλT − e− jλT )

1− 2z−1e−βT cos(λT)+ e−2βTz−2

 

 
 
 

 

 
 
 = z−1e−βT sin(λT)

1− 2z−1e−βT cos(λT)+ e−2βTz−2

= ze−βT sin(λT)

z2 − 2ze−βT cos(λT)+ e−2βT .

7.9   Ha(s) = s + β
λ2 + (s + β)2

= 1
2

1
s + β + jλ

 

 
  

 

 
  + 1

2
1

s + β − jλ

 

 
  

 

 
  .   Hence

G(z) = 1
2

1

1 − e−(β+ jλ )Tz−1 + 1

1 − e−(β− jλ)Tz−1

 

 
  

 

 
  = 1

2
1 − e−βTe jλTz−1 + 1− e−βTe− jλTz−1

1 − 2z−1e−βT cos(λT)+ e−2βTz−2

 

 
 
 

 

 
 
 

= 1 − z−1e−βT cos(λT)

1 − 2z−1e−βT cos(λT) + e−2βTz−2 = z2 − ze−βT cos(λT)

z2 − 2ze−βT cos(λT) + e−2βT .

7.10    Assume ha(t) is causal.  Now, ha (t) = Ha(s) est∫ ds.   Hence g[n] = ha(nT) = = Ha(s) esnT∫ ds.  

Therefore,

G(z) = g[n]z−n

n=0

∞

∑ = Ha(s) esnTz−n∫
n=0

∞

∑ ds = Ha (s) z−n

n=0

∞

∑ esnT∫ ds =
Ha(s)

1 − esTz−1∫ ds  .

Hence   G(z) = Residues
Ha(s)

1 − esTz−1

 

 
 

 

 
 

all polesof Ha (s)
∑ .

7.11  Ha(s) = 
A

s + α
.  The transfer function has a pole at s = − α.   Now 

G(z) = Residue
ats=–α

A

(s + α)(1 − esTz−1)

 

 
 
 

 

 
 
 

= A

1 − esTz−1
s=–α

= A

1 − e−αTz−1 .

7.12  (a)  Applying partial-fraction expansion we can express 

Has) = 16(s + 2)
(s + 3)(s2 + 2 s + 5)

= 16
−1 / 8
s + 3

+ 0.0625 − j0.1875
s +1 − j2

+ 0.0625 + j0.1875
s + 1+ j2

 

 
 
 

 

 
 
 

= 16
− 1

8

s + 3
+

1
8

s + 7
8

s2 + 2 s + 5

 

 

 
 
 
 

 

 

 
 
 
 

= −2
s + 3

+ 2s +14
(s + 1)2 + 22  = −2

s + 3
+ 2(s +1)

(s +1)2 + 22
6 × 2

(s +1)2 + 22 .

Using the results of Problems 7.7, 7.8 and 7.9 we thus arrive at 

G(z) = − 2
1 − e−3Tz−1 +

2 z2 − ze−2T cos(2T)( )
z2 − 2z e−2 T cos(2T)+ e−4 T + 6 ze−2T sin(2T)

z2 − 2z e−2 T cos(2T)+ e−4T .  For T = 0.2, 
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we then get Ga(z) = − 2
1 − e−0.6z−1 +

2 z2 − ze−0.4 cos(0.4)( )
z2 − 2z e−0.4 cos(0.4) + e−0.8 + 6 z e−0.4T sin(0.4)

z2 − 2z e−0.4 cos(0.4)+ e−0.8
  

= − 2
1 − 0.5488z−1 +

2 z2 − 0.6174z( )
z2 −1.2348z + 0.4493

+ 1.5662 z
z2 −1.2348z + 0.4493

 

= − 2
1 − 0.5488z−1 + 2 −1.2348z−1

1− 1.2348z−1 + 0.4493z−2 + 1.5662z−1

1 −1.2348z−1 + 0.4493z−2

= − 2
1 − 0.5488z−1 + 2 + 0.3314 z−1

1− 1.2348z−1 + 0.4493z−2

(b)  Applying partial-fraction expansion we can express 

Hb(s) = 4 s2 +10s +8
(s2 + 2 s + 3)(s +1)

= 1
s +1

+

3

2
− j

1

2

s +1 − j 2
+

3

2
+ j

1

2

s +1+ j 2

= 1
s +1

+ 3s + 5
s2 + 2 s + 3

= 1
s +1

+ 3 (s +1)
(s +1)2 + ( 2 )2

+ 2( 2 )
(s +1)2 + ( 2)2 .

Using the results of Problems 7.7, 7.8 and 7.9 we thus arrive at 

Gb(z) = 1
1− e−T z−1 + 3(z2 − ze−T cos( 2T)

z2 − 2 z e−T cos( 2T) + e−2T +
2 ze−T sin( 2T)( )

z2 − 2 ze−T cos( 2T)+ e−2T

= 1
1 − e−0.2z−1 +

3 z2 − z e−0.2 cos(0.2 2 )( )
z2 − 2 ze−0.2 cos(0.2 2) + e−0.4 +

2 ze−0.2 sin(0.2 2)( )
z2 − 2 z e−0.2 cos(0.2 2 )+ e−0.4

= 1
1 − e−0.2z−1 +

3 1− e−0.2 cos(0.2 2)z−1( )
1− 2 e−0.2 cos(0.2 2 )z−1 + e−0.4z−2 +

2 e−0.2 sin(0.2 2 )( )z−1

1 − 2 e−0.2 cos(0.2 2 )z−1 + e−0.4z−2

= 1
1 − 0.81873 z−1 + 3 − 2.3585z−1

1 −1.5724 z−1 + 0.67032 z−2 + 0.32314 z−1

1 −1.5724z−1 + 0.67032 z−2

= 1
1 − 0.81873 z−1 + 3 − 2.03545 z−1

1 −1.5724 z−1 + 0.67032 z−2 .

(c)  Applying partial-fraction expansion we can express 

Hc(s) = 3s3 + 7 s2 +10s + 7
(s2 + s +1)(s2 + 2 s + 3)

= −1.8s + 0.6
s2 + s +1

+ 4.8 s + 5.2
s2 + 2s + 3

= −1.8 (s + 0.5)
(s + 0.5)2 +( 3 / 2)2 + 3 ( 3 / 2)

(s + 0.5)2 + ( 3 / 2)2 + 4.8(s +1)
(s +1)2 + ( 2 )2

+ 0.2828( 2)
(s +1)2 +( 2 )2

Using the results of Problems 7.7, 7.8 and 7.9 we thus arrive at 

Gc(z) =
−1.8 z2 − ze−0.5T cos(0.866 T)( )

z2 − 2 ze−0.5T cos(0.866 T) + e−T + 3 ze−0.5T sin(0.866 T)
z2 −2 z e−0.5T cos(0.866 T)+ e−T

+
4.8 z2 − ze−T cos( 2 T)( )

z2 − 2 ze−T cos( 2 T)+ e−2T + 0.2828ze−T sin( 2T)
z2 − 2 ze−T cos( 2 T)+ e−2T
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= −1.8 z2 + 4.6811z
z2 − 9.36226 z + 0.8187

+ 0.2955z
z2 − 9.36226 z + 0.8187

+ 4.8z2 + 3.77376 z
z2 −1.5724z + 0.67032

+ 0.071414 z
z2 −1.5724z + 0.67032

= −1.8z2 + 4.9766z
z2 − 9.36226 z + 0.8187

+ 4.8 z2 +3.845174z
z2 −1.5724 z + 0.67032

.

7.13  (a)  Comparing Ga(z)  with Eq. (7.148) we can write 

Ga(z) = 2
1 − e−0.9z−1 + 3

1− e−1.2z−1 = 2
1 − e−α Tz−1 + 3

1− e−βTz−1 .  Hence, α = 3  and β = 4.   

Therefore, Ha(s) = 2
s + 3

+ 3
s + 4.

(b)  Comparing with Eq. (7.152) we observe  βT = 0.6  and λT = 0.9.   For T = 0.3 we get  

β = 1 /3  and λ = 3.  Thus, Ha(s) =
s + 1

3

(s + 1
3
)2 + 9

.

7.14  (a)  Ha(s) = Ga(z)
z=1+s

1−s

=
5

1 +s
1 −s

 
  

 
  

2
+ 4

1 + s
1 − s

 
  

 
  −1

8
1 + s
1 − s

 
  

 
  

2
+ 4

1+ s
1− s

 
  

 
  

= 12 s
7s2 +16s +12

.

(b)  Hb(s) = Gb (z)
z=1+s

1−s

=

8
1 + s
1 − s

 
  

 
  

3
+ 3

1 + s
1 − s

 
  

 
  

2
+ 3

1 + s
1 − s

 
  

 
  +1

 

 
 
 

 

 
 
 

3
1 + s
1− s

 
  

 
  + 1

 
  

 
  7

1 + s
1 − s

 
  

 
  

2
+ 6

1 + s
1 − s

 
  

 
  + 3

 

 
 
 

 

 
 
 

= 7 s3 + 21s2 + 21s +15
(2 s + 4)(4 s2 + 8s + 16)

.

7.15  For the impulse invariance design ω p = ΩpT = 2π × 0.5 ×103 × 0.5 ×10−3 = 0.5π .  For the 

bilinear transformation method design  ω p = 2 tan −1
Ω pT

2

 

 
  

 

 
  = 2 tan−1 πFpT( ) = 2 tan−1(0.25π)  = 

0.4238447331π.

7.16  For the impulse invariance design 2πFp =
ω p

T
= 0.3π

10−4  or fp = 1.5  kHz.  For the bilinear 

transformation method design  fp = 104 tan(0.15π) / π = 1.62186  kHz.

7.17    The passband and the stopband edges of the analog lowpass filter are assumed to Ωp = 0.25π  

and Ωs = 0.55π .  The requirements to be satisfied by the analog lowpass filter are  thus 

20 log10 Ha( j0.25π) ≥ −0.5  dB and 20 log10 Ha( j0.55π) ≤ −15 dB.
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From αp = 20log10( 1 + ε2 ) = 0.5  we obtain ε2 = 0.1220184543.  From αs = 10 log10(A2) = 15 

we obtain A2 = 31.6227766 .  From Eq. (5.??), the inverse discrimination ratio is given by 

1
k1

= A2 −1
ε

= 15.841979  and from Eq. (5.??) the inverse transition ratio is given by 

1
k

=
Ωs

Ω p
= 2.2 .  Substituting these values in Eq. (5.??) we obtain 

N =
log10(1 / k1)

log10(1/ k)
=

log10(15.841979)

log10(2.2)
= 3.503885.   We choose N = 4.

From Eq. (5.??) we have 
Ωp

Ωc

 

 
  

 

 
  

2N

= ε2.   Substituting the values of Ωp , N, and ε2  we get 

Ωc =1.3007568(Ωp ) = 1.021612.

Using the statement [z,p,k] = buttap(4)  we get the poles of the 4-th order Butterworth analog
filter with a 3-dB cutoff at 1 rad/s as  p1 = −0.3827 + j0.9239,  p2 = −0.3827 − j 0.9239,  

p3 = −0.9239 + j0.3827,  and p4 = −0.9239 − j0.3827.   Therefore 

Han(s) = 1
(s − p1)(s − p2 )(s − p3 )(s − p4 )

= 1
(s2 + 0.7654 s +1)(s2 +1.8478s +1)

.

Next we expand Han(s)  in a partial-fraction expansion using the M-file residue and arrive at 

Han(s) = −0.9238729 s − 0.7071323
s2 + 0.7654 s +1

+ 0.9238729s + 1.7071323
s2 +1.8478s + 1

.  We next denormalize Han(s)  to 

move the 3-dB cutoff frequency to Ωc =1.021612 using the M-file lp2lp resulting in 

Ha(s) = Han
s

1.021612

 
  

 
   

= −0.943847s − 0.738039
s2 + 0.781947948 s +1.0437074244

+ 0.943847s +1.78174665
s2 +1.887749436 s +1.0437074244

= −0.943847s − 0.738039
(s + 0.390974)2 + (0.9438467)2 + 0.943847s +1.78174665

(s + 0.94387471)2 + (0.39090656)2

Making use of the M-file bilinear we finally arrive at  

G(z) = −0.943847 z2 + 0.68178386z
z2 −1.363567724 z + 0.4575139

+ 0.943847 z2 − 0.25640047z
z2 − 0.77823439 z + 0.1514122

  CHECK

7.18  For no aliasing T ≤ π
Ωc

.   Figure below shows the magnitude responses of the digital filters 

H1(z) and H2(z).
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ωω

H1(e jω ) H2(e jω)

1

2

0 0–π –ππ π

(a)  The magnitude responses of the digital filters G1(z) and G2(z) are shown below:

ωω

1

0 0–π –ππ π

3/2

G2(e jω )G1( ejω )

(b) As can be seen from the above G1(z) is a multi-band filter, whereas, G2(z) is a
highpass filter.

7.19  a)  Ha(s) =
Ak

s − αkk =0

R

∑ .  Hence 

  

ha (t) = L −1 Ha(s)

s

 
 
  

 
 
  = L −1 Ak

s(s − αk)
k =0

R

∑
 
 
 

  

 
 
 

  
.

Thus 

  

ha (t) = L −1 Ak

αk

1
s − αk

− 1
s

 

 
  

 

 
  

k =0

R

∑
 
 
 

  

 
 
 

  
=

Ak

αkk =0

R

∑ eα kt −1( )µ(t).

Hence gµ[n]= ha(nT) =
Ak

αkk =0

R

∑ eα knT −1( )µ(nT).   As a result,

Gµ(z) = gµ[n]z−n

n=−∞

∞

∑ =
Ak

αk

1

1 − eα kTz−1 − 1

1 − z−1

 

 
 

 

 
 

k=0

R

∑ =
Ak

αk

z−1(eαkT −1)

(1 − eα kT z−1)(1 − z−1)

 

 
  

 

 
  

k=0

R

∑ .

Now the transfer function G(z), which is the z-transform of the impulse response g[n], is 

related to the z-transform of the step response gµ[n] by G(z) = (1 − z−1)Gµ (z).   Hence

G(z) =
Ak

αk

z−1(eα kT −1)

1 − eα kTz−1

 

 
  

 

 
  

k=0

R

∑ .

(b) Now, 
Ha(jω)

jω
≈ 0  if ω ≥ 1

2T
.   Consider the digital transfer function obtained by 

sampling F(s) = 
Ha(s)

s
.  Now this digital transfer function would correspond to the z-

transform of the sampled step response of Ha(s). Thus

Gµ(e jω ) = 1
T

F( j
ω
T

+ j
2πk

T
)

k=−∞

∞

∑ = 1
T

F( j
ω
T

) =
Ha( jω / T)

jω
. .
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Since G(z) = (1 − z−1)Gµ (z),  hence G(e jωT) = (1− e− jωT)Gµ (e jωT ) = (1 − e− jωT )
Ha( jω)

jωT
.

Since ωT <<1 , therefore 1 − e− jωT ≈ jωT . Thus, G(e jωT) ≅ Ha (jω).

7.20   The mapping is given by s =
1

T
(1 − z−1)  or equivalently, by z =

1

1 − sT
.   For 

s = σo + j Ωo , z =
1

1 − σoT − jΩoT
.   Therefore, z 2 =

1

(1− σoT)2 + (ΩoT) 2 .  Hence, z < 1,

for σo < 0.   As a result, a stable Ha (s)  results in a stable H(z) after the transformation.  

However, for σo = 0 , z 2 =
1

1+ (ΩoT) 2  which is equal to 1 only for Ωo = 0.  Hence, only the

point Ωo = 0  on the jΩ -axis in the s-plane is mapped onto the point z = 1 on the unit circle.  
Consequently, this mapping is not useful for the design of digital filters by analog filter 
transformation.

7.21  Ha(s) is causal and stable and Ha(s)  ≤  1 ∀ s,  Now, G(z) = Ha(s)
s= 2

T
1− z−1

1+ z−1

 

 
 
 

 

 
 
 

.   Thus, G(z) 

is causal and stable.  Now, 

G(e jω) = Ha(s)
s= 2

T
1−e−jω

1+e−jω

 

 
 
 

 

 
 
 

= Ha(s)
s= j

2
T

tan(ω / 2)
= Ha j

2
T

tan(ω / 2)
 
  

 
  .   Therefore, 

G(e jω) = Ha j
2
T

tan(ω / 2)
 
  

 
  ≤1  for all values of ω.   Hence, G(z) is a BR function.

7.22   Ha(jΩ) = jBΩ
(Ωo

2 − Ω2 ) + jBΩ
.   Thus, Ha( jΩ) = BΩ

(Ωo
2 − Ω2 )2 + B2Ω2

.   It can be seen that 

Ha( j0) = 0 , Ha( j∞) = 0  and Ha( jΩ0) =
BΩo

B2Ωo
2

=1.   Hence Ha(s)  is an analog bandpass 

transfer function.

Applying bilinear transformation to Ha(s)  we get 

G(z) = Ha(s)
s= z−1

z+1

=
B

z −1
z +1

 
  

 
  

z −1
z +1

 
  

 
  

2
+ B

z −1
z + 1

 
  

 
  + Ωo

2
 = B(z2 −1)

(z −1)2 + B(z2 −1) + (z +1)2  

= B(z2 −1)
(1+ B+ Ωo

2 ) z2 − 2(1 − Ωo
2) z + +(1 − B + Ωo

2 )
 

= B
1 + B + Ωo

2 ⋅ 1− z−2

1 −
2(1 − Ωo

2)

1 + B + Ωo
2

 

 
 
 

 

 
 
 z−1 +

1 − B + Ωo
2

1 + B + Ωo
2

 

 
 
 

 

 
 
 z−2

.  From Eqs. (7.36)  we have 
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α =
1 − B + Ωo

2

1 + B + Ωo
2  and β =

1 − Ωo
2

1 + Ωo
2 .  Now 1 + α =1 +

1 − B + Ωo
2

1 + B + Ωo
2 =

2(1 + Ωo
2 )

1 + B + Ωo
2  and 

1 − α =1 −
1 − B + Ωo

2

1 + B + Ωo
2 = 2B

1 + B + Ωo
2 .   Hence, G(z) = 1− α

2
⋅ 1 − z−2

1 −β(1 + α) z−1 + α z−2  which is the 

same as that given in Eq. (4.113).

7.23  G(z) =
1 + α

2
⋅

1 − 2βz−1 + z−2

1 −β(1 + α)z−1 + αz−2 .  For β = cosω0  the numerator of G(z) becomes 

1 − 2cosω0z−1 + z−2 = (1 − ejω 0z−1)(1 − e− jω0 z−1)  which has roots at z = e± jω 0 .   The 

numerator of G(zN )  is then given by (1 − e jω 0z−N )(1 − e− jω0 z−N )  whose roots are obtained

by solving the equation zN = e± jω0 , and are given by z = e j(2πn±ω 0 )/N,  0 ≤ n ≤ N −1.   

Hence G(zN )  has N complex conjugate zero pairs located on the unit circle at angles of 
2πn ± ω0

N
 radians, 0 ≤ n ≤ N −1.

ω0 = π / 2,  there are 2N equally spaced zeros on the unit circle starting at ω = π / 2N.

7.24   (a)  H(z) =
1

2
1 + A4 (z)[ ] =

N(z)

D(z)
 where 

A4(z) =
α1 −β1(1+ α1)z−1 + z−2

1− β1(1+ α1)z−1 +α1z−2

 

  
 

  
α2 − β2(1 + α2)z−1 + z−2

1− β2(1 + α2)z−1 + α2 z−2

 

  
 

  .  Therefore, 

N(z) =
1

2
[ α1 −β1(1 + α1) z−1 + z−2( ) α 2 − β2(1 + α2)z−1 + z−2( )

           + 1 − β1(1 + α1)z−1 + α1 z−2( ) 1− β2(1 + α2)z−1 + α2 z−2( )]
=

1+ α1α2

2
{1 −

(1+ α1)(1 + α2)(β1 + β2)

1+ α1α2
z−1 +

2[α1 + α2 + β1β2(1 + α1)(1 + α2)]

1 + α1α2
z−2

                      −
(1 + α1)(1 + α2)(β1 + β2)

1+ α1α2
z−3 + z−4} which is seen to be a mirror-image

polynomial.  We can express N(z) = a(1 + b1z−1 + b2z−2 + b1z−3 + z−4),  where

(1):  b1 = −
(1 + α1)(1 + α2)(β1 +β2 )

1 + α1α2
,   (2):  b2 =

2[α1 + α2 + β1β2(1 + α1)(1 + α2)]

1 + α1α2
,  and

(b)  (3):  a =
1 + α1α2

2
.

(c)  for z = e jω , we can write 

N(ejω) = a(1 + b1e−jω + b2e− j2ω + b1e
− j3ω + e− j4ω ) = a e− j2ω(b2 + 2b1cosω + 2cos2ω).
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Now N(ejω i ) = 0 , for i = 1, 2.  For i = 1 we get (4):  b2 + 2b1cosω1 + 2 cos2ω1 = 0,  and for
i = 2 we get (5):  b2 + 2b1cosω2 + 2cos 2ω2 = 0.   Solving Eqs. (4) and (5) we get

(6):  b1 = −2(cosω1 + cosω2),   and (7):  b2 = 2(2cosω1 cosω2 +1).

From Eqs. (1) and (6) we have (8):  
(1 + α1)(1 +α 2)(β1 +β2 )

1 + α1α2
= 2(cosω1 + cosω2),  and 

from Eqs. (2) and (7) we have

(9):  
2[α1 + α2 +β1β2(1 + α1)(1+ α2 )]

1+ α1α2
= 2(2cosω1 cosω2 +1).   Substituting 

α1 =
1 − tan(B1 / 2)

1 + tan(B1 / 2)
 and α2 =

1 − tan(B2 / 2)

1 + tan(B2 / 2)
, and after rearrangement we get

(10):  β1 +β2 = (cosω1 + cosω2) 1 + tan
B1

2
 
 

 
 tan

B2

2
 
 

 
 

 
  

 
  =∆ θ1,  and

(11):  β1β2 = 1+ tan
B1

2
 
 

 
 tan

B2

2
 
 

 
 

 
  

 
  cosω1 cosω2 + tan

B1

2
 
 

 
 tan

B2

2
 
 

 
 =∆ θ2.

The above two nonlinear equations can be solved resulting in

β1 =
θ1 ± θ1

2 − 4θ2

2
 and β2 =

θ2

β1
.

(d)  For the double notch filter with the following specifications: ω1 = 0.3π,  ω2 = 0.5π,   
B1 = 0.1π,  and B2 = 0.15π,   we get the following values for the parameters of the notch filter
transfer function:  α1 = 0.7265,   α2 = 0.6128, β1 = 0.5397,  and β2 = 0.0705.
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0.8

1

Ω

7.25  A zero (pole) of HLP(z)  is given by the factor (z − zk ) .  After applying the lowpass-to-

lowpass transformation, this factor becomes 
ˆ z − α

1 − α ˆ z 
− zk , and hence the new location of the 

zero (pole) is given by the roots of the equation 
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ˆ z − α − zk + α zk ˆ z = (1 + αzk )ˆ z − (α + zk ) = 0  or ˆ z k =
α + zk

1 + αzk
.   For zk = −1 , 

ˆ z k = α −1
1 − α

= −1.

7.26   The lowpass-to-bandpass transformation is given by z → − b + a ˆ z − ˆ z 2

1 − a ˆ z + b ˆ z 2
 where a = 2 αβ

β +1
  and 

b = β −1
β +1

.  A zero (pole) of HLP(z)  is given by the factor (z − zk ) .  After applying the 

lowpass-to-bandpass transformation, this factor becomes 
− b + a ˆ z − ˆ z 2

1− a ˆ z + b ˆ z 2
− zk , and  hence the new

location of the zero (pole) of the bandpass transfer function is given by the roots of the 

equation (1 + b zk ) z2 − a(1 + zk ) z + (b + zk ) = 0,  or z2 −
a(1 + zk)

1 + b zk
z +

b + zk

1 + b zk
= 0,  whose solution

is given by  ˆ z k =
a(1 + zk )

2(1 + b zk)
±

a(1 + zk )

2(1 + b zk)

 

 
 
 

 

 
 
 

2

−
b + zk

1+ bzk

 

 
  

 

 
  .  For zk = −1,  ˆ z k = ±1.

7.27  For ωc = 0.42π  and ˆ ω c = 0.57π  we have α =
sin

ωc − ˆ ω c
2

 

 
  

 

 
  

sin
ωc + ˆ ω c

2

 

 
  

 

 
  

= sin(−0.075π)
sin(0.495π)

= −0.233474.  Thus, 

HLP( ˆ z ) = GLP (z)
z−1=

ˆ z −1−α
1−α ˆ z −1

=
0.223 1 +

ˆ z −1 − α
1 − α ˆ z −1

 

 
  

 

 
  

2

1 − 0.2952
ˆ z −1 −α

1− α ˆ z −1

 

 
  

 

 
  + 0.187

ˆ z −1 − α
1 − α ˆ z −1

 

 
  

 

 
  

2

=
0.223(1− α)2(1+ ˆ z −1)2

(1+ 0.2952 α + 0.187α2) + [−2α − 0.2952(1 + α2) − 0.374α]ˆ z −1 + (α2 + 0.2952α + 0.187)ˆ z −2

=
0.33929(1 + ˆ z −1)2

0.94127 + 0.24298 ˆ z −1 + 0.17259 ˆ z −2
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7.28  For ωc = 0.42π  and ˆ ω c = 0.61π  we have α = −
cos

ωc + ˆ ω c
2

 

 
  

 

 
  

cos
ωc + ˆ ω c

2

 

 
  

 

 
  

= − cos(0.515π)
cos(−0.95π)

= −0.0492852.  

HHP( ˆ z ) = GLP (z)
z−1=−

ˆ z −1 +α
1+α ˆ z −1

=
0.223 1 −

ˆ z −1 + α
1+ α ˆ z −1

 

 
  

 

 
  

2

1 + 0.2952
ˆ z −1 + α

1 + α ˆ z −1

 

 
  

 

 
  + 0.187

ˆ z −1 + α
1 + α ˆ z −1

 

 
  

 

 
  

2  

= 0.223(1 − α)2 (1 − ˆ z −1)2

(1+ 0.2952α + 0.187α2) +[2 α + 0.2952(1 + α2 )+ 0.374 α] ˆ z −1 +(α2 + 0.2952α + 0.187)ˆ z −2

= 0.20156(1 − ˆ z −1)2

1.015 + 0.41292 ˆ z −1 + 0.20398 ˆ z −2 .
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7.29   Since the passband edge frequencies are not specified, we assume the desired 3-dB bandwidth 
of the bandpass filter HBP(z)  is ˆ ω c2 − ˆ ω c1 = ωc,where ωc  is the 3-dB cutoff frequency of 

GLP(z) .
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Moreover, the desired center frequency ˆ ω c  is related to the passband edge frequencies through

  
ˆ ω c = ˆ ω c1 ˆ ω c2  or   

ˆ ω c
2 = ˆ ω c1 ˆ ω c 2 .   Hence, 

( ˆ ω c2 + ˆ ω c1)2 = ( ˆ ω c2 − ˆ ω c1)2 + 4 ˆ ω c2 ˆ ω c1 = ωc
2 + 4 ˆ ω c

2  or ˆ ω c2 + ˆ ω c1 = ωc
2 + 4 ˆ ω c

2 .

From Eq. (7.48) the lowpass-to-bandpass transformation is given by 

z−1 → −z−1 z−1 − α
1 − αz−1 =

αz−1 −z−2

1− αz−1 ,  where α =
cos

ˆ ω c2 + ˆ ω c1

2
 
  

 
  

cos
ˆ ω c2 − ˆ ω c1

2

 
  

 
  

=

cos
ωc

2 + 4 ˆ ω c
2

2

 

 
  

 

 
  

cos
ωc

2
 
 

 
 

.

For ωc = 0.42π  and ˆ ω c = 0.45π , α = 0.013564   Then, HBP(z) = GLP(z)
z −1→δz−1−z−2

1−δ z−1

 

=
0.223(1 − z−2 )2

1+ (−2α − 0.2952α)z−1 + [α2 + 0.2952(1 + α2) + 0.187α 2]z−2

+(−0.2952α − 0.374α) z−3 + 0.187z−4

=
0.1494(1 − z−2 )2

1− 0.036718z−1 + 0.70738z−2 − 0.018832z−3 + 0.3407z−4 .
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7.30   ωp = 0.6π,  and  ˆ ω p = 0.5π.   Thus, α =

sin
ω p − ˆ ω p

2

 

 
 
 

 

 
 
 

sin
ω p + ˆ ω p

2

 

 
 
 

 

 
 
 

= sin 0.05π( )
sin(0.55π)

= 0.15838444.   

 Therefore,  HHP(z) = GHP (z) z−1→
z−1−α

1−α z−1
= N(z)

D(z)
 where

N(z) = 0.0916(1+ α)3(1 − z−1)3 = 0.14238(1 − z−1)3 and

D(z) = (1 − 0.7601α + 0.7021α2 − 0.2088α3)  

               + [−3 α + 0.7601(1 + 2α2 )− 0.7021(2α + α3)+ 0.6264α2] z−1
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+ [3α2 − 0.7601(2α + α3)+ 0.7021(1 + 2α2)− 0.6264α] z−2

+ (−α3 + 0.7601α2 − 0.7021α+ 0.2088)z−3 

= 0.896395 + 0.113602498 z−1 + 0.469574z−2 + 0.1126927z−3 .
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7.31   HBP(z) =
0.136728736(1− z−2)

1 − 0.53353098z−1 + 0.726542528z−2 .   The lowpass-to-lowpass transformation is

given by z−1 →
z−1 − α

1 − αz−1  where α =
sin

ωo − ˆ ω o
2

 
  

 
  

sin
ωo + ˆ ω o

2

 
  

 
  

 where ωo = 0.4π  and ˆ ω o = 0.5π.   

Thus, α  = –0.15838.

GLP(z) = HLP (z) z−1=
z−1−α

1−α z−1
=

0.136728736 1 −
z−1 − α

1− α z−1

 

  
 

  

2 

 
 
 

 

 
 
 

1− 0.5335098
z−1 − α

1 − αz−1

 

  
 

  + 0.726542528
z−1 − α

1 − αz−1

 

  
 

  

2  

=
0.136728736(1 − α)2(1 + ˆ z −1)2

(1+ 0.533531α + 0.72654253α2) + [−2α − 0.533531(1 + α2) −1.4531α]ˆ z −1

+(α2 + 0.533531 α + 0.72654253)ˆ z −2

 

=
0.1333(1− ˆ z −2)

0.93372 + 2.7299 ×10−9 × ˆ z −1 + 0.66713ˆ z −2 .
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7.32   The notch filter designed in Example 7.8 has notch frequency at ωo = 2π 60
400

 
  

 
  = 0.3π  and its

transfer function is given by GBS(z) =
0.940809 −1.105987z−1 + 0.94089z−2

1−1.105987z−1 + 0.881618 z−2 .   The  desired

notch frequency of the transformed filter is ˆ ω o = 2π 100
400

 
  

 
  = 0.5π .  The lowpass-to-lowpass 

transformation to be used is given by z−1 →
z−1 − α

1 − αz−1  where α =
sin

ωo − ˆ ω o
2

 
  

 
  

sin
ωo + ˆ ω o

2

 
  

 
  

 =   

– 0.32492.  The desired transfer function is thus given by

HBS(z) = GBS(z) z−1=
z−1−α

1−α z−1
=

0.940809 −1.105987
z−1 − α

1− α z−1

 

  
 

  + 0.94089
z−1 − α

1 − αz−1

 

  
 

  

2

1−1.105987
z−1 − α

1 − αz−1

 

  
 

  + 0.881618
z−1 − α

1 − αz−1

 

  
 

  

2   

=

(0.940809 +1.105987α + 0.940809 α2) + [−3.7632α −1.105987(1 + α2)]z−1

+(0.940809α2 +1.105987α + 0.940809)z−2

(1 +1.105987α + 0.940809α2 ) + [−2 α −1.105987(1 + α2) − 1.7632α]z−1

+(α2 +1.105987α + 0.881618)z−2

  

=
0.68078 + 3.4367 ×10−7z−1 + 0.68078z−2

0.73997 + 3.4367 ×10−7z−1 + 0.62783z−2 .
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7.33   GHP(z) = 0.0916(1− z−1)3

1+ 0.7601z−1 + 0.7021z−2 + 0.2088z−3 .  Now ωp = 0.6π,  and  ˆ ω p = 0.5π.   Thus, 

α = −

cos
ωp + ˆ ω p

2

 

 
 
 

 

 
 
 

cos
ωp − ˆ ω p

2

 

 
 
 

 

 
 
 

= − cos(0.55π)
cos(0.05π)

= 0.15838444.   Therefore,  

HHP (z) = GHP (z) z−1→−
z−1−α

1−α z −1
=

N(z)

D(z)
,  where N(z) = 0.0916(1 + α)3 (1 + z−1)3,  and  

D(z) = (1 − 0.7601α + 0.7021α2 − 0.2088α3 )   

        + [−3 α + 0.7601(1 + 2α2 )− 0.7021(2α + α3)+ 0.6264α2] z−1   

        + [3α2 − 0.7601(2α + α3)+ 0.7021(1 + 2α2)− 0.6264α] z−2   

        + (−α3 + 0.7601α2 − 0.7021α + 0.2088)z−3
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7.34   The ideal L-band digital filter HML(z) with an ideal frequency response given by HML( e jω ) 
= Ak for ω k−1 ≤ ω ≤ ωk ,   k = 1,2,K,L,  can be considered as sum of L ideal bandpass filters 

with cutoff frequencies at ωc1
k = ωk −1  and ωc2

k = ω k,  where ωc1
0 = 0   and ωc2

L = π.   Now from 
Eq. (7.90) the impulse response of a bandpass filter is given by  hBP[n] = 
sin(ω c2n)

πn
−

sin(ω c1n)

πn
.   Therefore , h BP

k [n]= Ak

sin(ω kn)

πn
−

sin(ω k−1n)

πn

 

 
 

 

 
 .   Hence,
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h ML[n] = h BP
k [n]

k=1

L

∑ = Ak

sin(ωk n)

πn
−

sin(ω k−1n)

πn

 

 
 

 

 
 

k =1

L

∑

= A1

sin(ω1n)

πn
− sin(0n)

πn

 

 
 

 

 
 + Ak

sin(ωkn)

πn
k =2

L −1

∑ − Ak

sin(ω kn)

πn
−

sin(ω k−1n)

πn

 

 
 

 

 
 

k=2

L −1

∑
+AL

sin(ω Ln)

πn
−

sin(ωL−1n)

πn

 

 
 

 

 
 

= A1

sin(ω1n)

πn
+ Ak

sin(ω kn)

πn
− Ak

sin(ω k−1n)

πn
k=2

L−1

∑
k=2

L−1

∑ − AL

sin(ωL−1n)

πn

= Ak

sin(ω kn)

πn
− Ak

sin(ω k−1n)

πn
k=2

L

∑
k=1

L −1

∑ .

Since ωL = π,  sin(ω Ln) = 0.    We add a term AL
sin(ω Ln)

πn
 to the first sum in the above 

expression and change the index range of the second sum, resulting in

h ML[n] = Ak

sin(ω kn)

πn
− Ak+1

sin(ω kn)

πn
k =1

L−1

∑
k=1

L

∑ .

Finally, since AL+1 = 0, we can add a term AL+1
sin(ω Ln)

πn
 to the second sum.  This leads to

h ML[n] = Ak

sin(ω kn)

πn
− Ak +1

sin(ωk n)

πn
= (Ak − Ak +1)

sin(ω kn)

πn
k=1

L

∑
k=1

L

∑
k=1

L

∑ .

7.35 HHT(e jω ) =
j, −π < ω < 0,

− j, 0 < ω < π.

 
 
    Therefore,

h HT[n]= 1
2π

HHT(e jω )e jωndω
−π

0

∫ + 1
2π

HHT(e jω)e jωndω
0

π

∫

= 1
2π

je jωndω
−π

0

∫ − 1
2π

je jωndω
0

π

∫ = 2
2πn

1 − cos(πn)( ) = 2sin2(πn / 2)
πn

  if n ≠ 0.

For n = 0, h HT[0] = 1
2π

jdω
−π

0

∫ − 1
2π

jdω
0

π

∫ = 0.

Hence,  h HT[n]=
0, if  n = 0,

2sin2 (πn / 2)
πn

, if  n ≠ 0.

 
 
 

  

Since h HT[n]= − hHT[−n] and the length of the truncated impulse response is odd, it is a Type 
3 linear-phase FIR filter.
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From the frequency response plots given above, we observe the presence of ripples at the 
bandedges due to the Gibbs phenomenon caused by the truncation of the impulse 
response.

7.36   

  

H x[n]{ } = hHT[n − k]x[k]
k =−∞

∞

∑ .

Hence   F H x[n]{ }{ } = HHT(e jω )X(e jω)  = jX(e jω), −π < ω < 0,

− jX(e jω ), 0 < ω < π.

 
 
 

  

(a) Let 
  
y[n] = H H H H x[n]{ }{ }{ }{ }. Hence Y(e jω) = j4X(e jω ), −π < ω < 0,

(–j)4 X(e jω ), 0 < ω < π,

 
 
 

  
= X(e jω).  

Therefore, y[n] = x[n].

(b) Define   g[n]= H x[n]{ },  and h*[n]= x[n].  Then  
    

H x[l]{ }x[l ]
l =–∞

∞∑ = g[l ]h *[l ]
l =–∞

∞∑ .

But from the Parseval's' relation in Table 3.2, 
  

g[l ]h *[l ]
l =–∞

∞∑ = 1
2π

G(e jω )
– π

π

∫ G(e jω)dω.   

Therefore, 
    

H x[l]{ }x[l ]
l =–∞

∞∑ = 1
2π

HHT(e jω)
−π

π

∫ X(e jω )X(e– jω )dω  where

HHT(e jω ) =
j, −π < ω < 0,

− j, 0 < ω < π.

 
 
    Since the integrand HHT(e jω )X(e jω )X(e– jω)  is an odd 

function of ω , HHT(e jω)
−π

π

∫ X(e jω )X(e– jω )dω = 0.   As a result, 
    

H x[l]{ }x[l ]
l =–∞

∞∑ = 0.

7.37 HDIF(e jω)= jω.   Hence,  

h DIF[n] = 1
2π

jω e jωn

−π

π

∫ dω = j
2π

ω e jωn

−π

π

∫ dω = j
2π

ωe jωn

jn
+ e jωn

n2

 

 
  

 

 
  −π

π
.  Therefore, 

h DIF[n] = cos(πn)
n

− sin(πn)

πn 2 = cos(πn)
n

,  if n ≠ 0. For n = 0, h DIF[0] = 1
2π

jω dω
−π

π

∫ = 0.
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Hence, h DIF[n] =
0, n = 0,

cos(πn)
n

, | n | > 0.

 
 
 

  
  Since hDIF[n] = – hDIF[–n], the truncated impulse 

response is a Type 3  linear-phase FIR filter.

The magnitude responses of the above differentiator for several values of M are given below:

        

7.38 N = 2M + 1.   ˆ h HP[n] =

1−
ω c
π

, for n = M,

–
sin ωc(n − m)( )

π(n − m)
, if  n ≠ M, 0 ≤ n < N,

0. otherwise.

 

 

 
 
  

 

 
 
 
 

Now  ˆ H HP(z) + ˆ H LP (z) = ˆ h HP[n]z−n

n=−∞

∞

∑ + ˆ h LP[n]z−n

n=−∞

∞

∑ = ˆ h HP[n]z−n

n =0

N−1

∑ + ˆ h LP[n]z−n

n =0

N−1

∑

= ˆ h HP [n]+ ˆ h LP[n]( )z−n

n =0

N −1

∑ .

But  ˆ h HP[n] + ˆ h LP[n]  =  ˆ h HP[n]+ ˆ h LP[n]=
0, 0 ≤ n ≤ N – 1,  n ≠ M,

1, n = M,

 
 
  ,

Hence, ˆ H HP(z) + ˆ H LP (z) = z–M , i.e. the two filters are delay-complementary.
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7.39 HLLP(e jω ) =
ω , ω < ω c,

0, otherwise.

 
 
    Therefore,

h LLP[n]= 1
2π

− ω e jωndω
−ωc

0

∫ + ω e jωndω
0

ωc

∫
 

 

 
 
  

 

 

 
 
  

= 1
2π

− ω e jωn

jn
+ e jωn

n2

 

 
 
 

 

 
 
 

–ωc

0

+ ω e jωn

jn
+ e jωn

n2

 

 
 
 

 

 
 
 

0

ωc
 

 

 
 
 

 

 

 
 
 

= 1
2π

ω ce
jωcn −ω ce

− jωcn

jn
+ e jωcn + e− jωcn − 2

n2

 

 
 
 

 

 
 
  =

ωc

πn
sin(ωcn) +

cos(ωcn)−1

π n2 .

7.40 HBLDIF(e jω ) =
ω, ω < ωc ,

0, otherwise.

 
 
    Hence, 

h BLDIF[n]= 1
2π

ω e jωndω
−ωc

ωc

∫ = 1
2π

ωe jωn

jn
+ e jωn

n2

 

 
 
 

 

 
 
 

−ωc

ωc
 

 

 
 
  

 

 

 
 
  

= 1
2π

ω ce
jωcn + ωce

− jωcn

jn
+ e jωcn − e− jωcn

n2

 

 
 
 

 

 
 
 = – j

ωc

πn
cos(ωcn) + j

1
πn2 sin(ωcn).

7.41    From Eq. (2.181) y(nT) = y (n −1)T( )+ x(τ)dτ
(n −1)T

nT

∫ = y (n − 1)T( )+ T ⋅x (n − 1)T( )  which reduces to

y[n] = y[n −1]+ T ⋅x[n −1] .  Hence, the corresponding transfer function is given by 

HR(z) = Tz−1

1 − z−1 .   From Eq. (2.99)  y[n] = y[n −1]+ T
2

x[n]+ x[n − 1]( ) .  Hence, the corresponding

transfer function is given by HT(z) = T
2

⋅1 + z−1

1 − z−1 .   From the plot given below it can be seen that 

the magnitude response of Hint (z)  lies between that of HR (z)  and HT(z) .
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7.42   HN(z) =
3

4
HR (z) +

1

4
HR (z) .  From the plot given below it can be seen that the magnitude 

response of HN(z)  lies between that of HR (z)  and HT(z) , and is much closer to that of  

Hint (z) .
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7.43   HN(z) =
3

4

z−1

1− z−1

 

  
 

  +
1

8

1+ z−1

1− z−1

 

  
 

  =
1+ 7 z−1

8(1 − z−1)
.   Its inverse is given by H(z) =

8(1 − z−1)

1+ 7z−1 ,

which is unstable as it has a pole at z = –7.  A stable transfer function with the same magnitude 

response is obtained by multiplying H(z) with an allpass function (1 + 7z−1) / (7 +z−1)  

resulting in H IIR(z) =
8(1 − z−1)

1+ 7z−1 ⋅
1+ 7z−1

7 + z−1 =
8(1− z−1)

7 +z−1 ,   A plot of the ideal differentiator 

Hdif (z) with a frequency response given by Eq. (7.68) and that of the IIR differentiator 

H IIR(z)  is given below.  As can be seen the magnitude response of H IIR(z)  is very close to 
that Hdif (z) .
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7.44  The frequency response of a causal ideal notch filter can thus be expressed as 

  Hnotch(e jω) =
( 
H notch(ω)e jθ(ω)  where   

( 
H notch(ω)  is the amplitude response which can be 

expressed as 
  

( 
H notch(ω) =

1, 0 ≤ ω < ωo

−1, ωo ≤ ω < π.
 
 
 

  It follows then that   
( 
H notch(ω)  is related to the

amplitude response   
( 
H LP(ω)  of the ideal lowpass filter with a cutoff at ωo  through 

  

( 
H notch(ω) = ±2

( 
H LP (ω) −1[ ].   Hence, the impulse response of the ideal notch filter is given 

by hnotch[n] = ±2 hLP[n]) − δ[n][ ],  where hLP [n] =
sin(ωon)

πn
,   −∞ < n < ∞.   The 
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magnitude responses of a length 41 notch filter with a notch frequency at ωo  = 0.4π and its 
associated length-41 lowpass filter are shown below.
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7.45  (a)  See Section 10.5.2

(b)   D = 100/11.  h[n] =
D − k

n − k
 
 

 
 k=0

k≠n

16

∏ ,   0 ≤ n ≤ 16.

h[0] = –8.8187e-07, h[1] =  1.5854e-05, h[2]  = –1.3567e-04,
h[3] =   7.3708e-04, h[4] =  –2.8661e-03, h[5] =  8.5600e-03,
h[6] = –2.0771e-02, h[7] =  4.3863e-02, h[8] = –4580e-02, h[9] =  1.0089e+00,   
h[10] = 7.0620e-02, h[11] =  –1.8343e-02, h[12] = 5.0156e-03,
h[13] = –1.1485e-03, h[14] = 1.9597e-04, h[15] = –2.1708e-05, h[16] = 1.1604e-06.
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7.46   Note that the desired delay D = 9.0909.  Hence N = 9 is the order of the allpass transfer 

function.  The allpass fractional delay are thus given by A(z) =
z−9D(z−1)

D(z)
 where

D(z) = 1 − 0.81081z−1 + 0.031901z−2 − 0.012872z−3 + 0.0045589z−4 − 0.0013236 z−5  

         + 2.9767 ×10−4 z−6 − 4.829 × 10−5 z−7 − 5.0088 × 10−6 z−8 + 2.489 × 10−7 z−9.
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7.47   (a)  x[n] = s[n] + Ak
k= 0

M

∑ sin(kωon + φk ) = s[n] + r[n],  where s[n] is the desired signal and 

r[n] = Ak
k=0

M

∑ sin(k ωon + φk )  is the harmonic interference with fundamental frequency ωo .

Now, r[n − D] = Ak
k=0

M

∑ sin kωo(n − D) + φk[ ]) = Ak
k=0

M

∑ sin(k ωon + φk − 2πk) = r[n] .

(b)  y[n] = x[n] − x[n − D] = s[n]+ r[n]− s[n − D] − r[n − D] = s[n] + r[n] − s[n − D] − r[n]
= s[n] − s[n − D].   Hence, y[n] does not contain any harmonic disturbances.

(c)  Hc (z) =
1 − z−D

1 − ρDz−D .   Thus, 

Hc (e jω) =
1 − e− jDω

1 − ρDe− jDω =
1 − cos(Dω)( ) + jsin(Dω)

1− ρD cos(Dω)( ) + jρD sin(Dω)
.   Then 

Hc (e jω ) =
2 1 − cos(Dω)( )

1 − 2ρD cos(Dω) + ρ2D .   A plot of Hc (e jω )  for ωo = 0.22π  and ρ = 0.99  is

shown below:

-1 -0.5 0 0.5 1
0

0.5

1

1.5

ω /π
(d)

259



x[n] y[n]

+–

z–D

7.48   Hc (z) =
P(z)

Q(z)
=

1 − N(z)

1 − (0.985)(100/11) N(z)
 where the coefficients of N(z) are as given in 

Problem 7.45 solution.  The transfer function coefficients in ascending powers of z−1   are 
given by

    Numerator Coefficients

  Columns 1 through 5
   1.0000e+00  -1.5854e-05   1.3567e-04  -7.3708e-04   2.8661e-03

  Columns 6 through 10
   -8.5600e-03  2.0771e-02  -4.3863e-02   9.4580e-02  -1.0089e+00

  Columns 11 through 15
  -7.0620e-02   1.8343e-02  -5.0156e-03   1.1485e-03  -1.9597e-04

  Columns 16 through 17
  2.1708e-05  -1.1604e-06

  Denominator Coefficients

  Columns 1 through 5
   1.0000e+00  -1.3819e-05   1.1826e-04  -6.4246e-04   2.4981e-03

  Columns 6 through 10
   -7.4611e-03  1.8104e-02  -3.8232e-02   8.2439e-02  -8.7934e-01

  Columns 11 through 15
  -6.1554e-02   1.5988e-02  -4.3717e-03   1.0010e-03  -1.7081e-04

  Columns 16 through 17
  1.8921e-05  -1.0114e-06

-1 -0.5 0 0.5 1
0

0.5

1

1.5

ω/π

ρ = 0.985

260



7.49   Hc (z) =
P(z)

Q(z)
=

D(z) − z−9D(z−1)

D(z) − (0.99)(100/11) z−9D(z−1)
 where

P(z) = 1− 0.81086 z−1 + 0.031949z−2 − 0.01317z−3 + 0.0058825z−4 − 0.0058825z−5   

+ 0.01317z−6 − 0.031949z−7 + 0.0810869z−8 −z−9 ,  and  

Q(z) = 1 − 0.81086z−1 + 0.031945z−2 − 0.013144z−3 + 0.0057669z−4 − 0.0054844z−5  

+ 0.012046z−6 − 0.029164z−7 + 0.074006 z−8 −0.91268z−9,

-1 -0.5 0 0.5 1
0

0.5

1

1.5

ω/π

ρ = 0.99

7.50 HLP(e jω) =

1, −ωp ≤ ω ≤ ω p,

1 −
ω − ω p

ωs − ωp

 

 
 
 

 

 
 
 , ωp < ω ≤ ωs,

1 +
ω + ω p

ωs − ωp

 

 
 
 

 

 
 
 , − ωs < ω ≤ ω p,

0, elsewhere.

 

 

 
 
 
  

 

 
 
 
 
 

Now, for n ≠ 0, h LP[n] = 1
2π

HLP(e jω ) e jωndω
−π

π

∫

= 1
2π

e jωndω
−ωp

ω p

∫ + 1 −
ω − ωp

∆ω

 

 
  

 

 
  e

jωndω + 1+
ω + ω p

∆ω

 

 
  

 

 
  e

jωndω
−ωs

−ωp

∫
ωp

ωs

∫
 

 

 
 
 
 

 

 

 
 
 
 

= 1
2π

e jωndω
−ωs

ωs

∫ −
ω − ω p

∆ω
e jωndω +

ω + ωp

∆ω
e jωndω

−ωs

−ωp

∫
ωp

ωs

∫
 

 

 
 
 
 

 

 

 
 
 
 

= 1
2π

2sin(ωsn)

πn
− 1

∆ω

(ω − ωp )e jωn

jn
+ e jωn

n2

 

 

 
 
 

 

 

 
 
 ωp

ωs

+ 1
∆ω

(ω +ω p )e jωn

jn
+ e jωn

n2

 

 

 
 
 

 

 

 
 
 – ωs

– ωp
 

 
  

 
 
 

 

 
  

 
 
 

= 1
2π

2sin(ωsn)

πn
− 1

∆ω
∆ω e jωsn

jn
+ e jωsn − e jωpn

n2 + −∆ω e− jωsn

jn
− e− jω pn − e− jωsn

n2

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

261



= 1
2π

2sin(ωsn)

πn
− 2

∆ω
∆ω sin(ωsn)

n
+

cos(ωsn)− cos(ω pn)

n2

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

= 1
∆ω

cos(ωpn)

πn2 −
cos(ωsn)

πn2

 
 
 

  

 
 
 

  
 = 1

∆ω
cos((ω c − ∆ω / 2)n)

πn2 −
cos((ωc + ∆ω / 2)n)

πn2

 
 
  

 
 
  

= 2 sin(∆ωn / 2)
∆ωn

sin(ωcn)

πn
.

Now for n = 0,   h LP[0] = 1
2π

HLP (e jω )dω
−π

π

∫ = 1
2π

(area under the curve) 

= 1
2π

2 ωs + ωp( )
2

=
ω c

π
.

Hence, h LP[n] =

ωc

π
, if  n = 0,

2sin(∆ωn / 2)
∆ωn

sin(ω cn)

πn
, if  n ≠ 0.

 

 
  

 
 
 

An alternate approach to solving this problem is as follows.  Consider the frequency 

response G(e jω) =
d HLP (e jω )

dω
=

0, −ωp ≤ ω ≤ ωp ,

– 1
∆ω

, ω p < ω < ωs ,

1
∆ω

, −ωs < ω < −ωp,

0, elsewhere.

 

 

 
  

 

 
 
 

  Its inverse DTFT is given by

g[n]= 1
2π

G(e jω ) e jωn dω
–π

π

∫  = 1
2π

1
∆ω

–ωs

–ωp

∫ e jωn dω − 1
2π

1
∆ω

ωp

ωs

∫ e jωn dω

= 1
2π∆ω

−ωs

−ωpejωn

jn
−

ωp

ωsejωn

jn

 

 

 
 
  

 

 

 
 
  

 = 1
jπn∆ω

cos(ω pn) − cos(ωsn)( ) .

Thus, h LP[n] = j
n

g[n]  = 1
πn2 ∆ω

cos(ω pn)− cos(ωsn)( )
= 1

πn2 ∆ω
cos ω c − ∆ω

2

 
  

 
  n

 
  

 
  − cos ω s + ∆ω

2

 
  

 
  n

 
  

 
  

 

 
 
 

 

 
 
 

= 2 sin(∆ωn / 2)
∆ωn

⋅
sin(ωcn)

πn
, for n ≠ 0.

For n = 0, h LP[n] =
ω c

π
.

7.51 Consider the case when the transition region is approximated by a second order spline.  In 
this case the ideal frequency response can be constructed by convolving an ideal, no-
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transition-band frequency response with a triangular pulse of width ∆ω = ωs − ωp , which in 

turn can be obtained by convolving two rectangular pulses of width ∆ω / 2 .  In the time 
domain this implies that the impulse response of a filter with transition band approximated by 
a second order spline is given by the product of the impulse response of an ideal low pass 
filter with no transition region and square of the impulse response of a rectangular pulse.   
Now,

HLP(ideal)[n] =
sin(ωcn)

πn
 and H rec[n] = sin(∆ωn / 4)

∆ωn / 4
.  Hence,  HLP[n]= HLP(ideal)[n] Hrec[n]( )2

.

Thus for a lowpass filter with a transition region approximated by a second order spline   

h LP[n] =

ω c
π

, if  n = 0,

sin(∆ωn / 4)
∆ωn / 4

 
  

 
  

2 sin(ωcn)

πn
, otherwise.

 

 
  

 
 
 

Similarly the frequency response of a lowpass filter with the transition region specified by a
P-th order spline can be obtained by convolving in the frequency domain an ideal filter with 
no transition region with P rectangular pulses of width ∆ω /P.  Hence, 

HLP[n]= HLP(ideal)[n] Hrec[n]( )P
, where the rectangular pulse is of width ∆ω /P.  Thus

h LP[n] =

ωc
π

, if  n = 0,

sin(∆ωn / 2P)
∆ωn / 2P

 
  

 
  

P sin(ωcn)

πn
, otherwise.

 

 
  

 
 
 

7.52 Consider another filter with a frequency response G(e jω)  given by

G(e jω) =

0, 0 ≤ ω ≤ ω p,

−π
2∆ω

sin
π(ω − ω p)

∆ω

 

 
  

 

 
  , ωp < ω ≤ ωs,

−π
2∆ω

sin
π(ω + ω p)

∆ω

 

 
  

 

 
  , −ωs ≤ ω ≤ −ωp ,

0, elsewhere.

 

 

 
 
  

 

 
 
 
 

Clearly G(e jω) = dH(e jω )
dω

.   Now,

g[n] = 
1

2π
G(e jω)e jωndω

−π

π

∫  = 
−π

8π∆ωj
e

j
π(ω−ωp)

∆ω
 

 
 

 

 
 
e

jωn
dω

ωp

ωs

∫ − e
− j

π(ω−ω p)

∆ω
 

 
 

 

 
 
e

jωn
dω

ωp

ωs

∫
 

 

 
 
  

+ e
j

π(ω+ωp )

∆ω
 

 
 

 

 
 
e

jωn
dω

−ωs

−ωp

∫ − e
− j

π(ω+ωp )

∆ω
 

 
 

 

 
 
e

jωn
dω

−ωs

−ωp

∫
 

 

 
 
  
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       = 
−1

8∆ωj
e

(− jπωp / ∆ω) e
jωs(n+π / ∆ω)

− e
jω p (n+π / ∆ω)

j(n + π / ∆ω)

 

 

 
 
 

 

 

 
 
 

− e
( jπωp / ∆ω) e

jωs(n −π / ∆ω)
− e

jωp (n−π / ∆ω)

j(n − π / ∆ω)

 

 

 
 
 

 

 

 
 
 

 

 

 
  

+e
( jπωp / ∆ω) e

− jω p (n+π / ∆ω)
− e

− jωs(n+π / ∆ω)

j(n + π / ∆ω)

 

 

 
 
 

 

 

 
 
 

− e
(− jπωp / ∆ω) e

−jωp (n −π / ∆ω)
− e

− jωs(n −π / ∆ω)

j(n − π / ∆ω)

 

 

 
 
 

 

 

 
 
 

 

 

 
  

= 
−1

4∆ωj

−sin(ωs n) − sin(ωp n)

(n + π / ∆ω)
−

−sin(ωsn)− sin(ω pn)

(n − π / ∆ω)

 

 
  

 

 
   = 

sin(ωsn)+ sin(ω pn)( )
4∆ωj

−2π / ∆ω

n
2

− π
2

/ ∆ω
2

 

 
 
 

 

 
 
 

 =
sin(ωcn)cos(∆ωn / 2)

∆ωj
1

π 1 −(∆ω / π)
2

n
2 

  
 
  

 

 

 
 
 
 

 

 

 
 
 
 
.

Now h[n] = 
j

n
g[n].   Therefore, h[n] = cos(∆ωn / 2)

1 − (∆ω / π)2n 2

 

 
  

 

 
  

sin(ωcn)

πn

 

 
 

 

 
 .

7.53 Let wR[n]  = 
1

k
,  Since the convolution of two length N sequences produces a sequence of 

length 2N– 1, therefore 2N –1 = 2M + 1 which gives N = M + 1. Therefore, wR[n]  = 
1

k
,

–
M

2
≤ n ≤ M

2
.   Now, w[n] = wR[n] * wR[n]  = 

1

k2 M +1− n( ), −M ≤ n ≤ M,

0, elsewhere,

 
 
 

  
 or

       w[n] = 
M +1

k2 1 −
n

M +1

 

 
  

 

 
  , −M ≤ n ≤ M,

0, elsewhere.

 
 
 

  
,

Now 
M +1

k 2 =1  which yields k = M +1 .  Hence a Bartlett window of length 2M + 1 is 

obtained by the linear convolution of 2 length M + 1 rectangular windows scaled by a factor 

of 
1

M + 1
 each.   The DTFT ΨBART(e jω)  of the Bartlett window is thus given by

ΨBART(e jω) = ΨR(e jω)( )2
= 1

M +1

sin2 ω(M+1)
2( )

sin2 ω
2( ) ,   where ΨR(e jω)  is the DTFT of the 

rectangular window.  Hence ΨBART(e jω)  = 0 at ω = ± 2π
M +1

, ± 4π
M +1

, ......

Therefore ∆ ML,BART = 4π
M +1

.   It should be noted that the main lobe width given here is for a 

Bartlett window of length 2M + 1 = 2N – 1 as compared to that of a rectangular window of 

length N = M + 1.   The maximas of the DTFT ΨBART(e jω)  of the Bartlett window occur at the

same location as the DTFT ΨR(e jω)  of the rectangular window.  Since ΨBART(e jω) =  

ΨR(e jω )( )2
, it follows then 

  
A sl ,BART = 2 × Asl ,R = 2 ×13.3 = 26.6   dB.
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7.54 wGC[n] = α + βcos
2πn

2M + 1

 
  

 
  + γ cos

4πn
2M +1

 
  

 
  

 
  

 
  wR[n]

= α + 2β e
j

2πn
2M+1

 
 

 
 + e

− j
2πn

2M+1
 
 

 
 

 

 

 
 
 

 

 

 
 
 

+ 2γ e
j

4πn
2M+1

 
 

 
 + e

− j
4πn

2M+1
 
 

 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 
wR[n]

Hence, ΨGC (e jω ) = α ΨR(e jω )  + 2β ΨR e
j ω−

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

+ 2βΨR e
j ω+

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

+ 2γ ΨR e
j ω−

4π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

+ 2γ ΨR e
j ω+

4π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 
.

For the Hann window : α  = 0.5, β  = 0.5 and γ  = 0.  Hence

ΨHANN(e jω) = 0.5 ΨR(e jω )  + ΨR e
j ω−

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

 + ΨR e
j ω+

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

= 0.5
sin

(2M +1)ω
2

 
  

 
  

sin(ω / 2)
+

sin (2M +1)
ω
2

− π
2M +1

 
  

 
  

 
  

 
  

sin
ω
2

− π
2M +1

 
  

 
  

+
sin (2M +1)

ω
2

+ π
2M +1

 
  

 
  

 
  

 
  

sin
ω
2

+ π
2M +1

 
  

 
  

.

For the Hamming window α  = 0.54, β  = 0.46, and γ  = 0.  Hence

ΨHAMMING(e jω) = 0.54 ΨR(e jω )  + 0.92 ΨR e
j ω−

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

+0.92ΨR e
j ω+

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

.

= 0.54
sin

(2M +1)ω
2

 
  

 
  

sin(ω / 2)
+ 0.92

sin (2M +1)
ω
2

− π
2M +1

 
  

 
  

 
  

 
  

sin
ω
2

− π
2M +1

 
  

 
  

+ 0.92
sin (2M + 1)

ω
2

+ π
2M + 1

 
  

 
  

 
  

 
  

sin
ω
2

+ π
2M +1

 
  

 
  

. .

For the Blackmann window  α  = 0.42, β  = 0.5 and γ  = 0.08

ΨBLACK (e jω ) = 0.54ΨR(e jω)  +ΨR e
j ω−

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

+ WR e
j ω+

2π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

                                + 0.16 ΨR e
j ω−

4π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

+ 0.16 ΨR e
j ω−

4π
2M+1

 
 

 
 

 

 

 
 
 

 

 

 
 
 

= 0.42
sin

(2M +1)ω
2

 
  

 
  

sin(ω / 2)
+

sin (2M +1)
ω
2

− π
2M +1

 
  

 
  

 
  

 
  

sin
ω
2

− π
2M +1

 
  

 
  

+
sin (2M +1)

ω
2

+ π
2M +1

 
  

 
  

 
  

 
  

sin
ω
2

+ π
2M +1

 
  

 
  
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+ 0.16
sin (2M +1)

ω
2

− 2π
2M +1

 
  

 
  

 
  

 
  

sin
ω
2

− 2π
2M + 1

 
  

 
  

+ 0.16
sin (2M +1)

ω
2

− 2π
2M +1

 
  

 
  

 
  

 
  

sin
ω
2

− 2π
2M +1

 
  

 
  

.

7.55 (a) N = 1 and hence, xa(t) = α0 + α1t.   Without any loss of generality, for L = 5, we first 

fit the data set {x[k]}, −5 ≤ k ≤ 5,  by the polynomial xa(t) = α0 + α1t  with a minimum mean-

square error at t = –5, –4, . . . , 0, 1, . . , 5, and then replace x[0] with a new value x [0]  = 
xa(0) = α0 .

Now, the mean-square error is given by e(α0,α1) = x[k]− α0 – α1k{ }2

k=−5

5

∑ .  We set 

∂ ε(α0,α1)

∂α0
= 0  and 

∂ ε(α0,α1)

∂α1
= 0  which yields 11α0 + α1 k

k=−5

5
∑ = x[k],

k=−5

5
∑  and 

α0 k
k=−5

5
∑ + α1 k2

k =−5

5
∑ = k x[k].

k =−5

5
∑

From the first equation we get x [0] = α0 = 1
11

x[k]
k =−5

5

∑ .   In the general case we thus have

x [n] = α0 = 1
11

x[n − k]
k=−5

5

∑ ,  which is a moving average filter of length 11.

(b) N = 2 and hence, xa(t) = α0 + α1t + α2t2.   Here, we fit the data set {x[k]}, −5 ≤ k ≤ 5,  by 

the polynomial xa(t) = α0 + α1t + α2t2  with a minimum mean-square error at t = –5, –4, . . . , 

0, 1, . . , 5, and then replace x[0] with a new value x [0]  = xa(0) = α0 .  The mean-square 

error is now given by ε α0,α1,α2( ) = x[k]− α0 −α1k − α2k 2( )2

k =−5

5

∑ .   We set 

∂ ε(α0,α1,α2)

∂α0
= 0,  

∂ ε(α0,α1,α2)

∂α1
= 0,  and 

∂ ε(α0,α1,α2)

∂α2
= 0,  which yields

11α0 +110 α2 = x[k],
k=−5

5

∑  110 α1 = k x[k],
k =−5

5

∑   110 α0 + 1958α2 = k2x[k].
k =−5

5

∑   From the first 

and the third equations we then get

α0 =

1958 x[k]
k=−5

5

∑ −110 k2x[k]
k =−5

5

∑
(1958 ×11) −(110)2  = 1

429
89 − 5 k2( )

k =−5

5

∑ x[k].

Hence, here we replace x[n] with a new value x [n] = α0   which is a weighted combination of 

the original data set {x[k]}, −5 ≤ k ≤ 5 :

x [n] = 1
429

89 − 5 k2( )
k=−5

5

∑ x[n − k] 

= 1
429

(−36 x[n + 5]+ 9 x[n + 4]+ 44 x[n + 3]+ 69x[n + 2] +84 x[n +1]+ 89 x[n]
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+ 84x[n −1]+ 69x[n − 2]+ 44x[n − 3]+ 9 x[n − 4]− 36x[n − 5]).

(c) The impulse response of the FIR filter of Part (a) is given by

h1[n]= 1
11

1 1 1 1 1 1 1 1 1 1 1{ },

whereas, the impulse response of the FIR filter of Part (b) is given by

h1[n]= 1
429

−36 9 44 69 84 89 84 69 44 9 −36{ }.
The corresponding frequency responses are given by

H1(e jω ) = 1
11

e− jωk

k =−5

5

∑ ,  and H2(e jω) = 1
429

89− 5k 2( )e− jωk

k=−5

5

∑ .

A plot of the magnitude responses of these two filters are shown below from which it can be 
seen that the filter of Part (b) has a wider passband and thus provides smoothing over a larger 
frequency range than the filter of Part (a).

7.56 y[n] = 
1

320
{– 3x[n – 7] – 6x[n – 6] – 5x[n – 5] + 3x[n – 4] + 21x[n – 3] + 46x[n – 2] 

+ 67x[n – 1] + 74x[n] + 67x[n + 1] + 46x[n + 2] + 21x[n + 3]

+ 3x[n + 4]5x[n + 5] – 6x[n + 6] – 3x[n + 7] }.

Hence,  
Y(e jω)

X(e jω)
= 1

320
−3 e− j7ω − 6e− j6ω − 5 e− j5ω + 3 e− j4ω + 21e− j3ω + 46 e− j2ω + 67e− jω + 74{

+ 67e jω + 46e j2ω + 21e j3ω + 3 e j4ω − 5 e j5ω − 6 e j6ω − 3 e j7ω}.

Thus, H(e jω) = Y(e jω )

X(e jω )
= 1

160
74{ + 67cosω + 46cos(2ω) + 21cos(3ω) + 3cos(4ω)

–5 cos(5ω) – 6 cos(6 ω) – 3 cos(7ω)}.

The magnitude response of the above FIR filter is plotted below (solid line marked 's') along 
with that of the FIR filter of Part (b) of Problem 7.25 (dashed line marked '(b)').  Note that 
both filters have roughly the same passband but the Spencer's filter has very large attenuation 
in the stopband and hence it provides better smoothing than the filter of Part (b).
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7.57 (a) L = 3.  P(x) = α1x + α2x2 + α3x3.  Now P(0) = 0 is satisfied by the way P(x) has been 

defined.  Also to ensure P(1) = 1 we require α1 + α2 + α3 = 1.  Choose m = 1 and n = 1, 

Since 
dP(x)

dx x=0
= 0 , hence α1 + 2α2x + 3α3x2

x=0
= 0,  implying α1 = 0 .  Also since 

dP(x)
dx x=1

= 0 , hence  α1 + 2α2 + 3α3 = 0 .  Thus solving the three equations:

α1 + α2 + α3 = 1, α1 = 0 , and α1 + 2α2 + 3α3 = 0

we arrive at α1 = 0 , α2 = 3 , and α3 = –2.   Therefore, P(x) = 3x2 – 2x3.

(b) L = 4.  Hence, P(x) = α1x + α2x2 + α3x3 + α4x4 .  Choose m = 2 and n = 1 (alternatively 
one can choose m = 1 and n = 2 for better stopband performance ).   Then,
P(1) = 1  ⇒ α1 + α2 + α3 + α4 =1 ,

dP(x)
dx x=0

= 0
  

⇒
  

α1 + 2α2x + 3α3x2 + 4α4x3

x=0
= 0,

d2 P(x)

dx2 x=0
= 0   ⇒   2α2 + 6α3x +12α4x2

x =0
= 0,

dP(x)
dx x=1

= 0     ⇒   α1 + 2α2 + 3α3 + 4α4 = 0 .

Solving the above simultaneous equations we get  α1 = 0,  α2 = 0,  α3 = 4,  and α4 = – 3.    

Therefore, P(x) = 4x3 − 3x4.

(c) L = 5.  Hence P(x) = α1x + α2x2 + α3x3 + α4x4 + α5x5.   Choose m = 2 and n = 2. 

Following a procedure similar to that in parts (a) and (b) we get α1 = 0,  α2 = 0, α3 = 10,  

α4 = –15,  and  α5 = 6.
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7.58  From Eq. (7.102) we have 
  

( 
H (ω) = c[k]sin(

k=1

M

∑ ωk).  Now 

  

( 
H (π − ω) = c[k]sin (ω − π)k( )

k=1

M

∑ = − c[k]sin(
k=1

M

∑ ωk) cos(πk) = c[k](−1)k+1sin(
k=1

M

∑ ωk).

Thus,   
( 
H (ω) =

( 
H (π − ω)  implies c[k]sin(

k=1

M

∑ ωk) = c[k](−1)k+1sin(
k=1

M

∑ ωk), or equivalently, 

1 − (−1)k+1( )c[k]sin(
k=1

M

∑ ωk) = 0  which in turn implies that c[k] = 0  for k = 2, 4, 6, .... .

But from Eq. (7.103) we have c[k] = 2 h[M − k],   1 ≤ k ≤ M.   Or, h[k] =
1

2
c[M − k].   For k 

even, i.e., k = 2R, h[2R] =
1

2
c[M − 2R] = 0  if M is even.

7.59  (a)  H[k] = H(ejω k ) = H(e j2πk /M ),  0 ≤ k ≤ M −1.   Thus, h[n] =
1

M
H[k]WM

− kn

k=0

M−1

∑ ,  

where WM = e− j@π/M .

Now, H(z) = h[n]z− n

n= 0

M−1

∑ =
1

M
H[k]

k=0

M−1

∑
n=0

M−1

∑ WM
− knz−n =

1

M
H[k] WM

− knz−n

n=0

M−1

∑
 

  
 

  
k=0

M−1

∑ .

We can write WM
− knz−n

n=0

M−1

∑ = WM
− knz−n

n=0

∞
∑ − WM

− knz−n

n=M

∞
∑  

= WM
− knz− n

n=0

∞
∑ − WM

−kMz−M WM
− knz− n

n=0

∞
∑ = 1 − z−M( ) WM

− knz−n

n= 0

∞
∑ =

1− z−M

1 − WM
− kz−1 .

Therefore, H(z) =
1 − z−M

M

H[k]

1 − WM
−kz−1

k=0

M−1

∑ .

(b)
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H[0]

M

H[1]
M

H[M − 1]
M

x[n] y[n]

1

1− z−1

1

1− z−1e j2π/ M

1

1− z−1e j2π(M−1)/ M

1− z−M

(c)  On the unit circle

7.60   (a) For Type 1 FIR filter, H(e jω) = e− j
ω(M−1)

2 H(e jω) .   Since in frequency sampling 

approach we sample the DTFT H(e jω)  at M points given by ω = 2πk
M

,    k = 0,1,K,M −1 , 

therefore H[k]=  H(e j2πk / M )  = Hd (e j2πk / M) e−j2πk(M−1) / 2M ,    k = 0,1,K,M −1 .  Since the 

filter is of Type 1, (M – 1) is even, thus e j2π(M−1) /2 =1 .  Moreover, h[n] being real, 

H(e jω) = H* (e jω ).  Thus, H(e jω) = e jω(M−1) / 2 H(e jω) , , π ≤ ω < 2π.  Hence,

      

  

H[k]=
Hd(e j2πk / M ) e− j2πk(M−1) / 2M , k = 0,1,2,K,

M−1

2
,

Hd(e j2πk / M) e j2π(M−k)(M−1) / 2M, k = M+1

2
,

M+3

2
,K,M −1.

 
 
 

  

(b) For Type 2 FIR filter

      

  

H[k]=

Hd (e j2πk / M) e− j2πk(M−1) / 2M , k = 0,1,2,K, M

2
−1,

0, k = M

2
,

Hd(e j2πk / M) e j2πk(M−k)(M−1) /2M k = M

2
+ 1,K,M −1.

 

 
 
 

 
 
 

7.61   (a)  The frequency spacing between two consecutive samples is given by 
2π
17

= 0.11765π,  and

hence the desired passband edge ωp = 0.5π  is between the frequency samples at 

ω =
2π × 4

17
= 0.47059π  and ω =

2π × 5

17
= 0.58824π .  From Eq. (7.174) the specified DFT 

samples are thus given by

  
H[k] =

e−j (2π /17)8 , k = 0,1,K,4,12,K,16,

0, k = 5,K,11.

 
 
 

  

(b)  A 17-point inverse DFT of the above DFT samples yields the impulse response coefficients

given below in ascending powers of z−1 :

   Columns 1 through 5
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   4.3498e-03   6.0460e-03  -2.9166e-02   8.1624e-03   5.7762e-02

  Columns 6 through 10
  -6.4003e-02  -7.9934e-02   3.0267e-01   5.8824e-01   3.0267e-01

  Columns 11 through 15
   -7.9934e-02  -6.4003e-02   5.7762e-02   8.1624e-03  -2.9166e-02

  Columns 16 through 17
    6.0460e-03   4.3498e-03

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ω/π     

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

ω /π

7.62   (a)  ω p = 0.3π.   For M = 37, the frequency spacing between two consecutive frequency 

samples is 
2π
37

= 0.054054π.   Hence, the desired passband edge of the lowpass filter is between 

the frequency sample at ω = 2π × 5
37

= 0.27027π  and ω = 2π × 6
37

= 0.3243243π .  N = 37, and  

Hd (e jω) =
1, 0 < ω ≤ 0.3π,

0, 0.3π < ω ≤ 1.7π,

1, 1.7π < ω ≤ 2π.

 

 
 

 
 

Therefore, H[k]=
e− j(2πk / 37)18, 0 ≤ k < 6,

0, 6 ≤ k < 32,

e j(2π(37−k) / 37)18, 32 ≤ k ≤ 36.

 

 
  

 
 
 

Hence, 
  
H[k]= e− j(2πk / 37)18, k = 0,1,K,5,32,33,K,36,

0, k = 6,7,K,31.

 
 
 

  

(b)  A 37-point inverse DFT of the above DFT samples yields the impulse response coefficients

given below in ascending powers of z−1 :

  Columns 1 through 5
  -2.4155e-02  -4.6049e-03   1.9130e-02   2.8037e-02   1.4205e-02

  Columns 6 through 10
  -1.2467e-02  -3.1027e-02  -2.5234e-02   3.0533e-03   3.3261e-02

  Columns 11 through 15
  3.9919e-02   1.2162e-02   -3.4815e-02  -6.5556e-02  -4.5430e-02
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  Columns 16 through 20
   3.5732e-02   1.5291e-01   2.5623e-01   2.9730e-01   2.5623e-01

  Columns 21 through 25
  1.5291e-01   3.5732e-02  -4.5430e-02  -6.5556e-02   -3.4815e-02

  Columns 26 through 30
  1.2162e-02   3.9919e-02   3.3261e-02   3.0533e-03  -2.5234e-02

  Columns 31 through 35
  -3.1027e-02  -1.2467e-02   1.4205e-02   2.8037e-02   1.9130e-02

  Columns 36 through 37
  -4.6049e-03  -2.4155e-02

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ω/π    
0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

20

ω /π

7.63  By expressing cos(ωn) = Tn(cos ω), where Tn(x) is the n-th order Chebyshev polynomial in 
x, we first rewrite Eq. (7.96) in the form:

  

( 
H (ω) = a[n]cos(ωn)

n =0

M

∑ = αn
n =0

M

∑ cos n(ω).

Therefore, we can rewrite Eq. (7.118) repeated below for convenience

  
P(ωi )

( 
H (ωi ) − D(ωi )[ ]= (−1)i ε, 1 ≤ i ≤ M + 2,

in a matrix form as

  

1 cos(ω1) L cosM(ω1) 1/ P(ω1)

1 cos(ω2 ) L cosM(ω2) –1 / P(ω2)
M M O M M
1 cos(ωM+1) L cosM(ωM+1) (–1)M / P(ω M+1)

1 cos(ωM+2) L cosM(ω M+2 ) (–1)M+1 / P(ωM+2)

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
   

α0
α1

M
αM
ε

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

=

D(ω1)
D(ω2 )

M
D(ω M+1)
D(ωM+2 )

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.

Note that the coefficients  {α i} are different from the coefficients  {a[i]} of Eq. (7.96).  To 

determine the expression of  ε  we use Cramer's rule arriving at ε =
∆ ε
∆

,  where
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∆ = det

1 cos(ω1) L cosM(ω1) 1/ P(ω1)

1 cos(ω2) L cosM(ω2) –1/ P(ω2)
M M O M M
1 cos(ωM+1) L cosM(ωM+1) (–1)M / P(ωM+1)

1 cos(ωM+2) L cosM(ωM+2) (–1)M+1 / P(ωM+2)

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

, and

  

∆ ε = det

1 cos(ω1) L cosM(ω1) D(ω1)

1 cos(ω2) L cosM(ω2) D(ω2)
M M O M M
1 cos(ωM+1) L cosM(ωM+1) D(ωM+1)

1 cos(ωM+2) L cosM(ωM+2) D(ωM+2)

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

.

Expanding both determinants using the last column we get ∆ ε = bi
i=1

M+2

∑ D(ω i+1),  and

∆ = bi
i =1

M+2

∑ (−1)i −1

P(ωi )
,   where

  

b i = det

1 cos(ω1) cos2(ω1) L cosM(ω1)

1 cos(ω2) cos2(ω2) L cosM(ω2)
M M M O M
1 cos(ωi−1) cos2(ωi−1) L cosM(ωi−1)

1 cos(ωi+1) cos2(ωi+1) L cosM(ωi+1)
M M M O M
1 cos(ωM+2) cos2(ωM+2 ) L cosM(ωM+ 2)

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

.

The above matrix is seen to be a Vandermonde matrix and is determinant is given by

  

b i = (cosω k
k≠ l, k> l

k,l ≠ i

∏ −cosωl).

Define ci =
bi

br
r=1
r≠i

M+2

∏
.   It can be shown by induction that ci = 1

cosωi − cosω nn=1
n≠ i

M+2
∏ .   Therefore,

  

ε =

biD(ω i)
i =1

M+2

∑

bi
(−1)i

P(ωi )i=1

M+2

∑
=

c1D(ω1) + c2D(ω 2) +L+ cM+2D(ω M+2 )

c1
P(ω1)

−
c2

P(ω2 )
+ L+

cM+2(−1)M+1

P(ωM+2)

.

7.64   It follows from Eq. (7.67) that the impulse response of an ideal Hilbert transformer is an 
antisymmetric sequence.  If we truncate it to a finite number of terms between −M ≤ n ≤ M  the 
impulse response is of length (2M + 1) which is odd.  Hence the FIR Hilbert transformer 
obtained by truncation and satisfying Eq. (7.143) cannot be satisfied by a Type 4 FIR filter.
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7.65   (a)  X(z) = x[n]z−n

n=0

N−1

∑ .   

  

X(
( 
z ) = X(z)

z−1= −α+ ( 
z −1

1−α ( 
z −1

= x[n]
−α + ( 

z −1

1− α ( 
z −1

 

  
 

  
n=0

N−1

∑
n

=
P(

( 
z )

D(
( 
z )

,  

where  
  
P(

( 
z ) = p[n]

( 
z −1

n=0

N−1

∑ = x[n](1− α ( 
z −1

n=0

N−1

∑ )N−1−n (−α + ( 
z −1)n ,  and 

  
D(

( 
z ) = d[n]

( 
z −1

n=0

N−1

∑ = (1 − α ( 
z −1)N−1.

(b)  

  

( 
X [k] = X(

( 
z ) ( 

z =e j2πk / N=
P(

( 
z )

D(
( 
z ) ( z =ej2πk /N

=
( 
P [k]
( 
D [k]

, where 
  

( 
P [k] = P(

( 
z ) ( 

z =e j2πk / N  is the

N-point DFT of the sequence p[n] and 
  

( 
D [k] = D(

( 
z ) ( 

z =ej2πk /N is the N-point DFT of the 

sequence d[n].

(c)  Let  P   = p[0] p[1] K p[N −1][ ]T  and X   = x[0] x[1] K x[N − 1][ ]T .  Without 
any loss of generality, assume N = 4 in which case 

  
P(

( 
z ) = p[n]

( 
z −n

n=

3

∑ = x[0] − a x[1] + a2x[2] − a3x[3]( )   

         
  
+ −3a x[0] + (1 + 2a2)x[1] − a(2 + a2)x[2] + 3a2x[3]( )( z −1   

         
  
+ 3a2 x[0]− a(2 + a2)x[1] + (1 + 2a2 )x[2] −3ax[3]( ) ( 

z −2  

         
  
+ −a3 x[0]a2x[1]− ax[2] +a x[3]( ) ( 

z −3 .  Equating like powers of   
( 
z −1  we can write

P = Q ⋅X or 

p[0]

p[1]

p[2]

p[3]

 

 

 
 
 
 

 

 

 
 
 
 

=

1 −α α2 −α3

−3α 1+ 2α2 −α(2 + a2) 3α2

3α2 −α(2 + a2) 1 + 2α2 −3α
−α3 α2 −α 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

x[0]

x[1]

x[2]

x[3]

 

 

 
 
 
 

 

 

 
 
 
 

.  It can be seen that the

elements  q r,s , 0 ≤ r,s ≤ 3 , of the 4 × 4  matrix Q can be determined as follows:

(i)  The first row is given by q0,s = (−α)s ,

(ii)  The first column is given by  q r,0 = 3Cr(−α)r =
3!

r!(3 − r)!
(−α)r ,   and

(iii) the remaining elements can be obtained using the recurrence relation 
             q r,s = q r−1,s−1 − α qr,s−1 + αq r−1.s .

In the general case, we only change the computation of the elements of the first column using 

the relation q r,0 = N−1Cr (−α)r =
(N −1)!

r!(N −1− r)!
(−α)r ,

274



M7.1   Using the M-file buttap we first design a 4-th order analog Bessel filter whose transfer 

function is given by H(z) = 1
s4 + 3,1239s3 + 4.3916s2 + 3.2011s +1

.  A partial-fraction expansion

of H(z) using the M-file residue yields H(z) = − 1.0393s + 1.8470
s2 +1.3144s +1.1211

+ 1.0393s + 2.3615
s2 +1.8095s + 8.9199

where we have used the M-file residue again to combine the complex conjugate pole-pairs.

INCOMPLETE

M7.2   Given specifications:  Fp =  4 kHz, Fs =  20 kHz, FT =  80 kHz,  αp =  0.5 dB and αs =  45 dB.

Using Eqs. (7.7) and (7.8) we obtain the normalized bandedges as ω p = 0.1π = 0.31416  and  

ωs = 0.5 π =1.5708.   Let T = 2.  From Eq. (7.26), the bandedges of the analog prototype are 

Ωp = tan(ω p / 2) = 0.15838  and Ωs = tan(ωs / 2) =1   From Eq. (5.29) the inverse transition ratio

is 
1
k

=
Ωs

Ω p
= 6.31375 .

20 log10
1

1 + ε2

 

 
  

 

 
  = −0.5 which yields ε2 = 0.1220184.   Similarly, 20 log10

1
A

 
  

 
  = − 45 which

yields A2 = 31622.7766.   From Eq. (5.5.30 the inverse discrimination ratio is given by 

1
k1

= A2 – 1
ε2 = 31621.7766

0.12201845
= 509.073363.   Hence, from Eq. (5.33), the order of the lowpass 

Butterworth filter is given by N =
log10(1 / k1)

log10(1/ k)
=

log10(509.073363)

log10(6.3137515)
= 3.38226.   We choose N = 4

as the order.  Next we determine the 3-dB cutoff frequency Ωc  by meeting exactly the 

stopband edge specifications.  From Eq. (5.??a), we have   Ωs / Ωc( )8
= A2 −1 = 31621.7766 or 

Ωc =
Ωs

(A2 −1)1/ 8 = 0.273843Ωs = 0.273843.

Using buttap we determine the normalized analog Butterworth transfer function of 4-th 
order with a 3-dB cutoff frequency at Ωc =1  which is 

Han(s) = 1
(s2 + 0.76536686 s +1)(s2 +1.847759s +1)

.  We denormalize Han(s) to move Ωc  to 

0.273843 leading to  Ha(s) = Han
s

0.273843

 
  

 
  

    = 1

s
0.273843

 
  

 
  

2
+ 0.76536686

s
0.273843

 
  

 
  +1

 

 
 
 

 

 
 
 

s
0.273843

 
  

 
  

2
+1.847759

s
0.273843

 
  

 
  +1

 

 
 
 

 

 
 
 

  

= 0.005625
(s2 + 0.2096s + 0.075)(s2 + 0.5059958678s + 0.075)

.
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Applying bilinear transformation to Ha(s) using the M-file bilinear we finally arrive at  

G(z) = 0.0027696(1 + z−1)4

(1 −1.440137z−1 + 0.67367274 z−2 )(s2 −1.1701485365z−1 + 0.3599z−2 )
.

Plots of the gain and phase responses of this transfer function are shown below.

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

ω /π     
0 0.2 0.4 0.6 0.8 1

-8

-6

-4

-2

0

ω /π

M7.3   The modified Program P7_3 is given below:

format short e
Fp = input('Passband edge frequency in Hz = ');
Fs = input('Stopband edge frequency in Hz = ');
FT = input('Sampling frequency in Hz = ');
Rp = input('Passband ripple in dB = ');
Rs = input('Stopband minimum attenuation in dB = ');
Wp = 2*Fp/FT;Ws = 2*Fs/FT;
[N, Wn] = buttord(Wp, Ws, Rp, Rs)
[b,a] = butter(N,Wn);
disp('Numerator polynomial'); disp(b)
disp('Denominator polynomial'); disp(a)
[h,w] = freqz(b,a,512);
plot(w/pi,20*log10(abs(h)));grid;axis([0 1 -60 5]);
xlabel('\omega/\pi');ylabel('Phase, radians')
Pause
plot (w/pi,unwrap(angle(h)));grid;axis([0 1 -8 1]);
xlabel('\omega/\pi');ylabel('Phase, radians')

The numerator and the denominator coefficients of the lowpass transfer function obtained are 
given by

Numerator polynomial
   2.7690e-03   1.1076e-02   1.6614e-02   1.1076e-02
2.7690e-03

Denominator polynomial
   1.0000e+00  -2.6103e+00   2.7188e+00  -1.3066e+00
2.4246e-01

Plots of the gain and phase responses by running this program are shown below.
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M7.4   Given specifications:  ω p = 0.1π = 0.31416  ωs = 0.5 π =1.5708.

20 log10 G(e j0.1π) ≥ –0.5,   and  20 log10 G(e j0.5π) ≤ – 45.

Impulse Invariance Method:  Let T = 1.  Assume no aliasing.  Then the specifications of 
Ha(s) is same as that of G(z), i.e.

Ωp = 0.1π,  Ωs = 0.5π,  20 log10 Ha( j0.1π) ≥ –0.5,  and 20 log10 Ha( j0.5π) ≤ – 45.   Now,

20 log10
1

1 + ε2

 

 
  

 

 
  = −0.5  which yields ε2 = 0.12202.   Similarly, 20 log10

1
A

 
  

 
  = − 45 

which yields A2 = 31622.7766.   From Eq. (5.30) the inverse discrimination ratio is given by 

1
k1

= A2 – 1
ε2 = 31621.7766

0.12201845
= 509.073363.  From Eq. (5.29) the inverse transition ratio is 

given by 
1
k

= 0.5π
0.1π

= 5.   Hence, from Eq. (5.33), the order of the lowpass Butterworth filter is 

given by N =
log10(1 / k1)

log10(1/ k)
=

log10(509.073363)

log10(5)
= 3.8725.   We choose N = 4 as the order.  Next 

we determine the 3-dB cutoff frequency Ωc  by meeting exactly the stopband edge 

specifications.  From Eq. (5.32b), we have Ωs / Ωc( )8
= A2 −1 = 31621.7766 or 

Ωc =
Ωs

(A2 −1)1/ 8 = 0.273843Ωs = 0.273843 × 0.5π = 0.43015.

Using the statement [B,A] = butter(4,0.43105, 's') we determine the analog 
Butterworth transfer function Ha(s)  of 4-th order with a 3-dB cutoff frequency at 

Ωc = 0.43105.   Ha(s)  is then transformed into a digital transfer function using the statement  
[num,den]=impinvar(B,A,1); which yields 

G(z) = 0.0043063z−1 + 0.012898z−2 + 0.0024532 z−4

1− 2.8879z−1 + 3.2407 z−2 −1.6573z−3 + 0.3242 z−4 .  A plot of its gain response is shown

below.  It can be seen that the filter meets the given specifications
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M7.5   Given specifications:  ω p = 0.1π = 0.31416  ωs = 0.5 π =1.5708.

20 log10 G(e j0.1π) ≥ –0.5,   and  20 log10 G(e j0.5π) ≤ – 45.

Impulse Invariance Method:  Let T = 1.  Assume no aliasing.  Then the specifications of 
Ha(s) is same as that of G(z), i.e.

Ωp = 0.1π,  Ωs = 0.5π,  20 log10 Ha( j0.1π) ≥ –0.5,  and 20 log10 Ha( j0.5π) ≤ – 45.   Now,

20 log10
1

1 + ε2

 

 
  

 

 
  = −0.5  which yields ε2 = 0.12202.   Similarly, 20 log10

1
A

 
  

 
  = − 45 

which yields A2 = 31622.7766.   From Eq. (5.30) the inverse discrimination ratio is given by 

1
k1

= A2 – 1
ε2 = 31621.7766

0.12201845
= 509.073363.  From Eq. (5.29) the inverse transition ratio is 

given by 
1
k

= 0.5π
0.1π

= 5.   Hence, from Eq. (5.41), the order of the lowpass Type 1 Chebyshev 

filter is given by N =
cosh−1(1 / k1)

cosh−1(1 / k)
= cosh−1(509.073363)

cosh−1(5)
= 3.0211.   Hence we choose N = 4.

The MATLAB code fragments used are:

[z,p,k] = cheb1ap(4,0.5);
[B,A] = zp2tf(z,p,k);
[BT,AT] = lp2lp(B,A,0.1*pi);
[num,den] = impinvar(BT,AT,1);
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Impulse Invariance Method

Bilinear Transformation Method: Let T = 2.  From Eq. (7.26), the bandedges of the analog 
prototype are Ωp = tan(ω p / 2) = 0.15838  and Ωs = tan(ωs / 2) =1   From Eq. (5.29) the 

inverse transition ratio 
1
k

=
Ωs

Ω p
= 6.31375 .

20 log10
1

1 + ε2

 

 
  

 

 
  = −0.5 which yields ε2 = 0.1220184.   Similarly, 20 log10

1
A

 
  

 
  = − 45 which

yields A2 = 31622.7766.   From Eq. (5.5.30 the inverse discrimination ratio is given by 

1
k1

= A2 – 1
ε2 = 31621.7766

0.12201845
= 509.073363.   Hence, from Eq. (5.41), the order of the lowpass 

Type 1 Chebyshev filter is given by N =
cosh−1(1 / k1)

cosh−1(1 / k)
=

cosh−1(509.073363)

cosh−1(6.31375)
= 2.7379.   

Hence we choose N = 3.  The MATLAB code fragments used are

[z,p,k] = cheb1ap(3,0.5);
[B,A] = zp2tf(z,p,k);
[BT,AT] = lp2lp(B,A,0.15838);
[num,den] = bilinear(BT,AT,0.5);
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Bilinear Transformation Method

Note:  Both designs meet the specifications.  However, the bilinear transformation method meets
with a filter of lower order.
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M7.6  The only change to Program 7_2 is given by the statement

[b,a] = cheby1(N,Rp,Wn);
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M7.7   The code fragments used are

Wp = input('Passband edge frequency = ');
Ws = input('Stopband edge frequency = ');
Rp = input('Passband ripple in dB = ');
Rs = input('Stopband minimum attenuation in dB = ');
[N, Wn] = cheb1ord(0.1*pi, 0.5*pi, 0.5, 45, 's');
[B, A] = cheby1(N, 0.5, Wn,'s');
[num, den] = impinvar(B,A,1);
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M7.8   Impulse Invariance Method: From Exercise M7.5 we have  the inverse selectivity parameter 

1
k

=
Ωs

Ω p
= 0.5π

0.1π
= 5,  and the inverse discrimination ratio given by 

1
k1

= A2 – 1
ε2 = 509.073363.   

From Eq. (5.51) we have N ≅
2 log10(4 / k1)

log10(1 /ρ)
 where k' = 1 − k2 ,  ρo =

1 − k'

2(1 + k ' )
,  and 

ρ = ρo + 2 (ρo)5 +15(ρo )9 +150 (ρo)13 ,  which yields N = 2.5519.  We choose N = 3.

The code fragments  used are:
[z,p,k] = ellipap(3,0.5,45);
[B,A] = zp2tf(z,p,k);
[BT,AT] = lp2lp(B,A,0.1*pi);
[num,den] = impinvar(BT,AT,1);
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Bilinear Transformation Method:  From Exercise M7.5, we have Ωp = tan(ω p / 2) = 0.15838  

and Ωs = tan(ωs / 2) =1 , the inverse transition ratio 
1
k

=
Ωs

Ω p
= 6.31375 , and the inverse 

discrimination parameter 
1
k1

= A2 – 1
ε2 = 31621.7766

0.12201845
= 509.073363.   Using the formula of 

Eq. (5.51) we get N = 2.3641.  We choose N = 3.

The code fragments used are:

[N,Wn]=ellipord(0.1*pi,0.5*pi,0.5,45,'s');
[z,p,k] = ellipap(3,0.5,45);
[B,A] = zp2tf(z,p,k);
[BT,AT] = lp2lp(B,A,0.15838);
[num,den] = bilinear(BT,AT,0.5);
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Note that the filter designed using the impulse invariance method does not meet the 
specifications due to aliasing. However, if the order N is increased to 4 from 3, it will meet the 
specifications.

M7.9   No modifications to Program P7_1 are necessary.  Using this program we get the same results 
as indicated in the second part of the solution to Problem M7.8

M7.10   Digital highpass filter specifications: Fp = 325 kHz, Fs = 225  kHz, FT =  1 MHz, αp  = 

0.5 dB, and αs  = 50 dB.
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(a)  Using Eqs. (7.7) and (7.8) we have ω p =
2πFp

FT
= 2.042  and ωs =

2πFs

FT
=1.4137.  Next 

using Eq. (7.26), we get ˆ Ω p = tan
ωp

2

 

 
  

 

 
  = 1.6319  and ˆ Ω s = tan

ωs

2

 

 
 

 

 
 = 0.85408.

Analog highpass filter specifications:  ˆ Ω p = 1.6319  radians, ˆ Ω s = 0.85408.  αp  = 0.5 dB, and αs
= 50 dB.

(b)  For the prototype analog lowpass filter we choose Ωp = 1.  From Eq. (5.60) we then get  

Ωs =
ˆ Ω p
ˆ Ω s

=1.9106.

Analog lowpass filter specifications: Ωp = 1 radians, Ωs = 1.9106 radians, αp  = 0.5 dB, and 

αs  = 50 dB.

Code fragments used are:

[N,Wn] = ellipord(1, 1.9106,  0.5, 50, 's');
[B,A] = ellip(N, 0.5, 50, Wn,'s');
[BT,AT] = lp2hp(B,A,1.6319);
[num,den] = bilinear(BT,AT,0.5);
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(c)  Analog lowpass transfer function coefficients:

Numerator

0   0.020293   8.8818e-16   0.15580   1.1102e-15   0.25555

Denominator

1   1.1594   2.0159   1.4100   0.88880   0.25555

Analog highpass transfer function coefficients:

Numerator

1   7.2050e-15   1.62360   1.5710e-14   0.56317   7.2908e-15
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Denominator

1   5.6757   14.694   34.282   32.175   45.289

Digital highpass transfer function coefficients:

Numerator

 0.023939  -0.037066   0.059191  -0.059191   0.037066  -0.023939

Denominator

1   2.4079   3.3102   2.6346   1.2535   0.28079

M7.11    Digital bandpass filter specifications: Fp1 = 560  Hz, Fp2 = 780  Hz,  Fs1 = 375  Hz, 

Fs2 = 1000  Hz, FT =   2500 Hz, αp  = 1.2 dB, and αs  = 25 dB.

(a)  Using Eqs. (7.7) and (7.8) we have ω p1 =
2πFp1

FT
= 0.448π = 1.4074 , 

ω p2 =
2πFp2

FT
= 0.624π =1.9604, ωs1 =

2πFs1

FT
= 0.3π = 0.94248 , and 

ωs2 =
2πFs2

FT
= 0.8π = 2.5133.  Next using Eq. (7.26), we get ˆ Ω p1 = tan

ωp1

2

 

 
  

 

 
  = 0.84866 , 

ˆ Ω p2 = tan
ω p2

2

 

 
  

 

 
  =1.4915,  ˆ Ω s1 = tan

ω s1

2

 

 
 

 

 
 = 0.50953, , and ˆ Ω s2 = tan

ωs2

2

 

 
 

 

 
 = 3.0777 .  The 

passband width is Bw = ˆ Ω p2 − ˆ Ω p1 = 0.64287 .  Now ˆ Ω o
2 = ˆ Ω p2

ˆ Ω p1 = 1.2658 and 

ˆ Ω s2
ˆ Ω s1 = 1.5682 ≠ ˆ Ω p2

ˆ Ω p1.  Hence we adjust the lower stopband edge to 

ˆ Ω s1 =
ˆ Ω p2

ˆ Ω p1
ˆ Ω s2

= 0.41128.   Note ˆ Ω o = 1.1251.

Analog bandpass filter specifications: ˆ Ω p1 = 0.84866  radians, ˆ Ω p2 = 1.4915 radians, 

ˆ Ω s1 = 0.41128  radians, ˆ Ω s2 = 3.0777  radians, αp  = 1.2 dB, and αs  = 25 dB.

(b)  For the prototype analog lowpass filter we choose Ωp = 1.  From Eq. (5.62) we then get  

Ωs =
ˆ Ω o

2 − ˆ Ω s1
2

ˆ Ω s1 ⋅Bw

= 1.2658 − 0.16915
0.41477 × 0.64287

= 4.1477 .

Analog lowpass filter specifications: Ωp = 1 radians, Ωs = 4.1477 radians, αp  = 1.2. dB, 

and αs  = 25 dB.

Code fragments used are:
[N,Wn] = cheb2ord(1, 4.1477,  1.2, 25, 's');
[B,A] = cheby2(N, 25, Wn,'s');
[BT,AT] = lp2bp(B,A,1.1251, 0.64287);
[num,den] = bilinear(BT,AT,0.5);
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(c)  Analog lowpass transfer function coefficients:

Numerator

0.056234  -2.2204e-16   1.8260

Denominator

1   1.8565   1.8260

Analog bandpass transfer function coefficients:

Numerator

0.056234  -2.2204e-16   0.89703  -8.8818e-16   0.090108

Denominator

1   1.1935   3.2864   1.5108   1.6024

Digital bandpass transfer function coefficients:

Numerator

 0.12142   0.015768  -0.10660   0.015768   0.12142

Denominator

1   0.35425   1.0522   0.20655   0.37058

M7.12   Digital bandstop filter specifications: Fp1 = 500  Hz, Fp2 = 2125  Hz,  Fs1 = 1050 Hz, 

Fs2 = 1400  Hz, FT =  5000 Hz, αp  = 2 dB, and αs  = 40 dB.

(a)  Using Eqs. (7.7) and (7.8) we have ω p1 =
2πFp1

FT
= 0.2π = 0.62832 , 

ω p2 =
2πFp2

FT
= 0.85π = 2.6704, ωs1 =

2πFs1

FT
= 0.42π = 1.3195, and 
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ωs2 =
2πFs2

FT
= 0.56π = 1.7593.  Next using Eq. (7.26), we get ˆ Ω p1 = tan

ωp1

2

 

 
  

 

 
  = 0.32492 , 

ˆ Ω p2 = tan
ω p2

2

 

 
  

 

 
  = 4.1653,  ˆ Ω s1 = tan

ω s1

2

 

 
 

 

 
 = 0.77568, , and ˆ Ω s2 = tan

ωs2

2

 

 
 

 

 
 =1.2088.  The 

stopband width is Bw = ˆ Ω s2 − ˆ Ω s1 = 0.43311.  Now ˆ Ω o
2 = ˆ Ω s2

ˆ Ω s1 = 0.93764  and 
ˆ Ω p2

ˆ Ω p1 = 1.3534 ≠ ˆ Ω s2
ˆ Ω s1.   Hence we adjust the lower passband edge to 

ˆ Ω p1 =
ˆ Ω s2

ˆ Ω s1
ˆ Ω p2

= 0.22511.   Note ˆ Ω o = 0.96832 .

Analog bandstop  filter specifications: ˆ Ω p1 = 0.22511 radians, ˆ Ω p2 = 4.1653 radians, 

ˆ Ω s1 = 0.41128  radians, ˆ Ω s2 =1.2088  radians, αp  = 2 dB, and αs  = 40 dB.

(b)  For the prototype analog lowpass filter we choose Ωs = 1.  From Eq. (5.65) we then get  

Ωp =
ˆ Ω p1 ⋅Bw
ˆ Ω o

2 − ˆ Ω p1
2 = 0.22511× 0.43311

0.93764 − 0.10557
= 0.16913.

Analog lowpass filter specifications: Ωs = 1 radians, Ωp = 0.16913  radians, αp  = 2 dB, and αs
= 40 dB.

Code fragments used are:

[N,Wn] = buttord(0.16913, 1,  2, 40, 's');
[B,A] = butter(N, Wn,'s');
[BT,AT] = lp2bs(B,A,0.96832, 0.43311);
[num,den] = bilinear(BT,AT,0.5);
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(c)  Analog lowpass transfer function coefficients:

Numerator

0            0            0   0.010001

Denominator
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1   0.43089   0.092835   0.010001

Analog bandstop transfer function coefficients:

Numerator

    Columns 1 through 6
    1  -1.5044e-16   2.8129  -2.8211e-16   2.6375  -1.3226e-16

    Column 7
    0.82435

Denominator

    Columns 1 through 6
 1   4.0206   10.895   15.664   10.216   3.5348

    Column 7
    0.82435

Digital bandstop transfer function coefficients:

Numerator

    Columns 1 through 6
   0.15762  -0.030434   0.47481  -0.060910   0.47481  -0.030434

    Column 7
   0.15762

Denominator

    Columns 1 through 6

   10  -0.094374  -0.0641472  -0.017232   0.33514  -0.010173

   Column 7
  -0.0061388

M7.13    The impulse response coefficients of the truncated FIR highpass filter with cutoff frequency
at 0.4π can be generated using the following MATLAB statements:

n = -M:M;
num = -0.4*sinc(0.4*n);
num(M+1) = 0.6;

The magnitude responses of the truncated FIR highpass filter for two values of M are shown 
below:
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M7.14  The impulse response coefficients of the truncated FIR bandpass filter with cutoff frequencies
at 0.7π and 0.3π can be generated using the following MATLAB statements:

n = -M:M;
num = 0.7*sinc(0.7*n) - 0.3*sinc(0.3*n);

The magnitude responses of the truncated FIR bandpass filter for two values of M are shown 
below:

M7.15  The impulse response coefficients of the truncated Hilbert transformer can be generated 
using the following MATLAB statements:

n = 1:M;
c = 2*sin(pi*n/2).*sin(pi*n/2);b = c./(pi*n);
num = [-fliplr(b) 0 b];

The magnitude responses of the truncated Hilbert transformer for two values of M are shown 
below:
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M7.16  For notch filter design using the Hamming window, the following MATLAB program can be
used:

fc = input('Normalized notch angular frequency = ');
N = input('Desired notch filter order = ');% must be an even
integer
M = N/2;
n=-M:1:M;
t = fc*n;
lp = fc*sinc(t);
b = 2*[lp(1:M) (lp(M+1)-0.5) lp((M+2):N+1)];
bw = b.*hamming(N+1)';
[h2,w]=freqz(bw,1,512);
plot(w/pi,abs(h2));axis([0 1 0 1.2]);
xlabel('\omega/\pi');ylabel('Amplitude');
title(['\omega = 'num2str(fc), ',  Filter order =
',num2str(N)])

For a notch filter of length 41 with a notch frequency at 60-Hz and operating at a 400-Hz 
sampling rate, the normalized angular notch frequency is given by ωo = 0.3π.  The 
magnitude response of the designed filter is shown below:

0 0.2 0.4 0.6 0.8 1
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ω  = 0.3,  Filter order = 40

M7.17   The desired function D(x) = 2.2 x3 −3 x2 + 0.5  is defined for −3 ≤ x ≤ 3.5.   We wish to 

approximate D(x) by a quadratic function a2 x2 + a1 x + a0  by minimizing the peak value of 
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the absolute error D(x)− a2 x2 −a1 x − a0 .    Since there are four unknowns a0, a1, a2 and ε , 

we need four extremal points on x in the range  −3 ≤ x ≤ 3.5,  which we arbitrarily choose as  x1
= –3, x2 = –2, x3 = 1 and x4 = 3.5.   We then solve the four linear equations 

  a0 + a1 xl + a2 xl
2 − (−1)l ε = D(xl ),    l =1,2,3,4,  which lead to

1 −3 9 1
1 −2 4 −1
1 1 1 1
1 3.5 1.225 −1

 

 

 
 
 

 

 

 
 
 

a0
a1
a2
ε

 

 

 
 
 
 

 

 

 
 
 
 

=
−85.9
−29.1
−0.3

−58.075

 

 

 
 
 

 

 

 
 
 

.

Its solution yields a0 = −1.6214,  a1 = 18.229,  a2 = −1.5857,  and ε = −15.321.   Figure (a) below

shows the plot of the error E1(x) = 2.2 x3 − 1.4143x2 −18.229x + 2.1214  along with the values 
of the error at the chosen extremal points.

The next set of extremal points are those points where E1(x) assumes its maximum absolute 
values.  These extremal points are given by  x1 = –3, x2 = –1.454, x3 = 1.89 and x4 = 3.5.  The
new values of the unknowns are obtained by solving

1 −3 9 1
1 −1.454 2.1141 −1
1 1.89 3.5721 1
1 3.5 1.225 −1

 

 

 
 
 

 

 

 
 
 

a0
a1
a2
ε

 

 

 
 
 
 

 

 

 
 
 
 

=
−85.9

−12.605
4.6365
5.8075

 

 

 
 
 

 

 

 
 
 

whose solution yields a0 = −7.0706,  a1 = −17.021, ,  a2 = −1.3458,  and ε = −18.857.   Figure (b) 

below shows the plot of the error E2(x) = 2.2 x3 − 1.6542x2 −17.021x + 4.3685  along with the 
values of the error at the chosen extremal points.  This time the algorithm has converged as ε  is
also the maximum value of the absolute error.
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M7.18  From Eqs. (7.7) and (7.8), the normalized bandedges are given by ω p = 0.2π  and 

ωs = 0.4π.   Therefore, ωc = 0.3π  and ∆ω = 0.2π.

(a)  Using Eq. (7.77) and Table 7.2, the estimated order of the FIR filter for designing using 
the Hamming window is given by N = 2M where M = 3.32π/∆ω  = 16.6.  We therefore 
choose M = 17 or equivalently, N = 34.  The MATLAB program used to generate the 
windowed filter coefficients are

n = -17:17;
num = 0.4*sinc(0.4*n);
wh = hamming(35);
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b = num.*wh';
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Filter Designed Using Hamming Window

(b)  For designing the FIR filter using the Hann window, we obtain from Eq. (7.77) and 
Table 7.2, M = 3.11π/∆ω  = 15.55.  We choose M = 16, and hence N = 32.
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Filter Designed Using Hann Window

(c)  For designing the FIR filter using the Blackman window, we obtain from Eq. (7.77) and 
Table 7.2, M = 5.56π/∆ω  = 27.8.  We choose M = 28, and hence N = 56.
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Filter Designed Using Blackman Window

The filter designed using the Hann window meets the specifications with a smaller length.

M7.19   From Eqs. (7.7) and (7.8), the normalized bandedges are given by ω p = 0.2π  and 

ωs = 0.4π.   Therefore, ωc = 0.3π  and ∆ω = 0.2π.
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Substituting αs = 40 in Eq. (7.85) we obtain β  = 3.3953.  Next, substituting the value of 

αs = 40 and ∆ω = 0.2π  in Eq. (7.86) we obtain N = 22.289.  We choose the next higher even 
integer value of 24 as the filter order N, and hence M = 12.  The code fragments used for the 
design are given below:

n = -N/2:N/2;
num = 0.4*sinc(0.4*n);
wh = kaiser(N+1,3.3953);
b = num.*wh';
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M7.20   ω p = 0.3π , ωs = 0.5π , and αs = 40  dB.  Thus, ωc =
ω p + ωs

2
= 0.4π,  and 

∆ω = ωs − ωp = 0.2π.   From Table 7.2 we observe that Hann window is appropriate for the filter

design as it meets the minimum stopband attenuation requirement with a filter of lowest order.

From Eq. (7.77) and Table 7.2, we get M = 3.11π
∆ω

= 3.11π
0.2π

= 15.55.   We choose M = 16 

implying a filter of order N = 32.

Code fragments used in the design are given below:

n = -16:1:16;
lp = 0.4*sinc(0.4*n);
wh = hanning(33);
b = lp.*wh';
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Lowpass Filter Designed Using Hann Window
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M7.21   ω p = 0.3π , ωs = 0.5π , and αs = 40  dB.  Thus, ωc = 0.4π,  and ∆ω = 0.2π.   Using Eq. (7.82) 

we estimate the filter order N = 2M which is given by N = 2.065 × 40 − 16.4
2.285(0.2π)

= 45.859 .  Hence we

choose N = 46, i.e. M = 23.

Code fragments used for the design are:

n = -23:1:23;
lp = 0.4*sinc(0.4*n);
wh =chebwin(47,40);
b = lp.*wh';
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Filter Designed Using Dolph-Chebyshev Window

M7.22   Code fragments used for the design are:

n = -16:1:16;
b = fir1(32,0.4,hanning(33));
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Filter Designed Using fir1 with Hanning Window

M7.23  N = 29;
for k = 1:N+1
    w = 2*pi*(k-1)/30;
    if(w >= 0.5*pi & w <= 1.5*pi) H(k)= 1;
    else H(k) = 0;
    end
    if(w <= pi) phase(k) = i*exp(-i*w*N/2);
    else phase(k) = -i*exp(i*(2*pi-w)*N/2);
    end
end
H = H.*phase;
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f = ifft(H);
[FF,w] = freqz(f,1,512);
k = 0:N;
subplot(211)
stem(k,real(f));
xlabel('Time index n'); ylabel('Amplitude')
subplot(212)
plot(w/pi,20*log10(abs(FF)));
xlabel('\omega/\pi'); ylabel('Gain, dB');
axis([0 1 -50 5]); grid on

0 10 20 30
-0.5

0

0.5

Time index n   
0 0.2 0.4 0.6 0.8 1

-50

-40

-30

-20

-10

0

ω /π

M7.24 % Length = 41 and bandpass, hence Type 3 filter
N = 40; L = N+1;
for k = 1:L
    w = 2*pi*(k-1)/L;
    if (w >= 0.3*pi & w <= 0.5*pi) H(k) = i*exp(-
i*w*N/2);
    elseif (w >= 1.5*pi & w <= 1.7*pi) H(k) =
-i*exp(i*(2*pi-w)*N/2);
    else H(k) = 0;
    end
end
f = ifft(H);
[FF,w] = freqz(f,1,512);
k = 0:N;
subplot(211);
stem(k,real(f));
xlabel('Time index n'); ylabel('h[n]');
subplot(212);
plot(w/pi,20*log10(abs(FF)));
ylabel(Gain, dB'); xlabel('\omega/\pi');
axis([0 1 -50 5]); grid;
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M7.25   N=36; L=N+1;
for k = 0:36
    if(k <= 5 | k>=32) H(k+1) = exp(-i*2*pi*k/L*18);
    elseif (k == 6 | k == 31) H(k+1) = 0.5*exp(-
i*2*pi*k/L*18);
    end
end
f = ifft(H);
[FF,w] = freqz(f,1,512);
k = 0:N;
subplot(211);
stem(k,real(f));axis([0 36 -0.1 0.4]);
xlabel('Time index n'); ylabel(h[n]);
subplot(212);
plot(w/pi,20*log10(abs(FF)));
xlabel('\omega/\pi'); ylabel('Gain, dB');
axis([0 1 -70 5]);grid;
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M7.26 N = 36; L=N+1;
for k = 0:36
   if(k <= 5 | k >= 32) H(k+1) = exp(-i*2*pi*k/L*18);
   elseif (k ==6 | k == 31) H(k+1) = 2/3*exp(-i*2*pi*k/L*18);
   elseif (k ==7 | k == 30) H(k+1) = 1/3*exp(-i*2*pi*k/L*18);
    end
end
f = ifft(H);
[FF,w] = freqz(f,1,512);
k = 0:N;
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subplot(211);
stem(k,real(f));
xlabel('Time index n'); ylabel('Amplitude');
subplot(212);
plot(w/pi,20*log10(abs(FF)));
xlabel('\omega/\pi'); ylabel(Gain, dB');

 axis([0 1 -70 5]); grid;
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M7.27   ωc = 0.3π  and ∆ω = 0.2π.

(a)  Hamming Window: From Exercise M7.18(a) we have M = 17.  Code fragment used for 
the design are:

b = fir1(2*M,0.3);
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Filter Designed Using Hamming Window

(b)  Hann Window:    From Exercise M7.18(b) we have M = 16.  Code fragment used for 
the design are:

b = fir1(2*M,0.3, hanning(2*M+1));
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Filter Designed Using Hann Window

(c)  Blackman Window:    From Exercise M7.18(c) we have M = 28.  Code fragment used for
the design are:

b = fir1(2*M,0.3, blackman(2*M+1));
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Filter Designed Using Blackman Window

(d)  Kaiser Window:  ω p = 0.2π , ωs = 0.4π , αs = 40  dB.  Thus, 

δs = 10−α s / 2 = 10−2 = 0.01.    Code fragments used for the design are:

  [N,Wn,beta,type] = kaiserord([0.2 0.4],[1 0], [0.01 0.01]);
b = fir1(N,0.3,kaiser(N+1,beta));
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Filter Designed Using Kaiser Window
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M7.28   ω p = 0.6π,   ωs = 0.45π,   αp = 0.2  dB and αs = 45 .  Thus, ∆ω = 0.15π  and 

ωc = 0.6π + 0.45π
2

= 0.525π.

(a)  Hamming Window:  From Table 7.2 and Eq. (7.77) we have 

M = 3.32π
∆ω

= 3.32π
0.15π

= 22.133,   We choose M = 23, i.e. filter order N = 2M = 46.

Code fragment used is:

b = fir1(2*M,0.525,'high');
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Filter Designed Using Hammimg Window

(b)  Hann Window:   From Table 7.2 and Eq. (7.77) we have M = 3.11π
∆ω

= 3.11π
0.15π

= 20.733.

We choose M = 21, i.e. filter order N = 2M = 42.

Code fragment used is:

b = fir1(2*M,0.525,'high',hanning(2*M+1));
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Filter Designed Using Hann Window

(c)  Blackman Window:  From Table 7.2 and Eq. (7.77) we have 

M = 5.56π
∆ω

= 5.56π
0.15π

= 37.067.   We choose M = 38, i.e. filter order N = 2M = 76.

Code fragment used is:
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b = fir1(2*M,0.525,'high',blackman(2*M+1));
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Filter Designed Using Blackman Window

(d)  Kaiser Window:   ω p = 0.6π , ωs = 0.45π , αs = 45  dB.  Thus, ωc = 0.525π  and

δs = 10−α s / 20 =10−2.25 = 0.0056234.    Code fragments used for the design are:

ds = 0.0056234;
[N,Wn,beta,type]=kaiserord([0.45 0.6],[1 0],[ds ds]);
N = N+1;% For highpass filter, order must be even
b = fir1(N,0.525,'high',kaiser(N+1,beta));
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M7.29   ω p1 = 0.55π ,   ω p2 = 0.7π ,  ωs1 = 0.45π ,   ωs2 = 0.8π , αp = 0.15 and  αs = 40 .  Thus, 

∆ω1 = ωp1 − ωs1 = 0.1π  and ∆ω2 = ωs2 − ω p2 = 0.1π = ∆ω1.

(a)  Hamming Window:  From Table 7.2 and Eq. (7.77) we have 

M = 3.32π
∆ω1

= 3.32π
0.1π

= 33.2   We choose M = 34, i.e. filter order N = 2M = 68.

Code fragment used is:

b = fir1(2*M,[0.5 0.75]);
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(b)  Hann Window:   From Table 7.2 and Eq. (7.77) we have M = 3.11π
∆ω

= 3.11π
0.1π

= 31.1.   

We choose M = 32, i.e. filter order N = 2M = 64.

Code fragment used is:

b = fir1(2*M,[0.5 0.75],hanning(2*M+1));
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Filter Designed Using Hann Window

(c)  Blackman Window:  From Table 7.2 and Eq. (7.77) we have 

M = 5.56π
∆ω1

= 5.56π
0.1π

= 55.6.   We choose M = 56, i.e. filter order N = 2M = 12.  

ωc1 =
ωp1 + ωs1

2
= 0.55π + 0.45π

2
= 0.5π  and ωc2 =

ω p2 + ωs2

2
= 0.7π + 0.8π

2
= 0.75π .

Code fragment used is:

b = fir1(2*M,[0.55 0.7],blackman(2*M+1));
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(d)  Kaiser Window:   ω p1 = 0.55π ,   ω p2 = 0.7π ,  ωs1 = 0.45π ,   ωs2 = 0.8π , αp = 0.15 and  

αs = 40 .  Thus, δp = 10−α p / 20 =10−0.075 = 0.98288  and δs = 10−α s / 20 =10−2 = 0.01.

Code fragments used for the design are:

[N,Wn,beta,type]= kaiserord([0.55 0.7],[1 0],[0.98288 0.01]);
b = fir1(N,[0.5 0.75],kaiser(N+1,beta));
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M7.30   From Eq. (7.7), the normalized crossover frequency ωc = 2π ×10
80

= 0.25π   The delay-

complementary FIR lowpass and highpass filter coefficients of length 27 are then generated 
using the MATLAB statements:

d1 = fir1(26,0.7854);
d2 = -d1;d2(14) = 1 - d1(14);

The gain responses of the two filters  are as indicated below:
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M7.31   The filter coefficients of the FIR lowpass and the highpass, and their delay-complementary 
FIR bandpass filter are generated using the MATLAB program:

c = hanning(31);
d1 = fir1(30,0.15873,c);
d2 = fir1(30,0.40816,'high',c);
d3 = -d1-d2;d3(16) = 1 - d1(16) - d2(16);

The gain responses of the three FIR filters are as given below:
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M7.32   The filter coefficients are generated using the MATLAB program:

fpts = [0 0.4 0.42 0.7 0.721 1];
mval = [0.5 0.5 0.3 0.3 1.0 1.0];
b = fir2(80,fpts,mval);

The gain response of the multiband FIR filter is as given below:
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M7.33   The filter was also designed by using remezord to estimate the filter order and then using 
remez to determine the filter coefficients.  To this end the MATLAB program used is given 
below:

Rp = 0.1; Rs = 40; FT = 20;
f = [2  4]; m = [1 0];
dev = [(10^(Rp/20) -1)/(10^(Rp/20) +1) 10^(-Rs/20)];
[N, fo, mo, wo] = remezord(f, m, dev, FT);
b = remez(N,fo,mo,wo);

The filter obtained using the above program is of length 20, but its gain response did not meet 
the specifications.  The specifications were met when the filter order was increased to 22.
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M7.34   The filter was also designed by using remezord to estimate the filter order and then using 
remez to determine the filter coefficients.  To this end the MATLAB program used is given 
below:

Rp = 0.2; Rs = 45;
f = [0.45  0.65]; m = [1 0];
dev = [(10^(Rp/20) -1)/(10^(Rp/20) +1) 10^(-Rs/20)];
[N, fo, mo, wo] = remezord(f, m, dev);
b = remez(N,fo,mo,wo);

The filter obtained using the above program is of length 27, but its gain response did not 
meet the specifications.  The specifications were met when the filter order was increased to 30.
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M7.35   The code fragments used to design the FIR bandpass filter are:

Rp = 0.15; Rs = 40;
f = [0.45 0.55  0.7 0.8]; m = [0 1 0];
dev = [10^(-Rs/20) (10^(Rp/20) -1)/(10^(Rp/20) +1) 10^(-
Rs/20)];
[N, fo, mo, wo] = remezord(f, m, dev);
b = remez(N,fo,mo,wo);

The filter obtained using the above program is of length 40, but its gain response did not 
meet the specifications.  The specifications were met when the filter order was increased to 41.
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M7.36  The code fragment used to design a length-32 differentiator is given below.

b = remez(31,[0 1],[0 pi],'differentiator');

The magnitude response of the differentiator designed is shown below:
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M7.37   The code fragments used to design the 26-th order Hilbert transformer are:

f = [0.01 0.078 0.08 0.92 0.94 1];
m = [0 0 1 1 0 0];
wt = [1 60 1];
b = remez(28,f,m,wt,'hilbert');

Note that the passband and the stopbands have been weighted to reduce the ripple in the 
passband.  The magnitude response of the Hilbert transformer designed is shown below:
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M7.38   The code fragment used for the design is

b = firls(31,[0 0.9],[0 0.9*pi],'differentiator');
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M7.39  From the given specifications 
ωs

M
= 0.2π . We also require 

ωs

M
≤

2π − ωs

M
, for no overlap to 

occur in H(e jMω )  (see Figure P7.3(b) ).  Hence  0.2π ≤ 2π
M

− 0.2π  which implies M ≤ 5.   

We choose M = 4.   Hence specifications for H(z) are ω p = 0.6π , ωs = 0.8π , δp = 0.001 and 

δs  = 0.001.   Substituting these values in Eq. (7.15), we arrive at the estimated value of the 
FIR filter length as N = 33.

Specifications for F(z) are ω p = 0.15π , ωs = 0.3π , δp = 0.001 and δs  = 0.001.   Hence, from 

Eq. (7.15), the estimated length of F(z) is N = 43.

Therefore the total number of multiplications required per output sample is 
33

2
+ 43( ) × 1

2
  = 

30.   (The division by 2 is due to the fact that H(z) and F(z) are linear phase filters. )

On the other hand for a direct single stage implementation, we note that the specifications of 
G(z) are: wp = 0.15π, ws = 0.2π, dp = 0.002, ds = 0.001.  Hence, the filter length of G(z) 
from Eq. (7.15) is 121.  Therefore the total number of multiplications required per output 
sample is 121/2 = 61.
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M7.40  From the specified stopband edge ωs = 0.14π , we get the estimated order N pf the RRS 

prefilter H(z) as N ≅
2π
ωs

=14.2857.   We choose N = 15.  Next using the following two 

MATLAB functions we design the equalizer F(z) and the overall cascaded filter H(z)F(z).

% Plotting function
% plots the result of using an equalizer of length InpN
function[N] = plotfunc(InpN)  ;
% Creating filters
Wfilt = ones(1,InpN);
Efilt = remezfunc(InpN, Wfilt);
% Plot running sum filter response
%figure(1)
Wfilt = Wfilt/sum(Wfilt);
[hh,w]=freqz(Wfilt,1,512);
plot(w/pi,20*log10(abs(hh)));
axis([0 1 -50 5]); grid;
xlabel('\omega/\pi'); ylabel('Gain, dB');
title('Prefilter  H(z)');
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% Plot equalizer filter response
%figure(2)
pause
[hw,w]=freqz(Efilt,1,512);
plot(w/pi,20*log10(abs(hw)));
axis([0 1 -50 5]); grid;
xlabel('\omega/\pi'); ylabel('Gain, dB');
title('Equalizer  F(z)');
% Plot cascaded filter response
%figure(3)
pause
Cfilt = conv(Wfilt, Efilt);
[hc,w]=freqz(Cfilt,1,512);
plot(w/pi,20*log10(abs(hc)));
axis([0 1 -80 5]); grid;
title('Cascaded filter  H(z)F(z)');
ylabel('G(\omega),  dB'); xlabel('\omega/\pi');
% Plot filter coefficients
%figure(4)
pause
%subplot(2,1,1);
n1 = 0:length(Wfilt)-1;
stem(n1,Wfilt);
xlabel('Time index  n');ylabel('Amplitude');
title('Prefilter  coefficients');
pause
%subplot(2,1,2);
n2 = 0:length(Efilt)-1;
stem(n2,Efilt);
xlabel('Time index  n');ylabel('Amplitude');
title('Equalizer coefficients');

% Remez function using 1/P(z) as desired amplitude
% and P(z) as weighting
function [N] = remezfunc(Nin,  Wfilt);
% Nin : number of tuples in the remez equalizer filter
% Wfilt : the prefilter
a = [0:0.001:0.999]; %  The accuracy of the computation
w = a.*pi;
wp = 0.042*pi; % The  passband edge
ws = 0.14*pi; % The  stopband edge
i = 1;
n = 1;
for t = 1 : (length(a)/2)

if w(2*t) < wp
pas(i) = w(2*t - 1);
pas(i+1) = w(2*t);
i = i + 2;
end;
if w(2*t-1) > ws
sto(n) = w(2*t-1);
sto(n+1) = w(2*t);
n = n + 2;
end;

end;
w = cat(2, pas, sto);
bi = length(w)/2; % bi  gives the number of subintervals
for t1 = 1:bi
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bw(t1) = (w(2*t1) + w(2*t1-1))/2;
W(t1) = Weight(bw(t1), Wfilt,ws);

end;
W = W/max(W);
for t2 = 1:length(w)

G(t2) = Hdr(w(t2), Wfilt, wp);
end;
G = G/max(G);
N = remez(Nin, w/pi, G, W);

% Weighting function
function[Wout] = Weight (w, Wfilt,  ws);
K = 22.8;
L = length(Wfilt);
Wtemp = 0;
Wsum = 0;
for k = 1:L

Wtemp = Wfilt(k)*exp((k-1)*i*w);
Wsum = Wsum + Wtemp;

end;
Wout = abs(Wsum);
if w > ws

Wout = K*max(Wout);
end;

% Desired function
function[Wout] = Hdr (w, Wfilt,  ws);
if w <= ws

L = length(Wfilt);
Wtemp = 0;
Wsum = 0;
for k = 1:L

Wtemp = Wfilt(k)*exp(i*(k-1)*w);
Wsum = Wsum + Wtemp;

end;
Wsum = abs(Wsum);
Wout = 1/Wsum;
else Wout = 0;

end;
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Chapter 8 (2e)

8.1

z –1

z–1

z–1

–1

–1

α0

α1

α2

α3

β1

β2

β3

x[n] y[n]

w5[n]

w4[n]

w3[n]

w2 [n]

w1[n]

Analysis yields  w1[n]= α1 β1 w1[n −1]+ x[n]− w3[n],

w2[n] = β3w4[n −1],

w3[n]= β2w5[n −1],

w4[n] = α3w2[n]+ w3[n],

w5[n] = α2w3[n]− w2[n]+ β1 w1[n −1],

y[n] = α0x[n]+ β1 w1[n −1].

In matrix form the above set of equations is given by:

w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

=

0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 α3 1 0 0 0
0 −1 α2 0 0 0
0 0 0 0 0 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

+

α1β1 0 0 0 0 0
0 0 0 β3 0 0
0 0 0 0 β2 0
0 0 0 0 0 0

β1 0 0 0 0 0
β1 0 0 0 0 0

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

w1[n −1]
w2[n −1]
w3[n −1]
w4[n −1]
w5[n −1]
y[n −1]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

+

x[n]
0
0
0
0

α0 x[n]

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Here the F matrix is given by

F =

0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 α3 1 0 0 0
0 −1 α2 0 0 0
0 0 0 0 0 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Since the F matrix contains nonzero entries above the main diagonal, the above set of equations
are not computable.

8.2 A computable set of equations of the structure of Figure P8.1 is given by

w2[n] = β3 w4[n −1],

w3[n]= β2 w5[n −1],
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w1[n]= α1β1 w1[n −1]− w3[n]+ x[n],

w4[n] = α3w2[n]+ w3[n],

w5[n] = α2w3[n]− w2[n]+ β1 w1[n −1],

y[n] = α0x[n]+ β1 w1[n −1].

In matrix form the above set of equations is given by:

w2[n]
w3[n]
w1[n]
w4[n]
w5[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

=

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0

α3 1 0 0 0 0
−1 α2 0 0 0 0
0 0 0 0 0 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

w2[n]
w3[n]
w1[n]
w4[n]
w5[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

+

0 0 0 β3 0 0
0 0 0 0 β2 0
0 0 α1β1 0 0 0
0 0 0 0 0 0
0 0 β1 0 0 0
0 0 β1 0 0 0

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

w1[n −1]
w2[n −1]
w3[n −1]
w4[n −1]
w5[n −1]
y[n −1]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

+

0
0

x[n]
0
0

α0 x[n]

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Here the F matrix is given by

F =

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0

α3 1 0 0 0 0
−1 α2 0 0 0 0
0 0 0 0 0 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Since the F matrix does not contain nonzero entries above the main diagonal, the new set of 
equations are computable.

8.3

z–1

z–1

z–1 –1

α0

α1

α2

α 3

β1

β2

β3

x[n] y[n]

w5[n]

w4 [n]

w3[n]

w2[n]

w1[n]

w6[n]

–1

Analysis yields w1[n]= x[n]− α2 w3[n]+ w2[n],

w2[n] = α1 β1w1[n −1],

w3[n]= α1 w1[n]− α3 w5[n]+ w4[n],

w4[n] = α2 β2w3[n −1],

w5[n] = α2 w3[n]+ w6[n],

w6[n] = α3 β3w5[n − 1],
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y[n] = α0x[n]+ α1w1[n].
In matrix form

w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
w6[n]
y[n]

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

=

0 1 −α2 0 0 0 0
0 0 0 0 0 0 0

α1 0 0 1 −α3 0 0
0 0 0 0 0 0 0
0 0 α2 0 0 0 1
0 0 0 0 0 0 0

α1 0 0 0 0 0 0

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
w6[n]
y[n]

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

+

0 0 0 0 0 0 0
α1β1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 α2β2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 α3β3 0 0
0 0 0 0 0 0 0

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

w1[n −1]
w2[n −1]
w3[n −1]
w4[n − 1]
w5[n −1]
w6[n −1]
y[n −1]

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

+

x[n]
0
0
0
0
0

α0x[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

Here the F matrix is given by F =

0 1 −α2 0 0 0 0
0 0 0 0 0 0 0

α1 0 0 1 −α3 0 0
0 0 0 0 0 0 0
0 0 α2 0 0 0 1
0 0 0 0 0 0 0

α1 0 0 0 0 0 0

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

Since the F matrix contains nonzero entries above the main diagonal, the above set of equations
are not computable.

8.4 The signal-flow graph representation of the structure of Figure P8.1 is shown below:

x[n] y[n]

w1[n ]

v1[n]
w2[n]

w3[ n ]

w4[n]w5[ n]

1

1

1 1

α1 α2 α3

α0

β2z−1β1z −1
β3z−1

−1

−1

The reduced signal-flow graph obtained by removing the branches going out of the input node
and the delay branches is as indicated below:
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y[n]
w1[n]

v1[n]
w2[n]

w3[n]

w4[n]w5[n]

1

1 1

α1 α2 α3

−1

−1

From the above signal-flow graph we arrive at its precedence graph shown below:

−1

y[n]

w1[n]v1[n]

w2[n]

w3[n] w4[n]

w5[n]

α1

1

1

α2

1

α3

−1

1
N

2
N

In the above precedence graph, the set N 1 contains nodes with only outgoing branches and 
the final set N 2 contains nodes with only incoming branches.  As a result, the structure of 
Figure P8.1 has no delay-free loops.  A valid computational algorithm by computing the 
node variables in set N 1 first in any order followed by computing the node variables in set 
N 2 in any order.  For example, one valid computational algorithm is given by

v1[n] = β1 w1[n −1],

w3[n]= β2 w5[n −1],

w2[n] = β3 w4[n −1],

w1[n]= α1 v1[n]− w3[n]+ x[n],

w4[n] = α3 w2[n]+ w3[n],

w5[n] = α2 w3[n]− w2[n]+ β1 v1[n],

y[n] = α0 x[n]+ v1[n].

8.5 The reduced signal-flow graph obtained by removing the branches going out of the input node
and the delay branches from the signal-flow graph representation of the structure of Figure 
P8.2 is as indicated below:
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α2

y[n]w1[n]
w2[n]

w3[n]
w4[n]

w5[n]

α1

w6[n]

α1

–α3

1
–α2

The only node with outgoing branch is w6[n] and hence it is the only member of the set N 1.  
Since it is not possible to find a set of nodes N 2 with incoming branches from N 1 and all 
other branches being outgoing, the structure of Figure P8.2 has delay-free loops and is 
therefore not realizable.

8.6  (a)

− k3

k3

− k2

k2

− k1

k1

z −1 z −1 z−1

w3[n] w 2[n] w1[n]

s2[n]s3[n]
↑↑

x[n]

y[n]

Analysis of Figure P8.3 yields  w1[n]= w2[n]− k1w1[n −1],

w2[n] = w3[n]− k 2s2[n −1],

w3[n]= x[n]− k3s3[n − 1],

s2[n] = k1w1[n]+ w1[n −1],

s3[n]= k2w2[n]+ s2[n −1],

y[n] = k 3w3[n]+ s3[n − 1].
In matrix form we have

  

w1[n]
w2[n]
w3[n]
s2[n]
s3[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

=

0
0

x[n]
0
0
0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

+

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k 3 0 0 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

F
1 2 4 4 4 4 4 3 4 4 4 4 4 

w1[n]
w2[n]
w3[n]
s2[n]
s3[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

  

+

−k1 0 0 0 0 0
0 0 0 −k 2 0 0
0 0 0 0 −k3 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

G
1 2 4 4 4 4 4 3 4 4 4 4 4 

w1[n −1]
w2[n −1]
w3[n −1]
s2[n −1]
s3[n −1]
y[n −1]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

As the diagonal elements of the F-matrix are all zeros, there are no delay-free loops.

However, the set of equations as ordered is not computable as there non-zero elements above 
the diagonal of F.

(b)  The reduced signal flow-graph representation of the structure of Figure P8.3 is shown 
below:
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w3[n]
w 2[n]

w1[n] s2[n]

s3[n] y[n]

k1

k2

k3

1
1

From the above flow-graph we observe that the set composed of nodes with out going branches

is 
  
N 1 = w3[n]{ }.   The set composed of nodes with out going branches  and incoming branches

from   N 1 is 
  
N 2 = w2[n]{ }.   The set composed of nodes with out going branches  and incoming

branches from   N 1 and   N 2  is  
  
N 3 = w1[n]{ }.  Finally, set composed of nodes with only 

incoming branches from   N 1 ,   N 2  and   N 3  is 
  
N 4 = s2[n], s3[n], y[n]{ }.   Therefore, one 

possible ordered set of equations that is computable is given by

  

w3[n]
w2[n]
w1[n]
s2[n]
s3[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

=

0
0

x[n]
0
0
0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

+

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 k1 0 0 0
0 k2 0 0 0 0

k3 0 0 0 0 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

F
1 2 4 4 4 4 4 3 4 4 4 4 4 

w3[n]
w2[n]
w1[n]
s2[n]
s3[n]
y[n]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

  

+

0 0 0 0 −k3 0
0 0 0 −k 2 0 0
0 0 −k3 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

G
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

w3[n −1]
w2[n −1]
w1[n −1]
s2[n −1]
s3[n −1]
y[n −1]

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

Note that all elements on the diagonal and above doagonal are zeros.

8.7   H(z) =
p0 + p1z

−1 + p2z−2

1 −3 z−1 − 5 z−2  and   h[n]{ } = 2.1, 1.1, −3.2, −4.1, −28.3, L{ },    n = 0,1,K  

From Eq. (8.15) we have 
p0
p1
p2

 

 

 
 
 

 

 

 
 
 

=
2.1 0 0
1.1 2.1 0

−3.2 1.1 2.1

 

 
 
 

 

 
 
 

1
−3
−5

 

 
 
 

 

 
 
 =

2.1
−5.2
−17

 

 
 
 

 

 
 
 .   Hence, 

P(z) = 2.1 − 5.2 z−1 − 17z−2.

8.8   H(z) =
p0 + p1z

−1 + p2z−2

1+ d1 z−1 + d2 z−2  and h[n]{ } = 3, −2, −6, 12, −15{ },  0 ≤ n ≤ 4.   The equation 

corresponding to Eq. (8.12) is 

p0
p1
p2
0
0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

3 0 0
−2 3 0
−6 −2 3
12 −6 −2
−15 12 −6

 

 

 
 
 
 

 

 

 
 
 
 

1
d1
d2

 

 

 
 
 

 

 

 
 
 
.   Therefore, from EQ. (8.17) we 
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have 
d1
d2

 
  

 
  = − −6 −2

12 −6
 
  

 
  

−1 12
−15

 
  

 
  = 1.7

0.9
 
  

 
  ,  and from Eq. (8.18) we have 

p0
p1
p2

 

 

 
 
 

 

 

 
 
 

=
3 0 0

−2 3 0
−6 −2 3

 

 
 
 

 

 
 
 

1
1.7
0.9

 

 
 
 

 

 
 
 =

3
3.1

−6.7

 

 
 
 

 

 
 
 .   Hence, H(z) = 3 + 3.1z−1 − 6.7z−2

1+ 1.7z−1 + 0.9 z−2 .

8.9   H(z) =
p0 + p1z

−1 + p2z−2 + p3z−3

1 + d1 z−1 + d2 z−2 + d3 z−3  and 

  h[n]{ } = 2, −5, 6, −2, −9, 18, −7 −31, 65, −30, L{ } ,  n ≥ 0.  The equation 

corresponding to Eq. (8.17) is given by  

p0
p1
p2
p3
0
0
0

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

=

2 0 0 0
−5 2 0 0
6 −5 2 0

−2 6 −5 2
−9 −2 6 −5
18 −9 −2 6
−7 18 −9 −2

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

1
d1
d2
d3

 

 

 
 
 
 

 

 

 
 
 
 

.  Therefore, from Eq. 

(8.17) we have 
d1
d2
d3

 

 

 
 
 

 

 

 
 
 

= −
−2 6 −5
−9 −2 6
18 −9 −2

 

 
 
 

 

 
 
 

−1 −9
18
−7

 

 
 
 

 

 
 
 =

2
3
1

 

 
 
 

 

 
 
  and from Eq. (8.18) we have 

p0
p1
p2
p3

 

 

 
 
 
 

 

 

 
 
 
 

=
2 0 0 0

−5 2 0 0
6 −5 2 0

−2 6 −5 2

 

 

 
 
 

 

 

 
 
 

1
2
3
1

 

 

 
 
 

 

 

 
 
 

=
2
−1
2
−3

 

 

 
 
 

 

 

 
 
 
.   Hence, H(z) = 2 − z−1 + 2 z−2 − 3z−3

1 + 2 z−1 + 3z−2 + z−3 .

8.10  G(z) =
p0 + p1z

−1 + p2 z−2 + p3 z−3

2 − 6 z−1 + 8z−2 +10z−3  with g[n]= 3, 7, 13, −3{ },  0 ≤ n ≤ 3.   Therefore, from 

Eq. (8.18) we have 

p0
p1
p2
p3

 

 

 
 
 
 

 

 

 
 
 
 

=
3 0 0 0
7 3 0 0

13 7 3 0
−3 13 7 3

 

 

 
 
 

 

 

 
 
 

2
−6
8

10

 

 

 
 
 

 

 

 
 
 

=
6

−4
8
2

 

 

 
 
 

 

 

 
 
 
.  Hence, G(z) = 6 − 4 z−1 + 8z−2 + 2 z−3

2 − 6 z−1 + 8 z−2 +10 z−3 .

8.11  H(z) =
p0 + p1z

−1 + p2 z−2 + p3 z−3 + p4 z−4

1 + 2 z−1 + 2 z−2 + 3 z−3 + 3 z−4  with 

h[n]{ } = 2, 0, −5, −10, −10, 55, −45, 40, −125, 140, −15{ } 0 ≤ n ≤10

The equation corresponding to Eq. (8.18) is given by
p0
p1
p2
p3
p4

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

=

2 0 0 0 0
0 2 0 0 0
−5 0 2 0 0

−10 −5 0 2 0
−10 −10 −5 0 2

 

 

 
 
 
 

 

 

 
 
 
 

1
2
2
3
3

 

 

 
 
 
 

 

 

 
 
 
 

=

2
4

−1
−14
−34

 

 

 
 
 
 

 

 

 
 
 
 
.

Therefore, H(z) = 2 + 4z−1 − z−2 −14 z−3 − 34 z−4

1 + 2 z−1 + 2 z−2 + 3 z−3 + 3 z−4 .
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8.12 The k-th sample of an N-point DFT is given by  X[k]= x[n]WN
nk

k =0

N−1

∑ .   Thus the computation of

X[k] requires N complex multiplications and N–1 complex additions.  Now each complex 
multiplication, in turn, requires 4 real multiplications, and 2 real additions.  Likewise, each 
complex addition requires 2 real additions.  As a result, the N complex multiplications needed 
to compute X[k] require a total of 4N real multiplications and a total of 2N real additions.  
Similarly, the N–1 complex additions needed in the computation of X[k] require a total of
2N–2 real additions.  Hence, each sample of the N-point DFT involves 4N real multiplications 
and 4N–2 real additions.  The computation of all N DFT samples thus requires 4N2 real 
multiplications and (4N–2)N real additions.

8.13 Let the two complex numbers be α = a + jb  and  β = c + jd.   Then, αβ = (a + jb)(c + jd)
= (ac – bd)+ j(ad + bc)  which requires 4 real multiplications and 2 real additions.  Consider the 
products (a + b)(c + d) , ac  and  bd  which require 3 real multiplications and 2 real additions.  
The imaginary part of αβ  can be formed from (a + b)(c + d)− a c – b d = a d + b c which 
now requires 2 real additions.  Likewise, the real part of αβ  can be formed by forming ac – bd
requiring an additional real addition.  Hence, the complex multplication αβ  can be computed 
using 3 real multplications and 5 real additions.

8.14 The center frequency of bin k: fc(k) =
k FT

N
 where N = # of bins, and FT  is the sampling 

frequency.  Inverting we have k(f ) = f N
FT

 

 
 
 

 

 
 
 .  Therefore, the absolute difference from one of the

given four tones (150 Hz, 375 Hz, 620 Hz, and 850 Hz) to the center of its bin is given by 

dist(N, f) = f −
FT

N
f N
FT

 

 
 
 

 

 
 
 .   It follows from this equation that the distance goes to zero if 

FT

N
f N
FT

 

 
 
 

 

 
 
 = f  or 

f N
FT

 is an integer.

The total distance is reduced to zero if 
fiN

FT
 is an integer for   i = 1,K,4.   The minimum N for 

which this is true is 500.

However, the total distance can be small, but nonzero, for significantly smaller values of N.  The
MATLAB generated plot given below shows a nice minimum at N = 21.

5 10 15 20 25 30 35
0

200

400

600

800

Number of bins (N)

Total absolute difference plot
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8.15

  z–1

WN
–k

y[n]

y[–1] = 0

x[n]

Hk (z) = 1

1 − WN
−kz−1 . Hence, Y(z) = X(z)

1− WN
−k z−1 = 1+ z–N / 2

1 − WN
−kz−1 .

For k = 1,  

  

Y(z) = 1 + z–N / 2

1− WN
−1z−1 = (1 + z–N / 2)(1+ WN

−1z−1 + WN
−2z−2 +L+ WN

−N / 2z−N / 2 +L

Hence, 
  
y[n] = 1, WN

−1, WN
−2,L,WN

−(N−2) / 2,1 + WN
−N / 2 ,L,1+ WN

−(N −1) ,L{ }
For k = N/2, Y(z) = 1 + z– N / 2

1− WN
−N / 2z−1 .  Hence,

  y[n] = 1, −1, 1, −1, K −1, 2, 0, 2, 0, K 0{ }

8.16

  
WN

2

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X[0]

X[1]

X[2]

X[3]

X[5]

X[6]

X[7]

X[4]
  WN

0

  WN
0

  WN
0
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8.18 X[k]= x[n]WN
nk

n =0

N−1

∑

  

= x[nr1]WN
nkr1

n =0

N

r1
−1

∑ + x[nr1 +1]WN
nkr1+k

n=0

N

r1
−1

∑ +L + x[nr1 + r1 − 1]WN
nkr1+ (r1−1)k

n=0

N

r1
−1

∑

  

= x[nr1 + i]WN
nkr1

(N / r1 )−point DFT
1 2 4 4 3 4 4 

n=0

N

r1
−1

∑
i =0

r1−1

∑ ⋅WN
ki

Thus, if the (N/r1)-point DFT has been calculated, we need at the first stage an additional
(r1 – 1) multiplications to compute one sample the N-point DFT X[k] and as a result, additional
(r1 – 1)N multiplications are required to compute all N samples of the N-point DFT.  
Decomposing it further, it follows then that additional (r2 – 1)N multiplications are needed at 
the second stage, and so on.  Therefore,

Total number of multiply (add) operations = (r1 – 1)N + (r2 – 1)N + . . .  + (rν – 1)N

= ri − ν
i=1

ν∑ 
  

 
  N.

8.19 X(z) = X0 (z3) + z−1X1(z3) + z−2 X2(z3 ).  Thus, the N-point DFT can be expressed as

X[k]= X0[< k >N / 3]+ WN
k X1[< k >N / 3]+ WN

2k X2[< k >N / 3] .  Hence, the structural 
interpretation of the first stage of the radix-3 DFT is as indicated below:
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X[k]x[n]

z

  x0 [n]

  x1[n]   WN
k

z

3

3

3

X 0[< k > N

3

]

X1[< k > N

3

]

X2[< k > N

3

]
x 2[n]

N
3

−point

DFT

N
3

−point

DFT

N
3

−point

DFT

WN
2 k

8.20 X[k]= x[n]W9
nk

n=0

8

∑ = x[0]W9
0⋅k + x[3]W9

3k + x[6]W9
6k( )

+ x[1]W9
k + x[4]W9

4k + x[7]W9
7k( ) + x[2]W9

2k + x[5]W9
5k + x[8]W9

8k( )
= x[0]W3

0⋅k + x[3]W3
k + x[6]W3

2k( )+ x[1]W3
0⋅k + x[4]W3

k + x[7]W3
2k( )W9

k

    
+ x[2]W3

0⋅k + x[5]W3
k + x[8]W3

2k( )W9
2k  = G0[< k >3]+ G1[< k >3 ]W9

k + G2[< k >3]W9
2k ,

where  G0[< k >3] = x[0]W3
0⋅k + x[3]W3

k + x[6]W3
2k, G1[< k >3 ]= x[1]W3

0⋅k + x[4]W3
k + x[7]W3

2k ,

and  G2[< k >3] = x[2]W3
0⋅k + x[5]W3

k + x[8]W3
2k,  are three 3-point DFTs.  A flow-graph 

representation of this DIT mixed-radix DFT computation scheme is shown below:

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

x[8]

X[0]

X[1]

X[2]

X[3]

X[5]

X[6]

X[7]

X[4]

X[8]

3-point
DFT

3-point
DFT

3-point
DFT

G0[0]

G0 [ 1]

G0[2]

G1[ 2]

G1[1]

G1[ 0]

G2[0]

G2[ 1]

G2[2]

where the twiddle factors for computing the DFT samples are indicated below for a typical DFT
sample:

G0[k]

G1[k]

G2[k]

X[k]
W3

k

W3
2k

W3
0 ⋅k
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In the above diagram, the 3-point DFT computation is carried out as indicated below:

W3
0

W3
0

W3
1

W3
2

W3
2

W3
1   Gl [2]

  Gl [1]

  Gl [0]  x[l]

  x[l+ 3]

  x[l+ 6]

8.21 X[k]= x[n]W15
nk

n=0

14

∑ = x[0]W15
0⋅k + x[3]W15

3k + x[6]W15
6k + x[9]W15

9k + x[12]W15
12k( )

+ x[1]W15
k + x[4]W15

4k + x[7]W15
7k + x[10]W15

10k + x[13]W15
13k( )

+ x[2]W15
2k + x[5]W15

5k + x[8]W15
8k + x[11]W15

11k + x[14]W15
14k( )

= G0[< k >5]+ G1[< k >5 ]W15
k + G2[< k >5 ]W15

2k,  where

G0[< k >5] = x[0]W5
0⋅k + x[3]W5

k + x[6]W5
2k + x[9]W5

3k + x[12]W5
4k,

G1[< k >5 ]= x[1]W5
0⋅k + x[4]W5

k + x[7]W5
2k + x[10]W5

3k + x[13]W5
4k,  and

G2[< k >5] = x[2]W5
0⋅k + x[5]W5

k + x[8]W5
2k + x[11]W5

3k + x[14]W5
4k .

A flow-graph representation of this DIT mixed-radix DFT computation scheme is shown below:
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Now, by definition, q[n] = Im{X[n]}+ jRe{X[n]}.  Its N-point DFT is Q[k] = q[n]WN
nk

n=0

N−1

∑ .   

Thus,  Re{Q[k]} = Im{X[m]}cos
2πmk

N

 
  

 
  + Re{X[m]}sin

2πmk
N

 
  

 
  

 
  

 
  

m=0

N −1

∑ ,  (18)

Im{Q[k]}= – Im{X[m]}sin
2πmk

N

 
  

 
  + Re{X[m]}cos

2πmk
N

 
  

 
  

 
  

 
  

m=0

N −1

∑ , (19)

From the definition of the inverse DFT we observe   x[k] = 1
N

X[m]WN
−mk

m=0

N −1

∑ .  Hence,

Re{x[k]}= 1
N

Re{X[m]}cos
2πmk

N

 
  

 
  − Im{X[m]}sin

2πmk
N

 
  

 
  

 
  

 
  

m=0

N−1

∑ , (20)

Im{x[k]}= 1
N

Im{X[m]}cos
2πmk

N

 
  

 
  + Re{X[m]}sin

2πmk
N

 
  

 
  

 
  

 
  

m=0

N−1

∑ . 12` (21)

Comparing Eqs. (19) and (20), we get  Re{x[n]} = 1
N

Im{Q[k]}
k =n

,

and comparing Eqs. (18) and (21) we get Im{x[n]} = 1
N

Re{Q[k]}
k =n

.

8.24 r[n] = X[< –n >N] = X[0], if n = 0,
X[N − n], if n ≠ 0.{   Therefore,

R[k] = r[n]WN
nk

n=0

N−1

∑ = r[0] + r[n]WN
nk

n=1

N−1

∑ = X[0]+ X[N − n]WN
nk

n =1

N −1

∑

= X[0]+ X[n]WN
(N−n)k

n =1

N −1

∑ = X[0]+ X[n]WN
−nk

n =1

N −1

∑ = X[n]WN
−nk

n=0

N−1

∑ = N x[k].

Thus, x[n] = 1
N

⋅R[k]
k =n

.

8.25  Let y[n] denote the result of convolving a length-L sequence x[n] with a length-N sequence 
h[n].  The length of y[n] is then L + N – 1.  Here L = 8 and N = 5, hence length of y[n] is  12.

Method #1:  Direct linear convolution -  For a length-L sequence x[n] and a length-N h[n],

# of real mult. = 2 n
n=1

N

∑
 

 
 
 

 

 
 
 + N(L − N −1) = 2 n

n =1

5

∑
 

 
 
 

 

 
 
 + 5(8 − 5 −1)  =  40.

Method # 2:  Linear convolution via circular convolution -  Since y[n] is of length 12, to get 
the correct result we need to pad both sequences with zeros to increase their lengths to 12 
before carrying out the circular convolution.

# of real mult. = 12 ×12 = 144.
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Method #3:  Linear convolution via  radix-2 FFT - The process involves computing the 16-
point FFT G[k] of the length-16 complex sequence g[n]= xe[n]+ j he[n]  where xe[n] and  
h e[n] are length-16 sequences obtained by zero-padding x[n] and h[n], respectively.  Then 

recovering the 16-point DFTs, Xe[k]  and He[k] , of xe[n] and  h e[n], respectively, from G[k].

Finally, the IDFT of the product Y[k] = Xe[k] ⋅He[k]  yields y[n].

Now, the first stage of the 16-point radix-2 FFT requires 0 complex multiplications, the second
stage requires 0 complex multiplications, the third stage requires 4 complex multiplications, and
the last stage requires 6 complex multiplications resulting in a total of 10 complex 
multiplications.

# of complex mult. to implement G[k] = 10

# of complex mult. to recover Xe[k]  and He[k]  from G[k] = 0

# of complex mult. to form Y[k] = Xe[k] ⋅He[k]  = 16

# of complex mult. to form the IDFT of Y[k] = 10

Hence, the total number of complex mult. = 36

A direct implementation of a complex multiplication requires 4 real multiplications resulting in
a total of 4× 36 = 144 real multiplications for Method #3.  However, if a complex multiply can
be implemented using 3 real multiplies (see Problem 8.13), in which case Method #3 requires a
total of 3× 36 = 108 real multiplications.

8.26 Method #1: Total # of real multiplications required

= 2 n
n=1

N

∑
 

 
 
 

 

 
 
 + N(L − N −1) = 2 n

n =1

6

∑
 

 
 
 

 

 
 
 + 6(8 − 6 −1) = 48.

Method #2:  Total # of real multiplications required  = 132 = 169.

Method #3:  Linear convolution via  radix-2 FFT - The process involves computing the 16-
point FFT G[k] of the length-16 complex sequence g[n]= xe[n]+ j he[n]  where xe[n] and  
h e[n] are length-16 sequences obtained by zero-padding x[n] and h[n], respectively.  Then 

recovering the 16-point DFTs, Xe[k]  and He[k] , of xe[n] and  h e[n], respectively, from G[k].

Finally, the IDFT of the product Y[k] = Xe[k] ⋅He[k]  yields y[n].

Now, the first stage of the 16-point radix-2 FFT requires 0 complex multiplications, the second
stage requires 0 complex multiplications, the third stage requires 4 complex multiplications, and
the last stage requires 6 complex multiplications resulting in a total of 10 complex 
multiplications.

# of complex mult. to implement G[k] = 10

# of complex mult. to recover Xe[k]  and He[k]  from G[k] = 0

# of complex mult. to form Y[k] = Xe[k] ⋅He[k]  = 16

# of complex mult. to form the IDFT of Y[k] = 10
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Hence, the total number of complex mult. = 36

A direct implementation of a complex multiplication requires 4 real multiplications resulting in
a total of 4× 36 = 144 real multiplications for Method #3.  However, if a complex multiply can
be implemented using 3 real multiplies (see Problem 8.13), in which case Method #3 requires a
total of 3× 36 = 108 real multiplications.

8.27  (a)  Since the impulse response of the filter is of length 34, the transform length N should be 
greater than 34.  If L denotes the number of input samples used for convolution, then L = N – 
33.  So for every L samples of the input sequence, an N-point DFT is computed and multiplied
with an N-point DFT of the impulse response sequence h[n] (which needs to be computed only
once), and finally an N-point inverse of the product sequence is evaluated.  Hence, the total 
number RM of complex multiplications required (assuming N is a power-of-2) is given by

RM = 1024

N−33
 
  

 
  Nlog2 N + N( ) + N

2
log2 N

It should be noted that in developing the above expression, multiplications due to twiddle 
factors of values ±1  and ± j  have not been excluded.  The values of  RM for different values of
N are as follows:

For N = 64,    RM = 15,424

For N = 128,  RM = 11,712

for N = 256,   RM = 12,544

for N = 512,   RM = 17,664
Hence, N = 128 is the appropriate choice for the  transform length requiring 14,848 complex 
multiplications or equivalently, 11,712× 3 = 35,136 real multiplications.

Since the first stage of the FFT calculation process requires only multiplications by ±1 , the total
number of complex multiplications for N = 128 is actually

RM = 1024

N−33
 
  

 
  Nlog2 N + N( ) + N

2
log2 N − N

2
 = 11,648

or equivalently, 11,648× 3 = 34,944 real multiplications.

(b)  For direct convolution, # of real multiplications = 

                2 n
n=1

N

∑
 

 
 
 

 

 
 
 + N(L − N −1) = 2 n

n =1

34

∑
 

 
 
 

 

 
 
 + 34(1024 − 34 − 1) = 34,816.

8.28   From the flow-graph of the 8-point split-radix FFT algorithm given below it can be seen that 
the total number of complex multiplications required is 2.  On the other hand, the total number
of complex multiplications required for a standard DIF FFT algorithm is also 2.
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8.29 If multiplications by ±j, ±1 are ignored, the flow-graph shown below requires 8 complex = 24 
real multiplications.  A radix-2 DIF 16-point FFT algorithm, on the other hand, requires 10 
complex multiplications = 30 real multiplications.
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8.30 (a) From Eq. (8.97a), x[n] = x[n1 + N1n2 ] where 0 ≤ n1 ≤ N1 −1,  and 0 ≤ n2 ≤ N2 −1.   Now, 

using Eq. (8.97b) we can rewrite X[k]= x[n]WN
nk

n =0

N−1

∑ , 0 ≤ k ≤ N −1, as

X[N2 k1 + k 2] = x[n]WN
n(N2k1+k2 )

n=0

N1N2 –1

∑ = x[n1 + N1n2 ]WN
(n1+N1n 2 )(N2k1+k2 )

n2=0

N 2–1

∑
n1=0

N1−1

∑

= x[n1 + N1n2]WN
n1N2k1

n2 =0

N2 –1

∑
n1=0

N1−1

∑ WN
N1n2N2k1WN

N1n2k2 WN
n1k2 .

Since, WN
n1N2k1 = WN1

n1k1 ,  WN
N1N2n1k1 = 1,  and WN

N1n2k2 = WN2

n2k2 ,  we get

X[k]= X[N2k1 + k2 ] = x[n1 + N1n2 ]WN2

n2k2

n2=0

N 2–1

∑
 

 

 
 
 

 

 

 
 
 

WN
n1k2

 

 

 
 
 

 

 

 
 
 n1=0

N1−1

∑ WN1

n1k1 .     (22)

(b)  For N1 = 2 and N2 = N/2,  the above DFT computation scheme leads to 

X[k]= X[
N
2

k1 + k2 ] = x[n1 + 2n 2]WN /2
n2k2

n2 =0

N

2
–1

∑
 

 

 
 
 
  

 

 

 
 
 
  

WN
n1k2

 

 

 
 
 
 
 

 

 

 
 
 
 
 n1=0

1

∑ W2
n1k1

= x[2n2 ]WN / 2
n 2k 2

n2 =0

N

2
–1

∑ + WN1

k1WN
k2 x[2n2 +1]WN / 2

n 2k 2

n 2=0

N

2
–1

∑

= x[2n2 ]WN / 2
n 2k 2

n2 =0

N

2
–1

∑ + WN
k x[2n 2 +1]WN / 2

n2k2

n2 =0

N

2
–1

∑
which is seen to be the first stage in the DIT DFT computation.

On the other hand, for N1 = N/2 and N2 = 2,  the above DFT computation scheme leads to

X[k]= X[2k1 + k2 ]= x[n1 + N
2

n 2]W2
n2k2

n2 =0

1

∑
 

 

 
 
 

 

 

 
 
 

WN
n1k2

 

 

 
 
 

 

 

 
 
 n1=0

N

2
–1

∑ WN / 2
n1k1

= x[n1]+ x[n1 + N
2

](−1)k2
 
  

 
  WN

n1k2

n1=0

N

2
–1

∑ WN / 2
n1k1

= x[n1]+ (−1)k 2 x[n1 + N
2

]
 
  

 
  WN

n1k2
 
 
 

 
 
 

n1=0

N

2
–1

∑ WN / 2
n1k1

which represents the first stage of the DIF FFT algorithm.
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(c)  In the DFT computation scheme of Eq. (22), we first compute a total of N2  N1-point 

DFTs, multiply all the N1N2 = N computed DFT coefficients by the twiddle factors WN
n1k 2 , and

finally calculate a total of  N2 N1-point DFTs.  If  R(N) denotes the total number of 
multiplications needed to compute an N-point DFT, then the total number of multplications 
required in the DFT computation scheme of Eq. (22) is given by

(i)  N2 ⋅R(N1)  for the first step,
(ii) N2N1 = N for multiplications by the twiddle factors, and

(iii) N1 ⋅R(N2)  for the last step.

Therefore, R(N) = N2 ⋅R(N1) + N + N1 ⋅R(N2) = N( 1
N1

R(N1) + 
1

N2
R(N2) + 1).

(d)  For N = 2ν, choose N i = 2,  i = 1, 2, . . . ν.  Now from Figure 8.24 for a 2-point DFT

R(Ni) = 2.  Hence,  R(N) = N
ν
2

 
  

 
  = N

2
log2 N.

8.28   (a)

V8 =

1 0 0 0 W8
0 0 0 0

0 1 0 0 0 W8
1 0 0

0 0 1 0 0 0 W8
2 0

0 0 0 1 0 0 0 W8
3

1 0 0 0 W8
4 0 0 0

0 1 0 0 0 W8
5 0 0

0 0 1 0 0 0 W8
6 0

0 0 0 1 0 0 0 W8
7

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   V4 =

1 0 W8
0 0 0 0 0 0

0 1 0 W8
2 0 0 0 0

1 0 W8
0 0 0 0 0 0

0 1 0 W8
2 0 0 0 0

0 0 0 0 1 0 W8
0 0

0 0 0 0 0 1 0 W8
2

0 0 0 0 1 0 W8
0 0

0 0 0 0 0 1 0 W8
2

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

V2 =

1 W8
0 0 0 0 0 0 0

1 W8
4 0 0 0 0 0 0

0 0 1 W8
0 0 0 0 0

0 0 1 W8
4 0 0 0 0

0 0 0 0 1 W8
0 0 0

0 0 0 0 1 W8
4 0 0

0 0 0 0 0 0 1 W8
0

0 0 0 0 0 0 1 W8
4

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   E =

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

.

As can be seen from the above, multiplication by each matrix Vk, k = 1, 2, 3, requires at most 8
complex multiplications.

(b) The transpose of the matrices given in part (a) are as follows:
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V8
T =

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

W8
0 0 0 0 W8

4 0 0 0

0 W8
1 0 0 0 W8

5 0 0

0 0 W8
2 0 0 0 W8

6 0

0 0 0 W8
3 0 0 0 W8

7

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

,   V4
T =

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

W8
0 0 W8

0 0 0 0 0 0

0 W8
2 0 W8

2 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 W8

0 0 W8
0 0

0 0 0 0 0 W8
2 0 W8

2

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

,

V2
T =

1 1 0 0 0 0 0 0
W8

0 W8
4 0 0 0 0 0 0

0 0 1 1 0 0 0 0
0 0 W8

0 W8
4 0 0 0 0

0 0 0 0 1 1 0 0
0 0 0 0 W8

0 W8
4 0 0

0 0 0 0 0 0 1 1
0 0 0 0 0 0 W8

0 W8
4

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

,   ET = E =

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

.

It is easy to show that the flow-graph representation of D8 = ETV2
TV4

TV8
T  is precisely the 8-

point DIF FFT algorithjm of Figure 8.28.

8.29

  

X[2l ]= x[n]WN
2l n

n =0

N –1

∑ = x[n]WN
2l n

n=0

N

2
–1

∑ + x[n]WN
2l n

n=N / 2

N–1

∑ , l = 0,1,K,
N
2

– 1.

Replacing  n  by n + N
2

 in the right-most sum we get

  

X[2l ]= x[n]WN
2ln

n =0

N

2
–1

∑ + x[n + N
2

]WN
2l n

n=0

N

2
–1

∑ WN
Nl = x[n]+ x[n + N

2
]

 
  

 
  WN / 2

l n , 0 ≤ l ≤ N
2

−1.
n =0

N

2
–1

∑

  

X[4l +1] = x[n]WN
(4l +1)n

n =0

N

4
–1

∑ + x[n]WN
(4l +1)n

n=
N

4

N

2
–1

∑ + x[n]WN
(4l +1)n

n=
N

2

3N

4
–1

∑ + x[n]WN
(4l +1)n

n=
3N

4

N–1

∑ ,

where

 

  
0 ≤ l ≤ N

4
– 1.  Replacing n by  n + N

4
 in the second sum,  n by  n + N

2
 in the third sum, 

and  n by  n + 3N
4

 in the fourth sum, we get

  

X[4l +1] = x[n]WN
4l nWN

n

n =0

N

4
–1

∑ + x[n + N
4

]WN
4l nWN

n

n=0

N

4
–1

∑ WN
l NWN

N / 4

  

+ x[n + N
2

]WN
4l nWN

nWN
2l NWN

N / 2

n=0

N

4
–1

∑ + x[n + 3N
4

]WN
4l n WN

n

n=0

N

4
–1

∑ WN
3l NWN

3N / 4

Now,   WN
l N = WN

2l N = WN
3l N = 1,  WN

N / 4 = − j ,   WN
N / 2 = −1,   and  WN

3N / 4 = + j .   Therefore,
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X[4l +1] = x[n]− x[n + N
2

]
 
  

 
  − j x[n + N

4
]− x[n + 3N

4
]

 
  

 
  

 
 
 

 
 
 

WN
n WN/ 4

l n

n =0

N

4
–1

∑ ,  
  
0 ≤ l ≤ N

4
−1.

Similarly, 

  

X[4l + 3] = x[n]WN
(4l +3)n

n=0

N

4
–1

∑ + x[n + N
4

]WN
(4l +3)n

n =0

N

4
–1

∑ WN
(4l +3)N / 4

  

+ x[n + N
2

]WN
(4l +3)nWN

(4l +3)N / 2

n=0

N

4
–1

∑ + x[n + 3N
4

]WN
(4l +3)n

n =0

N

4
–1

∑ WN
(4l +3)3N / 4

  

= x[n]WN
4l nWN

3n

n =0

N

4
–1

∑ + x[n + N
4

]WN
4l nWN

3 n

n =0

N

4
–1

∑ WN
l NWN

3N / 4

  

= x[n + N
2

]WN
4l nWN

3 nWN
2l NWN

6 N/ 4

n =0

N

4
–1

∑ + x[n + 3N
4

]WN
4l n WN

3n

n=0

N

4
–1

∑ WN
3l N WN

9N / 4

  

= x[n]− x[n + N
2

]
 
  

 
  + j x[n + N

4
]− x[n + 3N

4
]

 
  

 
  

 
 
 

 
 
 

WN
3 nWN / 4

l n

n =0

N

4
–1

∑ , 0 ≤ l ≤ N
4

− 1.

The butterfly here is as shown below which is seen to require two complex multiplications.

x[n]

x[n +
N

4
]

x[n + N

2
]

x[n +
3N

4
]

–1

–1 j

–j

  X[4l + 2]

  X[4l +1]

  X[4l + 3]

  X[4l]

WN
n

WN
3n

8.30   From the flow-graph of the 8-point split-radix FFT algorithm given below it can be seen that 
the total number of complex multiplications required is 2.  On the other hand, the total number
of complex multiplications required for a standard DIF FFT algorithm is also 2.
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X[7]

X[3]

X[5]

X[1]

X[6]

X[2]

X[4]

X[0]x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

–j

–j

–j

W8
1

W8
3

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

8.31 If multiplications by ±j, ±1 are ignored, the flow-graph shown below requires 8 complex = 24 
real multiplications.  A radix-2 DIF 16-point FFT algorithm, on the other hand, requires 10 
complex multiplications = 30 real multiplications.

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1 –1

–1

–1

–1

–1

–1

–1

–1

–j

–j

–j

–j

– j

–j

W8
1

W8
3

W16
1

W16
2

W16
3

W16
3

W16
6

W16
9

W16
0

W16
0

–j

–j

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

X[7]

X[3]

X[5]

X[1]

X[6]

X[2]

X[4]

X[0]

X[8]

X[12]

X[10]

X[14]

X[15]

X[11]

X[13]

X[9]
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8.32 (a) From Eq. (8.97a), x[n] = x[n1 + N1n2 ] where 0 ≤ n1 ≤ N1 −1,  and 0 ≤ n2 ≤ N2 −1.   Now, 

using Eq. (8.97b) we can rewrite X[k]= x[n]WN
nk

n =0

N−1

∑ , 0 ≤ k ≤ N −1, as

X[N2 k1 + k 2] = x[n]WN
n(N2k1+k2 )

n=0

N1N2 –1

∑ = x[n1 + N1n2 ]WN
(n1+N1n 2 )(N2k1+k2 )

n2=0

N 2–1

∑
n1=0

N1−1

∑

= x[n1 + N1n2]WN
n1N2k1

n2 =0

N2 –1

∑
n1=0

N1−1

∑ WN
N1n2N2k1WN

N1n2k2 WN
n1k2 .

Since, WN
n1N2k1 = WN1

n1k1 ,  WN
N1N2n1k1 = 1,  and WN

N1n2k2 = WN2

n2k2 ,  we get

X[k]= X[N2k1 + k2 ] = x[n1 + N1n2 ]WN2

n2k2

n2=0

N 2–1

∑
 

 

 
 
 

 

 

 
 
 

WN
n1k2

 

 

 
 
 

 

 

 
 
 n1=0

N1−1

∑ WN1

n1k1 .     (22)

(b)  For N1 = 2 and N2 = N/2,  the above DFT computation scheme leads to 

X[k]= X[
N
2

k1 + k2 ] = x[n1 + 2n 2]WN /2
n2k2

n2 =0

N

2
–1

∑
 

 

 
 
 
  

 

 

 
 
 
  

WN
n1k2

 

 

 
 
 
 
 

 

 

 
 
 
 
 n1=0

1

∑ W2
n1k1

= x[2n2 ]WN / 2
n 2k 2

n2 =0

N

2
–1

∑ + WN1

k1WN
k2 x[2n2 +1]WN / 2

n 2k 2

n 2=0

N

2
–1

∑

= x[2n2 ]WN / 2
n 2k 2

n2 =0

N

2
–1

∑ + WN
k x[2n 2 +1]WN / 2

n2k2

n2 =0

N

2
–1

∑
which is seen to be the first stage in the DIT DFT computation.

On the other hand, for N1 = N/2 and N2 = 2,  the above DFT computation scheme leads to

X[k]= X[2k1 + k2 ]= x[n1 + N
2

n 2]W2
n2k2

n2 =0

1

∑
 

 

 
 
 

 

 

 
 
 

WN
n1k2

 

 

 
 
 

 

 

 
 
 n1=0

N

2
–1

∑ WN / 2
n1k1

= x[n1]+ x[n1 + N
2

](−1)k2
 
  

 
  WN

n1k2

n1=0

N

2
–1

∑ WN / 2
n1k1

= x[n1]+ (−1)k 2 x[n1 + N
2

]
 
  

 
  WN

n1k2
 
 
 

 
 
 

n1=0

N

2
–1

∑ WN / 2
n1k1

which represents the first stage of the DIF FFT algorithm.
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(c)  In the DFT computation scheme of Eq. (22), we first compute a total of N2  N1-point 

DFTs, multiply all the N1N2 = N computed DFT coefficients by the twiddle factors WN
n1k 2 , and

finally calculate a total of  N2 N1-point DFTs.  If  R(N) denotes the total number of 
multiplications needed to compute an N-point DFT, then the total number of multplications 
required in the DFT computation scheme of Eq. (22) is given by

(i)  N2 ⋅R(N1)  for the first step,
(ii) N2N1 = N for multiplications by the twiddle factors, and

(iii) N1 ⋅R(N2)  for the last step.

Therefore, R(N) = N2 ⋅R(N1) + N + N1 ⋅R(N2) = N( 1
N1

R(N1) + 
1

N2
R(N2) + 1).

(d)  For N = 2ν, choose N i = 2,  i = 1, 2, . . . ν.  Now from Figure 8.24 for a 2-point DFT

R(Ni) = 2.  Hence,  R(N) = N
ν
2

 
  

 
  = N

2
log2 N.

8.33  (a)  N = 12.  Choose N1 = 4 and N2 = 3.  Thus,

n = n1 + 4 n2 ,  
0 ≤ n1 ≤ 3

0 ≤ n 2 ≤ 2
 
 
 

,  and k = 3 k1 + k2 ,  
0 ≤ k1 ≤ 3

0 ≤ k2 ≤ 2
 
 
 

.

x[0] x[1] x[2] x[3]

x[4] x[5] x[6] x[7]

x[8] x[9] x[10] x[11]

n1n 2 0
0

1

1

2

2 3
X[0] X[3] X[6] X[9]

X[1] X[4] X[7] X[10]

X[2] X[5] X[8] X[11]

k1k2 0
0

1

1

2

2 3

(b)  N = 15.  Choose N1 = 3 and N2 = 5.  Thus,

n = n1 + 3n 2,  
0 ≤ n1 ≤ 2

0 ≤ n 2 ≤ 4
 
 
 

,  and k = 5 k1 + k2 ,  
0 ≤ k1 ≤ 2

0 ≤ k2 ≤ 4
 
 
 

.

n1n 2
x[0] x[1] x[2]

x[3] x[4] x[5]

x[6] x[7] x[8]

x[9] x[10] x[11]

x[12] x[13] x[14]

0
0

1

1

2

3

4

2 0
0

1

1

2

3

4

k1k2
X[0] X[5] X[10]

X[1] X[6] X[11]

X[2] X[7] X[12]

X[3] X[8] X[13]

X[4] X[9] X[14]

2

(c)  N = 21.  Choose N1 = 7,  and N2 = 3.   Thus,

n = n1 + 7 n2,
0 ≤ n1 ≤ 6

0 ≤ n 2 ≤ 2
 
 
 

,  and k = 3 k1 + k2 ,
0 ≤ k1 ≤ 6

0 ≤ k2 ≤ 2
 
 
 

.

332



x[0] x[1] x[2] x[3] x[4] x[5] x[6]

x[7] x[8] x[9] x[10] x[11] x[12] x[13]

x[14] x[15] x[16] x[17] x[18] x[19] x[20]

n1
n 2 0 1 2 3 4 5 6

0
1
2

0 1 2 3 4 5 6

0
1
2

X[0] X[3] X[6] X[9] X[12] X[15] X[18]

X[1] X[4] X[7] X[10] X[13] X[16] X[19]

X[2] X[5] X[8] X[11] X[14] X[17] X[20]

k1
k2

(d)  N = 35.  Choose N1 = 7,  and N2 = 5.   Thus,

n = n1 + 7 n2,   
0 ≤ n1 ≤ 6

0 ≤ n 2 ≤ 4
 
 
 

,  and  k = 5 k1 + k2 ,   
0 ≤ k1 ≤ 6

0 ≤ k2 ≤ 4
 
 
 

.

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

x[7] x[8] x[9] x[10] x[11] x[12] x[13]

x[14] x[15] x[16] x[17] x[18] x[19] x[20]

x[21] x[22] x[23] x[24] x[25] x[26] x[27]

x[28] x[29] x[30] x[31] x[32] x[33] x[34]

n1
n 2 0 1 2 3 4 5 6

0
1
2
3
4

0 1 2 3 4 5 6

0
1
2

k1
k2

X[0] X[5] X[10] X[15] X[20] X[25] X[30]

X[1] X[6] X[11] X[16] X[21] X[26] X[31]

X[2] X[7] X[12] X[17] X[22] X[27] X[32]

X[3] X[8] X[13] X[18] X[23] X[28] X[33]

X[4] X[9] X[14] X[19] X[24] X[29] X[34]

3
4

8.34  (a) n =< A n1 + B n2 >N , k = < C k1 + Dk2 >N,   where N = N1N2.

X[k]= X[< C k1 + D k2 >N] = x[< A n1 + B n2 >N ]
n2 =0

N2−1

∑
n1=0

N1−1

∑ WN
(A n1+Bn2 )(Ck1+D k2 )

= x[< A n1 + Bn2 >N ]
n2 =0

N2 −1

∑
n1=0

N1−1

∑ WN
AC n1 k1WN

ADn1k2 WN
BD n2 k 2WN

BC n2 k1 .

To completely eliminate the twiddle factors we require

WN
ACn1k1WN

ADn1k 2WN
BDn2 k2 WN

BCn2 k1 = WN1

n1 k1WN2

n2 k2 .

To achieve this we need to choose the constants A, B, C, and D, such that

< AD >N = 0 , < BC >N = 0,  < AC >N = N2 ,  and  < BD >N = N1. (23)
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Then, we can write  X[< C k1 + Dk2 >N ]== x[< A n1 + Bn2 >N ]
n2 =0

N2 −1

∑
n1=0

N1−1

∑ WN1

n1 k1WN 2

n 2 k2 .

(b) We shall show that the following choice of the constants satisfy the constraints of Eq. (23):

A = N2 ,   B = N1,   C = N2 < N2
−1 >N1

,   and  D = N1 < N1
−1 >N2

,

where  < N1
−1 >N 2

 is the multiplicative inverse of N1 evaluated modulo N2, i.e. if < N1
−1 >N 2

= 

α, then < N1α >N2
= 1.   Hence, N1α  must be expressible as N2β +1,  where β  is any integer.  

Likewise, < N2
−1 >N1

  is the multiplicative inverse of N2 evaluated modulo N1, and if < N2
−1 >N1

= γ ,  then N2γ = N1δ +1,  where δ  is any integer.  Now, from Eq. (23),

< AC >N = < N2 ⋅N2 < N2
−1 >N1

>N =< N2(N1δ + 1) >N =< N2N1δ + N2 )>N = N2 .   Similarly,

< BD >N = < N1 ⋅N1 < N1
−1 >N2

>N = < N1(N2β +1) >N = < N1N2δ + N1) >N = N1.   Next, we 

observe that < AD >N = < N2 ⋅N1 < N1
−1 >N2

>N = < N < N1
−1 >N 2

>N = < Nα >N = 0,  and

< BC >N =< N1 ⋅N2 < N2
−1 >N1

>N = < N < N2
−1 >N1

>N= < Nγ >N = 0.

Hence, X[k]= X[< C k1 + D k2 >N] = x[< A n1 + B n2 >N ]
n2 =0

N2−1

∑
n1=0

N1−1

∑ WN
N2 n1 k1WN

N1n 2 k2

= x[< A n1 + Bn2 >N ]
n2 =0

N2 −1

∑
n1=0

N1−1

∑ WN1

n1 k1WN 2

n 2 k2  

= x[< A n1 + B n2 >N]WN1

n1 k1

n1=0

N1−1

∑
 

 

 
 
 

 

 

 
 
 n 2=0

N2 −1

∑ WN2

n2 k2 .

8.35  (a)   N = 12.  Choose N1 = 4 and N2 = 3.

A = 3, B = 4, C = 3 < 3−1 >4 = 9, D = 4 < 4−1 >3= 4.

      n =< 3n1 + 4n2 >12 ,  
0 ≤ n1 ≤ 3,
0 ≤ n2 ≤ 2,

 
 
 

k = < 9k1 + 4k 2 >12  
0 ≤ k1 ≤ 3,
0 ≤ k 2 ≤ 2.

 
 
 

n1n2 0
0

1

1
2

2 3
k1k2 0

0
1

1

2

2 3
x[0] x[3] x[6] x[9]

x[4] x[7] x[10] x[1]
x[8] x[11] x[2] x[5]

X[0] X[9] X[6] X[3]

X[4] X[1] X[10] X[7]
X[8] X[5] X[2] X[11]

(b)   N = 15.  Choose N1 = 3 and N2 = 5.

A = 5, B = 3, C =5 < 5−1 >3= 10, D = 3 < 3−1 >5 = 6.

      n =< 5n1 + 3n2 >15 , 
0 ≤ n1 ≤ 2,
0 ≤ n2 ≤ 4,

 
 
 

 k = <10k1 + 6k2 >15 ,  
0 ≤ k1 ≤ 2,
0 ≤ k 2 ≤ 4.

 
 
 
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n1n2 0
0

1

1

2

3
4

2 0
0

1

1

2

3
4

k1k2 2
x[0] x[5] x[10]

x[3] x[8] x[13]

x[6] x[11] x[1]

x[9] x[14] x[4]
x[12] x[2] x[7]

X[0] X[10] X[5]

X[6] X[1] X[11]

X[12] X[7] X[2]

X[3] X[13] X[8]
X[9] X[4] X[14]

(c)  N = 21.  Choose N1 = 7 and N2 = 3.

A = 3,  B = 7,  C = 3 < 3−1 >7= 3 × 5 = 15,  D = 7 < 7−1 >3 = 7 × 1 = 7.

n =< 3 n1 + 7 n2 >21,
0 ≤ n1 ≤ 6,
0 ≤ n2 ≤ 2,

 
 
 

 k =<15 k1 + 7 k 2 >21,
0 ≤ k1 ≤ 6,
0 ≤ k2 ≤ 2.

 
 
 

x[0] x[3] x[6] x[9] x[12] x[15] x[18]

x[7] x[10] x[13] x[16] x[19] x[1] x[4]

x[14] x[17] x[20] x[2] x[5] x[8] x[11]

0 1 2 3 4 5 6

0

1
2

n1
n 2

0 1 2 3 4 5 6

0

1
2

k2
k1

X[0] X[15] X[9] X[3] X[18] X[12] X[6]

X[7] X[1] X[16] X[10] X[4] X[19] X[13]

X[14] X[8] X[2] X[17] X[11] X[5] X[20]

(d)  N = 35.  Choose N1 = 7 and N2 = 5.

A = 5,  B = 7,  C = 5 < 5−1 >7 = 5 × 3 = 15,  D = 7 < 7−1 >5 = 7 × 3 = 21.

n = < 5n1 + 7 n2 >35 ,
0 ≤ n1 ≤ 6,
0 ≤ n2 ≤ 4,

 
 
 

  k = <15k1 + 21k2 >35 ,
0 ≤ k1 ≤ 6,
0 ≤ k2 ≤ 4.

 
 
 

0 1 2 3 4 5 6

0

1
2

n1
n 2

x[0] x[5] x[10] x[15] x[20] x[25] x[30]

x[7] x[12] x[17] x[22] x[27] x[32] x[2]

x[14] x[19] x[24] x[29] x[34] x[4] x[9]

x[21] x[26] x[31] x[1] x[6] x[11] x[16]

x[28] x[33] x[3] x[8] x[13] x[18] x[23]

3
4
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X[0] X[15] X[30] X[10] X[25] X[5] X[20]

X[21] X[1] X[16] X[31] X[11] X[26] X[6]

X[7] X[22] X[2] X[17] X[32] X[12] X[27]

X[28] X[8] X[23] X[3] X[18] X[33] X[13]

X[14] X[29] X[9] X[24] X[4] X[19] X[34]

k1
k2 0 1 2 3 4 5 6

0
1

2

3
4

8.36   N = 12.  N1 = 4  and   N2 = 3.

A = 3, B = 4, C = 3 < 3−1 >4 = 9, D = 4 < 4−1 >3= 4.

       n =< 3n1 + 4n2 >12 ,
0 ≤ n1 ≤ 3,
0 ≤ n2 ≤ 4,

 
 
 

k = < 9k1 + 4k 2 >12 ,
0 ≤ k1 ≤ 3,
0 ≤ k2 ≤ 2.

 
 
 

n1n2
0

0
1

1

2

2 3
k1k2 0

0
1

1

2

2 3
x[0] x[3] x[6] x[9]

x[4] x[7] x[10] x[1]

x[8] x[11] x[2] x[5]

X[0] X[9] X[6] X[3]

X[4] X[1] X[10] X[7]

X[8] X[5] X[2] X[11]

      n =< 9n1 + 4n2 >12 k = < 3k1 + 4k2 >12
n1n2

0
0

1

1
2

2 3
k1k2 0

0
1

1
2

2 3
x[0] x[9] x[6] x[3]

x[4] x[1] x[10] x[7]
x[8] x[5] x[2] x[11]

Y[0] Y[3] Y[6] Y[9]

Y[4] Y[7] Y[10] Y[1]
Y[8] Y[11] Y[2] Y[5]

Hence, X[2k] = Y[2k], and X[2k + 1] = X[2k + 1] = Y[< 6 +(2k +1) >12 ], k = 0, 1, . . ., 5,

8.37 N = 10, N1 = 2, and N2 = 5. Choose A = 5,   B = 2,   C = 5 < 5−1 >2 = 5,   D = 2 < 2−1 >5= 6.

0 1

0 x[0] x[5]

1 x[2] x[7]

2 x[4] x[9]

3 x[6] x[1]

4 x[8] x[3]

n1
n2 k2

k1 0 1

0 X[0] X[5]

1 X[6] X[1]

2 X[2] X[7]

3 X[8] X[3]

4 X[4] X[9]

k1n2 0 1

0 G[0,0] G[1, 0]

1 G[0,1] G[1,1]

2 G[0,2] G[1, 2]

3 G[0,3] G[1,3]

4 G[0,4] G[1, 4]
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X[3]

X[0]

X[6]

X[2]

X[8]

X[4]

X[5]

X[1]

X[7]

X[9]

x[0]

x[1]

x[2]

x[5]

x[7]

x[4]

x[9]

x[6]

x[8]

x[3]

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

5-point
DFT

5-point
DFT

G[0, 0]

G[1, 0]

G[0,1]

G[1,1]

G[0, 2]

G[1, 2]

G[0, 3]

G[0,4]

G[1,4]

G[1,3]

The flow-graph of the 2-point DFT is given in Figure 8.21.  The flow-graph of the 5-point 
DFT is shown below

W
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W
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W
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W
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W
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W
3

W
4

W
4

W
4

W
4

8.38 N = 12, N1 = 4, and N2 = 3.  Choose A = 3, B = 4, C = 3 < 3−1 >4 = 9,  and D = 4 < 4−1 >3= 4.
n1

n2 0 1 2 3

0 x[0] x[3] x[6] x[9]

1 x[4] x[7] x[10] x[1]

2 x[8] x[11] x[2] x[5]

k1n 2 0 1 2 3

0 G[0, 0] G[1,0] G[2,0] G[3, 0]

1 G[0, 1] G[1,1] G[2,1] G[3,1]

2 G[0, 2] G[1,2] G[2,2] G[3,2]
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k2
k1 0 1 2 3

0 X[0] X[9] X[6] X[3]

1 X[4] X[1] X[10] X[7]

2 X[ 8] X[5] X[2] X[11]

X[3]

X[0]

X[6]

X[2]

X[8]

X [4]

X[5]

X[1]

X[7]

X[9]

x[0]

x[1]

x[2]

x[5]

x[7]

x[4]

x[9]

x[6]

x[8]

x[3]
3-point

DFT

3-point
DFT

3-point
DFT

3-point
DFT

4-point
DFT

4-point
DFT

4-point
DFT

x[10]

x[11]

G[0,0]

G[1, 0]

G[0,1]

G[1,1]

G[0,2]

G[1,2]

G[2,0]

G[3,0]

G[2,1]

G[3,1]

G[3,2]

G[2,2]

X[10]

X[11]

The flow-graphs of the 3-point DFT and the 4-point DFT are shown below:

W1

W 2

W 2

W 4
                        

–1

–1

–1

j

j

j

–j

– j
– j

8.39  Note that 3072 = 512 × 6.   Now an N-point DFT , with N divisible by 6, can be computed as 

follows: X[k]= x[n]WN
nk

n =0

N−1

∑ = X0[< k >N /6 ]+ WN
k ⋅ X1[< k >N / 6]+ WN

2k ⋅X2[< k >N / 6]  

  + WN
3k ⋅X3[< k >N / 6 ]+ WN

4k ⋅X4[< k >N / 6]+ WN
5k ⋅ X5[< k >N / 6] , where 

  

X l [< k >N /6 ] = x[6 r + l ]WN / 6
rk

r=0

N
6

−1

∑ , 0 ≤ l ≤ 5.   For N = 3072, we thus get 

X[k]= X0[< k >512]+ W3072
k ⋅X1[< k >512 ]+ W3072

2k ⋅X2[< k >512 ]  
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                          + W3072
3k ⋅X3[< k >512]+ W3072

4k ⋅X4[< k >512]+ W3072
5k ⋅X5[< k >512 ], where 

  

X l [< k >512 ] = x[6 r + l ]W512
r k

r=0

511

∑ , 0 ≤ l ≤ 5.

z

z

z

z

z

x[n] X[k]

512-point
FFT

512-point
FFT

512-point
FFT

512-point
FFT

512-point
FFT

512-point
FFT6

6

6

6

6

6

W1536
k

W1536
k

W1536
k

W1536
k

W3072
k

x000[n]

x 001[n]

x010[n]

x011[n]

x100[n]

x101[n ]

X000[< k >512]

X001[< k >512]

X010[< k >512]

X 011[< k >512]

X100[< k >512]

X101[< k >512]

Now an N-point FFT algorithm requires 
N
2

log2 N complex multiplications and N log2 N 

complex additions.  Hence, an N
6 − point FFT algorithm requires N

12
log2

N
6

 
   

   complex 

multiplications and N

6
log2

N
6

 
   

   complex additions.  In addition, we need 5 × N complex 

multiplications and 5 × N complex additions to compute the N-point DFT X[k].  Hence, for N 

= 3072, the evaluation of X[k] using 6 (512)-point FFT modules requires N
12

log2
N
6

 
   

   + 5 × N 

= 256 × log2(512) + 5 × 3072 =17,664  complex multiplications and N

6
log2

N
6

 
   

   + 5 × N 

512 × log2(512) + 5 × 3072 =19,968  complex additions.

It should be noted that a direct computation of the 3072-point DFT would require 9,437,184 
complex multiplications and 9,434,112 complex additions.

8.40  (a)  # of zero-valued samples to be added is 1024 – 1000 = 24.

(b)  Direct computation of a 1024-point DFT of a length-1000 sequence requires 

(1000)2 = 1,000,000  complex multiplications and 999 ×1000 = 999,000  complex additions.
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(c)  A 1024-point Cooley-Tukey type FFT algorithm requires 512 × log2 1024( ) = 5,120  

complex multiplications and 1024 × log2 1024( ) = 10,240  complex additions.

8.41   (a)  Y(z) = H(z)X(z) or y[0]+ y[1]z−1 + y[2]z−2 = h[0]+ h[1]z−1( ) x[0]+ x[1]z−1( ).
Now, Y(z0 ) = Y(–1) = y[0] − y[1]+ y[2]= H(−1)X(–1) = h[0] − h[1]( ) x[0]− x[1]( ),

Y(z1) = Y(∞) = y[0]= H(∞)X(∞) = h[0]x[0],

Y(z2 ) = Y(1) = y[0]+ y[1]+ y[2] = H(1)X(1) = h[0]+ h[1]( ) x[0]+ x[1]( ).

From Eqs. (3.158) and (3.159), we can write

Y(z) =
I0(z)

I0(z0)
Y(z0 )+

I1(z)

I1(z1)
Y(z1) +

I2(z)

I2(z2)
Y(z2 ),

where  I 0(z) = (1 − z1z−1)(1− z2z−1) = (1 − z1z
−1)(1 − z−1)

z1=∞
,

I1(z) = (1 − z0z−1)(1− z2z−1) = (1 + z−1)(1 − z−1) = 1 − z−2,

I 2(z) = (1 − z0z−1)(1 − z1z−1) = (1 + z−1)(1 − z1z−1)
z1=∞

.

Therefore, 
I 0(z)

I 0(z0 )
= − 1

2
z−1(1 − z−1),   

I1(z)

I1(z1)
= (1 − z−2 ),   and  

I 2(z)

I 2(z2 )
= 1

2
z−1(1 + z−1).   Hence,

Y(z) = − 1
2

z−1(1 − z−1)Y(z0 )+ (1 − z−2 )Y(z1)+ 1
2

z−1(1 + z−1)Y(z2)

= Y(z1) + − 1
2

Y(z0) + 1
2

Y(z2 )
 
  

 
  z−1 + 1

2
Y(z0) − Y(z1) + 1

2
Y(z2)

 
  

 
  z−2

= h[0]x[0] + − 1
2

(h[0] − h[1])(x[0]− x[1]) + 1
2

(h[0]+ h[1])(x[0]+ x[1])
 
  

 
  z−1

+ 1
2

(h[0]− h[1])(x[0]− x[1]) − h[0]x[0]+ 1
2

(h[0]+ h[1])(x[0]+ x[1])
 
  

 
  z−2

= h[0]x[0] + h[0]x[1]+ h[1]x[0]( )z−1 + h[1]x[1]z−2.

Ignoring the mu,tiplications by 
1
2

, computation of the coefficients of Y(z) require the values of

Y(z0), Y(z1), and Y(z2) which can be evaluated using only 3 multiplications.

(b)  Y(z) = H(z)X(z) or 

y[0]+ y[1]z−1 + y[2]z−2 + y[3]z−3 + y[4]z−4 = h[0]+ h[1]z−1 + h[2]z−2( ) x[0]+ x[1]z−1 + x[2]z−2( ).
Now, Y(z0 ) = Y(− 1

2
) = h[0]− 2h[1]+ 4h[2]( ) x[0] − 2x[1]+ 4x[2]( ),

Y(z1) = Y(−1) = h[0]− h[1]+ h[2]( ) x[0]− x[1]+ x[2]( ),
Y(z2 ) = Y(∞) = h[0]x[0],

Y(z3) = Y(1) = h[0]+ h[1]+ h[2]( ) x[0]+ x[1]+ x[2]( ),

Y(z4 ) = Y(
1
2

) = h[0]+ 2h[1]+ 4h[2]( ) x[0]+ 2x[1]+ 4x[2]( ).
From Eqs. (3.158) and (3.159), we can write
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Y(z) =
I0(z)

I0(z0)
Y(z0 )+

I1(z)

I1(z1)
Y(z1) +

I2(z)

I2(z2)
Y(z2 )+

I3(z)

I3 (z3)
Y(z3)+

I4(z)

I 4(z4)
Y(z4 ),

where  I 0(z) = (1 − z1z−1)(1− z2z−1)(1− z3z
−1)(1 − z4z−1) = (1 − z−2 )(1 − 1

2
z−1)(1 − z2z−1)

z2 =∞
,

I1(z) = (1 − z0z−1)(1− z2z−1)(1− z3z
−1)(1 − z4z−1) = (1 − 1

4
z−2 )(1 − z−1)(1 − z2z−1)

z2 =∞
,

I 2(z) = (1 − z0z−1)(1 − z1z−1)(1− z3z
−1)(1 − z4z−1) = (1 − 1

4
z−2 )(1 − z−2),

I3(z) = (1 − z0z−1)(1 − z1z
−1)(1 − z2z−1)(1 − z4z−1) = (1 − 1

4
z−2 )(1 + z−1)(1 − z2z−1)

z2 =∞
,

I 4(z) = (1 − z0z−1)(1 − z1z
−1)(1− z2z−1)(1− z3z

−1) = (1 − z−2 )(1 + 1
2

z−1)(1 − z2z−1)
z2 =∞

.

Therefore,  
I 0(z)

I 0(z0 )
= 1

12
z−1(1 − 1

2
z−1)(1− z−2),   

I1(z)

I1(z1)
= –

2
3

z−1(1 − z−1)(1− 1
4

z−2 ),

I 2(z)

I 2(z2 )
= (1 − z−2 )(1 − 1

4
z−2),   

I3(z)

I3(z3 )
= 2

3
z−1(1 + z−1)(1 − 1

4
z−2 ),  and 

I 4(z)

I 4(z4 )
= –

1
12

z−1(1+ 1
2

z−1)(1 − z−2).

Hence, Y(z) = 1
12

(z−1 − 1
2

z−2 − z−3 + 1
2

z−4 )Y(z0) − 2
3

(z−1 − z−2 − 1
4

z−3 + 1
4

z−4 )Y(z1)

+ 2
3

(z−1 + z−2 − 1
4

z−3 − 1
4

z−4)Y(z3)− 1
12

(z−1 + 1
2

z−2 − z−3 − 1
2

z−4 )Y(z4)

= Y(z2 )+ 1
12

Y(z0 )− 2
3

Y(z1) + 2
3

Y(z3) − 1
12

Y(z4 )
 
  

 
  z−1

+ − 1
24

Y(z0 )+ 2
3

Y(z1) − 5
4

Y(z2 )+ 2
3

Y(z3 )− 1
24

Y(z4)
 
  

 
  z−2

+ − 1
12

Y(z0 )+ 1
6

Y(z1) − 1
6

Y(z3)+ 1
12

Y(z4 )
 
  

 
  z−3

+ 1
24

Y(z0 )− 1
6

Y(z1)+ 1
4

Y(z2 )− 1
6

Y(z3) + 1
24

Y(z4)
 
  

 
  z−4 .

Substituting the expressions for Y(z0), Y(z1), Y(z2), Y(z3), and Y(z4), in the above equation, we 
then arive at the expressions for the coefficients {y[n]} in terms of the coefficients {h[n]} and 
{x[n]}.  For example,  y[0] = Y(z2) = h[0]x[0].

y[1]= 1
12

Y(z0 )− Y(z4 )( )+ 2
3

Y(z3 )− Y(z1)( )  =

= 1
12

h[0]− 2h[1]+ 4h[2]( ) x[0]− 2x[1]+ 4x[2]( )[ ]− h[0]+ 2h[1]+ 4h[2]( ) x[0]+ 2x[1]+ 4x[2]( )[ ]( )
+ 2

3
h[0]+ h[1]+ h[2]( ) x[0]+ x[1]+ x[2]( )[ ] − h[0]− h[1]+ h[2]( ) x[0]− x[1]+ x[2]( )[ ]( )

= h[0]x[1]+ h[1]x[0], = h[0]x[1]+ h[1]x[0].   In a similar manner we can show,

y[2]= − 1
24

Y(z0 ) + Y(z4 )( )+ 2
3

Y(z1) + Y(z3)( ) − 5
4

Y(z2 ) = h[0]x[2]+ h[1]x[1]+ h[2]x[0],

y[3]= 1
12

Y(z4 )− Y(z0)( )+ 1
2

Y(z1)− Y(z3)( )= h[1]x[2]+ h[2]x[1],  and
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y[4]= 1
24

Y(z0) + Y(z4 )( ) − 1
6

Y(z1) + Y(z3 )( ) + 1
4

Y(z2)= h[2]x[2].

Hence, ignoring the mu,tiplications by 
1

12
,  

2
3

,  
5
4

,  
1
4

,  
1
6

,  and 
1

24
,  computation of the 

coefficients of Y(z) require the values of  Y(z0), Y(z1), Y(z2), Y(z3), and Y(z4) which can be 
evaluated using only 5 multiplications.

8.42 Y(z) = H(z)X(z) or y[0]+ y[1]z−1 + y[2]z−2 = h[0]+ h[1]z−1( ) x[0]+ x[1]z−1( )
h[0]x[0]+ (h[0]x[1]+ h[1]x[0])z−1 + h[1]x[1]z−2.

Hence, y[0]= h[0]x[0],   y[1]= h[0]x[1] + h[1]x[0],   and  y[2]= h[1]x[1].
Now, h[0]+ h[1]( ) x[0]+ x[1]( )− h[0]x[0]− h[1]x[1] = h[0]x[1]+ h[1]x[0]= y[1].  As a result, 
evaluation of H(z)X(z) requires the computation of 3 products, h[0]x[0], h[1]x[1], and 
h[0]+ h[1]( ) x[0]+ x[1]( ) .  In addition, it requires 4 additions, h[0] + h[1], x[0] + x[1], and 
h[0]+ h[1]( ) x[0]+ x[1]( )− h[0]x[0]− h[1]x[1] .

8.43 Let the two length-N sequencess be denoted by {h[n]} and {x[n]}.  Denote the sequence 

generated by the linear convolution of h[n] and x[n] as y[n], i.e. 
  
y[n] = h[l ]x[n – l]

l =0

2N−1∑ .

Computation of {y[n]} thus requires 2N multiplications.  Let H(z) and X(z) denote the z-

transforms of {h[n]} and {x[n]}, i.e. H(z) = h[n]z– n
n =0

N −1∑ ,  and X(z) = x[n]z–n
n=0

N −1∑ .   Rewrite

H(z) and X(z) in the form H(z) = H0 (z) + z–N / 2H1(z),  and X(z) = X0 (z)+ z–N / 2X1(z),  where

H0(z) = h[n]z–n
n =0

(N / 2)−1∑ ,  H1(z) = h[n + N

2
]z–n

n=0

(N / 2)−1∑ ,  X0(z) = x[n]z– n
n=0

(N /2)−1∑ ,  and

X1(z) = x[n + N

2
]z–n

n=0

(N / 2)−1∑ .   Therefore, we can write

Y(z) = H0(z)+ z–N / 2H1(z)( ) X0(z)+ z–N / 2X1(z)( )
= H0(z)X0 (z)+ z–N / 2 H0(z)X1(z)+ H0(z)X1(z)( ) + z–NH1(z)X1(z)

= Y0 (z)+ z–N / 2Y1(z) + z– NY2(z),

where  Y0 (z)= H0(z)X0(z), Y1(z)= H0 (z)X1(z)+ H1(z)X0 (z), Y2 (z)= H1(z)X1(z) .

Now Y0(z) and Y1(z) are products of two polynomials of degree 
N

2
, and hence, require 

N

2

 
   

  
2

 

multiplications each.  Now, we can write Y1(z)= H0(z)+ H1(z)( ) X0(z)+ X1(z)( )− Y0(z)− Y2 (z).

Since H0 (z) + H1(z)( ) X0 (z) + X1(z)( )  is a product of two polynomials of degree 
N

2
, and hence, 

it can be computed using 
N

2

 
   

  
2

 multiplications.  As a result, Y(z) = H(z)X(z) can be computed

using 3
N

2

 
   

  
2

 multiplications instead of N2 multiplications.

If N is a power-of-2, 
N

2
 is even, and the same procedure can be applied to compute Y0(z), 

Y1(z), and Y2(z) reducing further the number of multiplications.  This process can be 
continued until, the sequences being convolved are of length 1 each.
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Let R(N) denote the total number of multiplications required to compute the linear convolution
of two length-N sequences.  Then, in the method outlined above, we have  R(N) = 3 ⋅ R(N/2) with

R(1) = 1.  A solution of this equation is given by R(N) = 3log2 N.

8.44 The dynamic range of a signed B-bit integer η is given by − (2 (B−1) −1) ≤ η < (2 (B−1) − 1)  

which for B = 32 is given by − (2 31 −1) ≤ η< (2 31 −1) .

(a)  For E = 6 and M = 25, the value of a 32-bit floating point number is given by 

η= (−1)s2 E−31(M) .  Hence, the value of the largest number is ≈ 232,  and the value of the 

smallest number is ≈ −232.   The dynamic range is therefore ≈ 2 × 232.

(b)  For E = 7 and M = 24, the value of a 32-bit floating point number is given by 

η= (−1)s2 E−63(M) .  Hence, the value of the largest number is ≈ 264,  and the value of the 

smallest number is ≈ −264.   The dynamic range is therefore ≈ 2 × 264.

(c)  For E = 8 and M = 23, the value of a 32-bit floating point number is given by 

η= (−1)s2 E−127(M) .  Hence, the value of the largest number is ≈ 2128,  and the value of the 

smallest number is ≈ −2128.   The dynamic range is therefore ≈ 2 × 2128.

Hence, the dynamic range in a floating-point representation is much larger than that in a fixed-
point representation with the same wordlength.

8.45 A 32-bit floating-point number in the IEEE Format has E = 8 and M = 23.  Also  the exponent
E is coded in a biased form as E – 127 with certain conventions for special cases such as E = 0,
255, and M = 0 (See text pages 540 and 541).

Now a positive 32-bit floating point number η represented in the "normalized" form have an 

exponent in the range 0 < E < 255, and is of the form η= (−1)s2 E−127(1∆ M).  Hence, the 

smallest positive number that can be represented will have E = 1, and M = 

  

0 0 L 0 0
22 bits

1 2 4 3 4 , and has

therefore a value given by 2−126 ≅ 1.18 ×10−38.   For the largest positive number, E = 254, and 

  

M =1 1 L 1 1
22 bits

1 2 4 3 4 .   Thus here 

  

η= (−1)0 2127(1∆1 1 L 1
22 bits

1 2 4 3 4 ) ≈ 2127 × 2 ≅ 3.4 ×1038.

Note:  For representing numbers less than 2–126, IEEE format uses the "de-normalized" form 

where E = 0, and  η= (−1)s2 −126 (0∆ M).  In this case, the smallest positive number that can be 

represented is given by  

  

η= (−1)0 2–126(0∆ 0 0 L 0 1
22 bits

1 2 4 3 4 ) ≈ 2 −149 ≅ 1.4013 ×10−45.

8.46 For a two's-complement binary fraction   s∆a−1a−2Ka−b  the decimal equivalent for s = 0 is 

simply a− i
i =1

b

∑ 2 −i.  For s = 1, the decimal equivalent is given by − (1 − a−i )
i=1

b

∑ 2− i + 2 −b
 

 
 
 

 

 
 
 
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= − 2− i

i=1

b

∑ + a−i 2
−i

i=1

b

∑ − 2−b = − (1− 2−b )+ a− i2
−i

i =1

b

∑ − 2−b = −1 + a− i2
− i

i=1

b

∑ .    Hence, the 

decimal equivalent of   s∆a−1a−2Ka−b  is given by − s + a− i2
− i

i =1

b

∑ .

8.47 For a two's-complement binary fraction   s∆a−1a−2Ka−b  the decimal equivalent for s = 0 is

simply a− i
i =1

b

∑ 2 −i.  For s = 1, the decimal equivalent is given by − (1 − a− i
i=1

b

∑ )2− i

= − 2− i

i=1

b

∑ + a−i 2
−i

i=1

b

∑ = – (1 − 2−b ) + a−i 2
−i

i=1

b

∑ .

  
Hence, the decimal equivalent of 

  s∆a−1a−2Ka−b  is given by – s(1− 2 −b )+ a−i 2
−i

i=1

b

∑ .

8.48 (a) 

 
η= − 0.62510.

  
(i)  Signed-magnitude representation = 1∆ 10100000

(ii)  Ones'-complement representation = 1∆ 01011111

(iii)  Two's-complement representation = 1∆ 01100000

(b)  η= − 0.773437510. (i)  Signed-magnitude representation = 1∆ 11000110

(ii)  Ones'-complement representation = 1∆ 00111001

(iii)  Two's-complement representation = 1∆ 00111010

(c)  η= − 0.3632812510. (i)  Signed-magnitude representation = 1∆ 01011101

(ii)  Ones'-complement representation = 1∆ 10100010

(iii)  Two's-complement representation = 1∆ 10100011

(d)  η= − 0.9492187510. (i)  Signed-magnitude representation = 1∆ 11110011

(ii)  Ones'-complement representation = 1∆ 00001100

(iii)  Two's-complement representation = 1∆ 00001101

8.49 (a)  η= 0.62510 =1∆101000 , (b)  η= – 0.62510 = 0∆011000,

(c)  η= 0.35937510 = 1∆010111, (d)  η= – 0.35937510 = 0 ∆101001,

(e)  η= 0.9062510 =1∆111010, (f)  η= – 0.9062510 = 0∆000110.

8.50 (a)  SD-representation = 0∆00 1 10 1 1 1 ,   (b)  SD-representation = 0∆100001 1 1 ,

(c)  SD-representation = 0∆ 1 1 1 10001 .

8.51  (a)  
  
1101

D
{0110

6
{1100

C
{0111

7
{ = D6 C 7,   (b)  0101 1111 1010 1001 = 5 FA9,

(c)  1011 0100 0010 1110 = B 42E.

8.52 (a)  The addition of the positive binary fractions 0∆10101 and 0∆ 01111 is given below:
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← carry1 1 1 1 1

0 ∆ 1 0 1 0 1

0 ∆ 0 1 1 1 1

1 ∆ 0 0 1 0 0
+

As the sign bit is a 1 there has been an overflow and the sum is not correct.

(b)  The addition of the positive binary fractions 0∆ 01011 and 0∆10001 is given below:

1 1

0 ∆ 0 1 0 1 1

0 ∆ 1 0 0 0 1

0 ∆ 1 1 1 0 0

← carry

+

8.53 (a)  The difference of the two positive binary fractions 0∆10101− 0∆01111 can be carried out 

as an addition of the positive binary fraction 0∆10101 and the two's-complement 

representation of  −0 ∆01111 which is given by 1∆10001.  The process is illustrated below:
1 1

0 ∆ 1 0 1 0 1

1 ∆ 1 0 0 0 1

0 ∆ 0 0 1 1 01
↑

drop

← carry

+

The extra bit 1 on the left of the sign bit is dropped resulting in 0∆ 00110   which is the correct 
difference.

(b)    The difference of the two positive binary fractions 0∆10001− 0∆01011 can be carried out

as an addition of the positive binary fraction 0∆10001 and the two's-complement 

representation of  − 0∆01011 which is given by 1∆10101.  The process is illustrated below:
← carry1 1

0 ∆ 1 0 0 0 1

1 ∆ 1 0 1 0 1

0 ∆ 0 0 1 1 01
↑

drop

+

The extra bit 1 on the left of the sign bit is dropped resulting in 0∆ 00110   which is the correct 
difference.

8.54 (a)  The difference of the two positive binary fractions 0∆10101− 0∆01111 can be carried out 

as an addition of the positive binary fraction 0∆10101 and the ones'-complement 

representation of  −0 ∆01111 which is given by 1∆10000 .  The process is illustrated below:
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1 1

0 ∆ 1 0 1 0 1

1 ∆ 1 0 0 0 0

0 ∆ 0 0 1 0 11

1
0 ∆ 0 0 1 1 0

← carry

+

← end around carry

The extra bit 1 on the left side of the sign bit is brought around and added to the LSB resulting
in the correct difference given by 0∆ 00110 .

(b)    The difference of the two positive binary fractions 0∆10001− 0∆01011 can be carried out

as an addition of the positive binary fraction 0∆10001 and the ones'-complement 

representation of  − 0∆01011 which is given by 1∆10100 .  The process is illustrated below:

1

← carry

+

←

1

0 ∆ 1 0 0 0 1

1 ∆ 1 0 1 0 0

0 ∆ 0 0 1 0 11

0 ∆ 0 0 1 1 0

end around carry

The extra bit 1 on the left side of the sign bit is brought around and added to the LSB resulting
in the correct difference given by 0∆ 00110 .

8.52 η1 = 0.687510 = 0 ∆1011, η2 = 0.812510 = 0∆1101,     η3 = – 0.562510 = 1∆0111.   Now,

η1 + η2 + η3 = 0.687510 + 0.812510 − 0.562510 = 0.937510 .   We first form the binary addition

η1 + η2 = 0∆1011 + 0∆1101 = 1∆1000  indicating an overflow.  If we ignore the overflow and add

to the partial sum η3   we arrive at (η1 + η2) + η3 = 1∆1000 +1∆0111 = 10∆1111.   Dropping the 

leading 1 from the sum we get η1 + η2 + η3 = 0∆1111 whose decimal equivalent is 0.937510.   As
a result, the correct sum is obtained inspite of intermediate overflow that occurred.

8.53  (a) 0∆1 1 1 0 1 ×1∆1 0 1 1 1.  In this case the multiplier is a negative number.  Now a 

multiplier D = 
  
ds∆d −1d−2Ld−b  has the value −ds + d −i 2

−i
i=1

b∑ .   So the product is given by

  
x = A ⋅D = –Ads + A ⋅ 0∆ d−1d−2Ld −b( ).

Hence we first ognore the sign bit of the multiplier and in the end if the sign bit is a 1, the value
of the multiplicand is subtracted from the partial product.

346



0 ∆ 1 1 1 0 1

0 ∆ 1 0 1 1 1

0 ∆ 1 1 1 0 1
0 0 0 0 0 0∆P(0)

0 ∆ 1 1 1 0 1

0 ∆ 0 1 1 1 0 1P
(1)

P (2)

P(3)

P
(4)

P(5)

0 ∆ 1 1 1 0 1

1 ∆ 0 1 0 1 1 1

0 ∆ 1 0 1 0 1 1 1

0 ∆ 1 1 1 0 1

1 ∆ 1 0 0 1 0 1 1

0 ∆ 1 1 0 0 1 0 1 1

0 ∆ 0 1 1 0 0 1 0 1 1
0 ∆ 1 1 1 0 1

1 ∆ 0 1 0 0 1 1 0 1 1

0 ∆ 1 0 1 0 0 1 1 0 1 1

+

+

+

+

×

As ds = 1, we need to subtract 0∆1 1 1 0 1 from P(5) or equivalently, adding its two's-

complement 1∆0 0 0 1 1 to P(5) as indicated below:
0 ∆ 1 0 1 0 0 1 1 0 1 1
1 ∆ 0 0 0 1 1 0 0 0 0 0

1 ∆ 1 0 1 1 1 1 1 0 1 1

+

Hence the final product is  1∆1 0 1 1 1 1 1 0 1 1.   Its decimal equivalent is  – 0.25488281310 
which is the correct result of the product  0.9062510× (– 0.2812510).

(b)  In this case the multiplicand is negative.  Hence we follow the same steps as given on Page 
547 of Text except the addition is now two's-complement addition.
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+

P
(1)

P( 2)

P( 3)

P( 4)

P(5)

1 ∆ 1 0 1 0 1
0 ∆ 1 0 1 1 1

P(0) 0 ∆ 0 0 0 0 0
1 ∆ 1 0 1 0 1

1 ∆ 1 1 0 1 0 1
1 ∆ 1 0 1 0 1

1 ∆ 1 0 1 0 1

1 ∆ 1 0 1 0 1

1 1 ∆ 0 1 1 1 1 1

1 ∆ 1 0 1 1 1 1 1

1 1 ∆ 0 1 1 0 0 1 1

1 ∆ 1 0 1 1 0 0 1 1

1 ∆ 1 1 0 1 1 0 0 1 1

1 1 ∆ 1 0 0 0 0 0 0 1 1

1 ∆ 1 1 0 0 0 0 0 0 1 1

+

+

+

×

Hence the result of the multiplication 1∆1 0 1 0 1 × 0∆1 0 1 1 1  is 1∆1 1 0 0 0 0 0 0 1 1,

The decimal equivalent is  (– 0.3437510)× 0.71875 = – 0.24707031310.

8.54  (a)  Again in this case the multiplier is negative.  Hence we can write

x = A ⋅D = A ⋅ – ds (1 – 2−b) + d−i 2
− i

i=1

b∑ 
  

 
  = – Ads + Ads2

−b + ˜ x ,

where ˜ x  is the product of A and D with its sign bit ds ignored.  Hence, we first form ˜ x  and if ds
= 1, we subtract A from ˜ x , and add to the result a shifted version (b bits to the right) of A.

Now ˜ x  is same as the product obtained in Problem 8.52(a) and is given by
˜ x = 0∆1 0 1 0 0 1 1 0 1 1.

Subtracting A from ˜ x  is equivalent to adding the ones'-complement of A to  ˜ x  as indicated 
below:

0 ∆ 1 0 1 0 0 1 1 0 1 1

1 ∆ 0 0 0 1 0 1 1 1 1 1+

1 ∆ 1 0 1 1 1 1 1 0 1 0

Next we apply the final corection of adding 0∆ 0 0 0 0 0 1 1 1 0 1 to  ˜ x  – A:
1 ∆ 1 0 1 1 1 1 1 0 1 0
0 ∆ 0 0 0 0 0 1 1 1 0 1

1 ∆ 1 1 0 0 0 1 0 1 1 1

+

Hence the result of the product 0∆1 1 1 0 1×1∆1 0 1 1 1  is given by 1∆1 1 0 0 0 1 0 1 1 1.

The decimal equivalent is  0.9062510× ( – 0.2510) = – 0.2226562510.

(b)  In this case the multiplicand is negative.  Hence we follow the same steps as on Page 547 of
Text except the addition is now ones'-complement addition:
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P (5)

+

+

P(2)

P(3)

P
(4)

1 ∆ 1 0 1 0 1

×
1 ∆ 1 0 1 0 1
0 ∆ 1 0 1 1 1

P(0)

P(1)

0 ∆ 0 0 0 0 0
1 ∆ 1 0 1 0 1

1 ∆ 1 0 1 0 1

1 ∆ 1 0 1 0 1

+

+

1 ∆ 1 1 0 1 0 1

1 1 ∆ 0 1 1 1 1 1

1
1 ∆ 1 0 0 0 0 1

1 ∆ 1 1 0 0 0 0 1

1 1 ∆ 0 1 1 0 1 0 1

1

1 ∆ 0 1 1 1 0 0 1

1 ∆ 1 0 1 1 1 0 0 1

1 ∆ 1 1 0 1 1 1 0 0 1
1 ∆ 1 0 1 0 1

1 1 ∆ 1 0 0 0 0 1 0 0 1

1
1 ∆ 1 0 0 0 1 1 0 0 1

1 ∆ 1 1 0 0 0 1 1 0 0 1

Hence the result of the product 1∆1 0 1 0 1× 0∆1 0 1 1 1 is given by 1∆1 1 0 0 0 1 1 0 0 1.

The decimal equivalent is  (– 0.312510)× 0.7187510 = – 0.22460937510.

8.58 The transformation cosω = α + βcos ˆ ω  is equivalent to 
e jω + e– jω

2
= α + β e j ˆ ω + e– j ˆ ω 

2

 

 
 
 

 

 
 
 , which

by analytic continuation can be expressed as  
z + z−1

2
= α + β

ˆ z + ˆ z −1

2

 

 
  

 

 
  .  Now, let H(z) be a 

Type I linear-phase FIR transfer function of degree 2M.  As indicated in Eq. (6.143), H(z) can

be expressed as  H(z) = z–M a[n]
z + z−1

2

 

 
  

 

 
  

n=0

M

∑
n

with a frequency response given by 

H(e jω) = e– jMω a[n] (cos
n =0

M

∑ ω)n,   with 

  

( 
H (ω) = a[n](cos

n =0

M

∑ ω)n  denoting the amplitude function

or the zero-phase frequency response.  The amplitude function or the zero-phase frequency 
response of the transformed filter obtained by applying the mapping cosω = α + βcos ˆ ω  is 
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therefore given by 

  

( 
H ( ˆ ω ) = a[n](α +β cos

n =0

M

∑ ˆ ω )n . Or equivalently, the transfer function of the 

transformed filter is given by H( ˆ z ) = ˆ z –M a[n] α + β
ˆ z + ˆ z −1

2

 

 
  

 

 
  

n=0

M

∑
n

.  A convenient way to realize 

H( ˆ z )  is to consider the realization of the parent transfer function H(z) in the form of a Taylor 
structure as outlined in Problem 6.23 which is obtained by expressing H(z) in the form 

H(z) = a[n]z–M+n 1 + z−2

2

 

 
  

 

 
  

n=0

M

∑
n

.   Similarly, the transfer function of the transformed filter can 

be expressed as H( ˆ z ) = a[n] ˆ z –M+n α ˆ z –1 + β 1+ ˆ z −2

2

 

 
  

 

 
  

n=0

M

∑
n

.   As a result, the transformed filter 

can be realized by replacing each block 
1 + z−2

2
 in the Taylor structure realization of H(z) by 

the block α ˆ z –1 +β 1 + ˆ z −2

2
.

Now, for a lowpass-to-lowpass transformation, we can impose the condition 

  

( 
H ( ˆ ω ) ˆ ω =0

=
( 
H (ω)

ω=0
.   This condition is met if α + β =1  and 0 ≤ α < 1.    In this case, the 

transformation reduces to cosω = α + (1 −α)cos ˆ ω .  From the plot of the mapping given below 
it follows that as α is varied between 0 and 1, ˆ ω c < ωc .

cosω

               cos ˆ ω 

On the other hand if ˆ ω c > ωc  is desired along with a lowpass-to-lowpass transformation, we can

impose the condition 
  

( 
H ( ˆ ω ) ˆ ω =π

=
( 
H (ω)

ω=π
.   This condition is met if β = 1 + α  and −1 < α ≤ 0.

The corresponding transformation is now given by cosω = α + (1 +α) cos ˆ ω .    From the plot of
the mapping given below it follows that as α is varied between –1 and 0, ˆ ω c > ωc .

350



cosω

             cos ˆ ω 

M8.1   H(z) = 0.052817 + 0.079708z−1 + 0.1295z−2 + 0.1295z−3 + 0.079708z−4 + 0.052817z−5

1 −1.8107 z−1 + 2.4947z−2 −1.8801z−3 + 0.95374 z−4 − 0.23359 z−5

0 10 20 30
-0.2

0

0.2

0.4

0.6

Time index  n

M8.2 H(z) = 0.0083632 − 0.033453z−1 + 0.050179z−2 − 0.033453z−3 + 0.0083632 z−4

1 + 2.3741z−1 + 2.7057z−2 + 1.5917z−3 + 0.41032 z−4

0 10 20 30
-0.4

-0.2

0

0.2

0.4

Time index  n

M8.3   Numerator coefficients

Columns 1 through 7
   2.7107e-04 0  -1.8975e-03 0   5.6924e-03    0    -9.4874e-03
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  Columns 8 through 14
  0   9.4874e-03 0  -5.6924e-03 0 1.8975e-03 0

  Column 15
-2.7107e-04

Denominator coefficients
Columns 1 through 5
1.0000e+00   1.7451e+00   4.9282e+00   6.1195e+00   9.8134e+00

  Columns 6 through 10
   9.2245e+00   1.0432e+01   7.5154e+00   6.4091e+00   3.4595e+00

  Columns 11 through 15
   2.2601e+00   8.4696e-01 4.1671e-01   8.5581e-02   2.9919e-02

0 10 20 30

-0.2

-0.1

0

0.1

0.2

0.3

Time index  n

M8.4     Modified Program 8_2 is given below:

n = 0:60;
w = input('Angular frequency vector = ');
num = input('Numerator coefficients = ');
den = input('Denominator coefficients = ');
w = input('Normalized angular frequency vector = ');
x1 = cos(w(1)*pi*n); x2 = cos(w(2)*pi*n);
x = x1+x2;
subplot(2,1,1);
stem(n,x);
title('Input sequence');
xlabel('Time index  n');ylabel('Amplitude');
[N,Wn] = ellipord(0.4,0.5,0.5,40);
[num,den] = ellip(N,0.5,40,Wn);
y = filter(num,den,x);
subplot(2,1,2);
stem(n,y);
title('Output sequence');
xlabel('Time index  n'); ylabel('Amplitude');

The plots generated by this program for the filter of Example 7.19 for an input composed of
a sum of two sinusoidal sequences of angular frequencies, 0.3π and 0.6π, are given below:
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1
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Time index  n

The blocking of the high-frequency signal by the lowpass filter can be demonstrated by 
replacing the statement stem(k,x); with stem(k,x2); and the statement
y = filter(num,den,x)in the above program with the following:
y = filter(num,den,x2).  The plots of the input high-frequency signal 
component and the corresponding output are indicated below:

0 20 40 60
-1

-0.5

0

0.5

1
Input sequence

Time index  n
   

0 20 40 60
-0.2

-0.1

0

0.1

0.2

0.3
Output sequence

Time index  n

M8.5   The plots generated by using the modified program of Problem M8.4 and using the data of 
this problem are shown below:

0 20 40 60
-2

-1

0

1

2
Input sequence

Time index  n    
0 20 40 60

-1

-0.5

0

0.5

1

1.5
Output sequence

Time index  n

The blocking of the low-frequency signal by the highpass filter can be demonstrated by 
replacing the statement stem(k,x); with stem(k,x1); and the statement
y = filter(num,den,x) in the above program with the following:
y = filter(num,den,x1).  The plots of the input high-frequency signal 
component and the corresponding output are indicated below:
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M8.6   % The factors for the transfer of example 7.16 are
% num1 = [0.2546    0.2546         0]
% den1 = [1.0000   -0.4909         0]
% num2 = [0.2982    0.1801    0.2982]
% den2 = [1.0000   -0.7624    0.5390]
% num3 = [0.6957   -0.0660    0.6957]
% den3 = [1.0000   -0.5574    0.8828]
N = input('The total number of sections = ');
for k = 1:N;
    num(k,:) = input('The numerator = ');
    den(k,:) = input('The denominator = ');
end
n = 0:60;
w = input('Normalized angular frequency vector = ');
x1 = cos(w(1)*pi*n); x2 = cos(w(2)*pi*n);
x = x1+x2;
subplot(2,1,1);
stem(n,x);
xlabel('Time index n'); ylabel('Amplitude');
title('Input sequence')
si = [0 0];
for k = 1:N
    y(k,:) = filter(num(k,:),den(k,:),x,si);
    x = y(k,:);
end
subplot(2,1,2);
stem(n,x);axis([0 50 -4 4]);
xlabel('Time index n'); ylabel('Amplitude');
title('Output sequence')

M8.7   %The factors for the highpass filter are

% num1 = [0.0495   -0.1006    0.0511]
% den1 = [1.0000    1.3101    0.5151]
% num2 = [0.1688   -0.3323    0.1636]
% den2 = [1.0000    1.0640    0.7966]

M8.8   To apply the function direct2 to filter a sum of two sinusoidal sequences, we replace the 
statement y = filter(num,den,x,si) in the MATLAB program given in the 
solution of Problem M8.4 with the statement y = direct2(num,den,x,si).  The 
plots generated by the modified program for the data given in this problem are given below:
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M8.9 The MATLAB program that can be used to compute all DFT samples using the function gfft
and the function fft is as follows:

clear
N = input('Desired DFT length = ');
x = input('Input sequence = ');
for j = 1:N
    Y(j) = gfft(x,N,j-1);
end
disp('DFT samples computed using gfft are ');
disp(Y);
disp('DFT samples computed using fft are ');
X = fft(x,N); disp(X);

Results obtained for the computation of two input sequences {x[n]} of lengths 8, and 12, 
respectrively, are given below:

Desired DFT length = 8
Input sequence = [1 2 3 4 4 3 2 1]

FFT values computed using gfft are
  Columns 1 through 4
  20.0000    -5.8284 + 2.4142i    0    -0.1716 + 0.4142i
  Columns 5 through 8
        0    -0.1716 - 0.4142i    0    -5.8284 - 2.4142i

FFT values using fft are
  Columns 1 through 4
  20.0000    -5.8284 - 2.4142i    0    -0.1716 - 0.4142i
  Columns 5 through 8
        0    -0.1716 + 0.4142i    0    -5.8284 + 2.4142i

Desired DFT length = 12
Input sequence = [2 4  8  12 1 3 5  7  9  6 0 1]

FFT values computed using gfft are
  Columns 1 through 4
  58.0000    -8.3301 + 5.5000i    -12.5000 +19.9186i

-1.0000 - 7.0000i
  Columns 5 through 8
   8.5000 - 7.7942i    0.3301 + 5.5000i    -8.0000             

0.3301 - 5.5000i
  Columns 9 through 12
   8.5000 + 7.7942i    -1.0000 + 7.0000i    -12.5000
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-19.9186i  -8.3301 - 5.5000i

FFT values using fft are
  Columns 1 through 4
  58.0000    -8.3301 - 5.5000i    -12.5000 -19.9186i

-1.0000 + 7.0000i
  Columns 5 through 8
   8.5000 + 7.7942i    0.3301 - 5.5000i    -8.0000 + 0.0000i   

0.3301 + 5.5000i
  Columns 9 through 12
   8.5000 - 7.7942i    -1.0000 - 7.0000i    -12.5000

+19.9186i  -8.3301 + 5.5000i

M8.10  The MATLAB program that can be used to verify the plots of Figure 8.37 is given below:

[z,p,k] = ellip(5,0.5,40,0.4);
a = conv([1 -p(1)],[1 -p(2)]);b =[1 -p(5)];
c = conv([1 -p(3)],[1 -p(4)]);
w = 0:pi/255:pi;
alpha = 0;
an1 = a(2) + (a(2)*a(2) - 2*(1 + a(3)))*alpha;
an2 = a(3) + (a(3) -1)*a(2)*alpha;
g = b(2) - (1 - b(2)*b(2))*alpha;
cn1 = c(2) + (c(2)*c(2) - 2*(1 + c(3)))*alpha;
cn2 = c(3) + (c(3) -1)*c(2)*alpha;
a = [1 an1 an2];b = [1 g]; c = [1 cn1 cn2];
h1 = freqz(fliplr(a),a,w); h2 = freqz(fliplr(b),b,w);
h3 = freqz(fliplr(c),c,w);
ha = 0.5*(h1.*h2 + h3);ma = 20*log10(abs(ha));
alpha = 0.1;
an1 = a(2) + (a(2)*a(2) - 2*(1 + a(3)))*alpha;
an2 = a(3) + (a(3) -1)*a(2)*alpha;
g = b(2) - (1 - b(2)*b(2))*alpha;
cn1 = c(2) + (c(2)*c(2) - 2*(1 + c(3)))*alpha;
cn2 = c(3) + (c(3) -1)*c(2)*alpha;
a = [1 an1 an2];b = [1 g]; c = [1 cn1 cn2];
h1 = freqz(fliplr(a),a,w); h2 = freqz(fliplr(b),b,w);
h3 = freqz(fliplr(c),c,w);
hb = 0.5*(h1.*h2 + h3);mb = 20*log10(abs(hb));
alpha = -0.25;
an1 = a(2) + (a(2)*a(2) - 2*(1 + a(3)))*alpha;
an2 = a(3) + (a(3) -1)*a(2)*alpha;
g = b(2) - (1 - b(2)*b(2))*alpha;
cn1 = c(2) + (c(2)*c(2) - 2*(1 + c(3)))*alpha;
cn2 = c(3) + (c(3) -1)*c(2)*alpha;
a = [1 an1 an2];b = [1 g]; c = [1 cn1 cn2];
h1 = freqz(fliplr(a),a,w); h2 = freqz(fliplr(b),b,w);
h3 = freqz(fliplr(c),c,w);
hc = 0.5*(h1.*h2 + h3);mc = 20*log10(abs(hc));
plot(w/pi,ma,'r-',w/pi,mb,'b--',w/pi,mc,'g-.');axis([0 1 -80
5]);
xlabel('Normalized frequency');ylabel('Gain, dB');
legend('b--','alpha = 0.1 ','w','','r-','alpha = 0
','w','','g-.','alpha = –0.25 ');

M8.11 The MATLAB program that can be used to verify the plots of Figure 8.39 is given below:

w = 0:pi/255:pi;
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wc2 = 0.31*pi;
f = [0 0.36 0.46 1];m = [1 1 0 0];
b1 = remez(50, f, m);
h1 = freqz(b1,1,w);
m1 = 20*log10(abs(h1));
n = -25:-1;
c = b1(1:25)./sin(0.41*pi*n);
d = c.*sin(wc2*n);q = (b1(26)*wc2)/(0.4*pi);
b2 = [d q fliplr(d)];
h2 = freqz(b2,1,w);
m2 = 20*log10(abs(h2));
wc3 = 0.51*pi;
d = c.*sin(wc3*n);q = (b1(26)*wc3)/(0.4*pi);
b3 = [d q fliplr(d)];
h3 = freqz(b3,1,w);
m3 = 20*log10(abs(h3));
plot(w/pi,m1,'r-',w/pi,m2,'b--',w/pi,m3,'g-.');
axis([0 1 -80 5]);
xlabel('Normalized frequency');ylabel('Gain, dB');
legend('b--','wc = 0.31π','w','','r-','wc = 0.41π','w','','g-
.','wc = 0.51π')

M8.12  The MATLAB program to evaluate Eq. (8.104) is given below:

x = 0:0.001:0.5;
y = 3.140625*x + 0.0202636*x.^2 - 5.325196*x.^3 +
0.5446778*x.^4 + 1.800293*x.^5;
x1 = pi*x;
z = sin(x1);
plot(x,y);xlabel('Normalized angle,
radians');ylabel('Amplitude');
title('Approximate sine values');grid;axis([0 0.5 0 1]);
pause
plot(x,y-z);xlabel('Normalized angle,
radians');ylabel('Amplitude');
title('Error of approximation');grid;

The plots generated by the above program are as indicated below:

   

M8.13 The MATLAB program to evaluate Eq. (8.110) is given below:

k = 1;
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for x = 0:.01:1
    op1 = 0.318253*x+0.00331*x^2-0.130908*x^3+0.068524*x^4-
0.009159*x^5;
    op2 = 0.999866*x-0.3302995*x^3+0.180141*x^5-
0.085133*x^7+0.0208351*x^9;
    arctan1(k) = op1*180/pi;
    arctan2(k) = 180*op2/pi;
    actual(k) = atan(x)*180/pi;
    k = k+1;
end
subplot(211)
x = 0:.01:1;
plot(x,arctan2);
ylabel('Angle, degrees');
xlabel('Tangent Values');
subplot(212)
plot(x,actual-arctan2,'--');
ylabel('Tangent Values');
xlabel('error, radians');

The plots generated by the above program are as indicated below:

    

Note:  Expansion for arctan(x) given by Eq. (8.110) gives the result in normalized radians, i.e. 
the actual value in radians divided by π.
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Chapter 9 (2e)

9.1 Two's Complement Truncation  - Assume x > 0. The relative error et is given by

et 
  
=

Q (x) − x

x
=

Q (M) − M

M
=

a−i 2
− i

i=1

b

∑ − a− i 2
−i

i =1

β

∑
M

=

− a−i 2
− i

i=b+1

β

∑
M

.

Now  et will be a minimum if all a-i's are 1 and will be a maximum if all a-i's are 0 for

b +1 ≤ i ≤ β , Thus –
δ
M

≤ et ≤ 0
M

.  Since 0.5 ≤ M ≤ 1 hence  −2δ ≤ et ≤ 0.

Now consider x < 0.   Here, the relative error et is given by

et 
  
=

Q (x) − x

x
=

Q (M) − M

M
=

−1 + a−i 2
− i

i=1

b

∑ + 1 − a− i 2
−i

i =1

β

∑
M

.  As before, –
δ
M

≤ et ≤ 0
M

. In

this case –1 < M ≤  – 0.5, and, hence 0 ≤  et ≤ 2δ.

Ones' Complement Truncation  - Assume again x > 0. The relative error et is given by

et 
  
=

Q (x) − x

x
=

Q (M) − M

M
=

a−i 2
− i

i=1

b

∑ − a− i 2
−i

i =1

β

∑
M

=

− a−i 2
− i

i=b+1

β

∑
M

.

Now  et will be a minimum if all a-i's are 1 and will be a maximum if all a-i's are 0 for

b +1 ≤ i ≤ β , Thus –
δ
M

≤ et ≤ 0
M

.  Since 0.5 ≤ M ≤ 1 hence  −2δ ≤ et ≤ 0.

Now consider x < 0.   Here, the relative error et is given by

et  
  
=

Q (x) − x

x
=

Q (M) − M

M
=

−(1 − 2−b) + a− i2
−i

i=1

b

∑ + (1 − 2 −β) − a−i 2
− i

i=1

β

∑
M

=

(2−b − 2−β)+ a−i 2
− i

i=b+1

b

∑
M

.

Now  et will be a maximum if all a-i's are 0 and will be a minimum if all a-i's are 1,   In this
case,

0
M

 < et ≤ δ
M

.  Since, – 0.5 ≤ M < – 1, hence – 2δ  < et ≤ 0.

Sign-Magnitude Truncation  -  Assume x > 0.  Here,

et  
  
=

Q (M) − M

M
=

– a−i 2
− i

i=1

b

∑ + a−i 2
− i

i=1

β

∑
M

=

a− i 2
−i

i=b+1

β

∑
M

.  Since, – 1 ≤ M ≤ – 0.5, hence,

– 2δ  ≤ et < 0.
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Rounding - ε  = Q(M) – M.  Hence 
−δ
2

≤ ε ≤ δ
2

. This implies 
−δ
2M

≤  er ≤ δ
2M

.

Since –1 < M ≤  – 0.5, and, hence − δ ≤  er ≤ δ.

9.2  The denominator is given by D(z) = z − α.   Hence, the pole is at z = r e jθ = α  where r = α  and 

θ = 0.   The components of the pole sensitivities are therefore given by 
∂ r
∂ α

=1  and 
∂ θ
∂ α

= 0.

9.3  The denominator is given by D(z) = z2 − β(1+ α)z + α = (z − r e jθ)(z − r e− jθ) = z2 − 2 r cosθ + r 2 .  

Comparing we get, 2 r cosθ = β(1+ α) and r 2 = α .  Hence, taking the partials of both sides of 

the two equations we get 2 r 0
2 cosθ −2 r sinθ

 
  

 
  

∆r
∆θ

 
  

 
  =

1 0
β 1+ α

 
  

 
  

∆α
∆β

 
  

 
  =

1 0
2rcosθ
1+ r2 1+ r2

 

 
 
 

 

 
 
 

∆α
∆β

 
  

 
   or 

∆r
∆θ

 
  

 
  =

2 r 0
2 cosθ −2 r sinθ

 
  

 
  

−1 1 0
2rcosθ
1+ r2 1+ r2

 

 
 
 

 

 
 
 

∆α
∆β

 
  

 
   =

1
2 r

0

(1− r2 )cosθ
2 r2 (1+r2 ) sin θ

−
1+ r2

2 rsinθ

 

 

 
 
 
 

 

 

 
 
 
 

∆α
∆β

 
  

 
  .

The components of the pole sensitivities are therefore given by,

∂ r
∂ α

= 1
2 r

,  
∂ r
∂ β

= 0,   
∂ θ
∂ α

= (1− r2 ) cot θ
2 r 2 (1 + r 2)

,   and  
∂ θ
∂ β

= − 1+ r2

2 r sinθ
.

9.4   Analysis of the digital filter structure yields

  z–1
  z–1

c c

d d

–1

X(z) Y(z)
W(z) U(z) V(z)

W(z) = X(z) – Y(z),

U(z) = W(z) + cd z−1U(z) which implies U(z) = W(z)
1− cd z−1 = X(z) − Y(z)

1 − c d z−1 ,

c z−1V(z) = Y(z)   implies V(z) = 
zY(z)

c
.  Also V(z) = c z−1U(z) + dY(z).

Substituting for U(z) and V(z) we get  
z Y(z)

c
= cz−1 X(z)− Y(z)

1 − cd z−1 + d Y(z) .  Thus,

Y(z){1 – c d z−1  – c d z−1 (1 – c d z−1 ) + c2 z−2 } = c2 z−2 X(z), hence

H(z) = 
Y(z)
X(z)

 = 
c2

z2 − 2 c d z + c2 (1 + d2 )
.

Let c2(1 + d2) = r2 and c d = r cosθ ,   Solving we get cosθ = d

1 + d2
.

Thus, d = cot θ  and c = r sinθ .  Hence, ∆d = − cosec2θ(∆θ), and ∆c = sinθ (∆r)+ r cosθ(∆θ).
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Or,  
∆c
∆d

 
  

 
  = sinθ r cosθ

0 −cosec2θ
 
  

 
  

∆r
∆θ

 
  

 
  , i.e.

∆r
∆θ

 
  

 
  = −sin θ − cosec2θ −r cosθ

0 sinθ
 

 
 

 

 
 

∆c
∆d

 
  

 
  =

1

sin θ
r sinθ⋅cosθ

0 − sin2 θ

 

 
 
 

 

 
 
 

∆c
∆d

 
  

 
  

  z–1   z–1
c cd

– d

X(z) Y(z)
W(z)U(z) V(z)

Analysis of the above structure yields, U(z) = X(z) – dY(z)

V(z) = U(z) + c z−1V(z) which implies V(z) = 
U(z)

1 − cz−1 .

W(z) = c d z−1 V(z) + c z−1W(z) or W(z) = 
cdz−1

1 − cz−1 V(z)  = 
cdz−1

(1 − cz−1)2 U(z) .

Y(z) = cz−1W(z)  or 
Y(z)
cz−1  = 

cdz−1 X(z) − dY(z)( )
(1− cz−1)2

.

Thus  Y(z){(1 – c z−1)2 + c2d z−2 } = c2d z−2  X(z).  Hence,

H(z) = 
Y(z)
X(z)

 = 
c2d

z2 − 2cz + c2 (1+ d2 )
.

Again let c = r cosθ  and c2(1 + d2) = r2.

Therefore, 1 + d2 = sec2 θ  which implies d = tan θ.   Taking partials we then get

∆ c = cosθ(∆ r)− r sinθ (∆θ),  and  ∆ d = sec2 θ(∆ θ).   Thus,

∆c
∆d

 
  

 
  = cosθ −r sinθ

0 sec2 θ
 
  

 
  

∆r
∆θ

 
  

 
  , which yields 

∆r
∆θ

 
  

 
  =

1

cosθ
r sinθ⋅cosθ

0 cos2 θ

 

 
 
 

 

 
 
 

∆c
∆d

 
  

 
  .

9.5

  

  z–1   z–1

2

– b

–1

– c

X(z) Y(z)
S(z)

Analysis yields  X(z) + 2z-1S(z) – b z-1S(z) – Y(z) – cY(z) = S(z) and  Y(z) = z-2 S(z). Thus

H(z) = 
Y(z)
X(z)

 = 
z−2

1 + (b − 2)z−1 + (1+ c)z−2  = 
1

z2 + (b − 2)z + (1+ c)
.
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Let 1 + c = r2 and  2 − b = 2 rcosθ.    Taking partials we get
∆ c = 2 r (∆ r),  and  –∆b = 2 cosθ (∆ r) – 2 r sinθ (∆θ). Equivalently,

 

∆c
∆b

 
  

 
  = 2r 0

2 cosθ −2 r sin θ
 
  

 
  

∆r
∆θ

 
  

 
   or 

∆r
∆θ

 
  

 
  =

1
2r

0
1

2r2 tanθ
− 1

2rsinθ

 

 

 
 
 

 

 

 
 
 

∆c
∆b

 
  

 
  .

From Example 9.2 the pole sensitivities for Figure 9.9 are given by

∆r
∆θ

 
  

 
  =

cosθ sinθ
− 1

r
sinθ 1

r
cosθ

 

 
 
 

 

 
 
 

∆α
∆β

 
  

 
  .

9.6   (a) For direct form implementation B(z) = z3 + b2z2 + b1z + b0 = (z − z1)(z − z2 )(z − z3)  where

z1 = r1e
jθ1 , z2 = r1e

– jθ1 ,  and z3 = r3e jθ3 .   Thus, B(z) = (z2 − 2 r1 cosθ1 z + r1
2)(z − r3)  =

(z2 + 0.5111z + 0.7363)(z + 0.3628) .  Thus, 2 r1 cosθ1 = −0.5111, r1
2 = 0.7363,  r3 = 0.3628,  and

θ3 = π.

From the above r1 = 0.7363 = 0.8581 and cosθ1 =
− 0.5111

2 0.7363
= −0.2978.

1
B(z)

= 1
(z2 + 0.5111z + 0.7363)(z + 0.3628)

          = 
− 0.7326 − j0.0959

z + 0.25555 − j0.81914
+

−0.7326 + j0.0959

z + 0.25555 + j0.81914
+

1.4652

z + 0.3628
.

P1 = cosθ1 r1 r1
2 cosθ1[ ]= −0.2978 0.8581 −0.2193[ ],

Q1 = – sinθ1 0 r1
2 sin θ1[ ] = −0.9546 0 0.7029[ ],

R1 = 0.40357, X1 = – 0.36481,

P3 = cosθ3 r3 r3
2 cosθ1[ ] = −1 0.3628 − 0.1316[ ],  Q3 = – sinθ3 0 r3

2 sinθ3[ ] = 0 0 0[ ],
R3 = 1.4652, and X3 = 0.

Thus,  ∆r1 = – R1P1 + X1Q1( ) ⋅ ∆B = − 0.1266 ∆b0 + 0.6286∆b1 − 0.2281∆b2,

∆θ1 = –
1

r1
X1P1 + R1Q1( ) ⋅∆B = −0.8483 ∆b0 + 0.0959 ∆b1 + 0.5756 ∆b2 ,

∆r3 = – R3P3 + X3Q3( ) ⋅ ∆B = –R3P3 ⋅ ∆B = 1.4652∆b0 − 0.5316 ∆b1 + 0.1929 ∆b2 ,

∆θ3 = –
1
r3

X3P3 + R3Q3( )⋅ ∆B = 0.

(b)  Cascade Form:  B(z) = z3 + b2z2 + b1z + b0 = (z2 + c1z + c0 )(z + d 0)  = B1(z)B2(z) where

B1(z) = z2 + c1z + c0 = (z − z1)(z − z2 ) = (z − r1e
jθ1 )(z − r1e

–jθ1 )  = z2 − 2 r1 cosθ1z + r1
2  and

B2(z) = z + d0 = z − r3e
jθ3 .   Comparing with the denominator of the given transfer function we

get  2 r1 cosθ1 = −0.5111,   r1
2 = 0.7363,  r3 = 0.3628, and θ3 = π.  Hence, r1 = 0.8581  and

cosθ1 = −0.2978.

Now, 
1

B1(z)
=

− j 0.6104

z + 0.2556 − j0.8191
+

j 0.6104

z + 0.2556 + j0.8191
.
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Hence, R1 = 0  and X1 = – 0.6104.

P1 = cosθ1 r1[ ]= −0.2978 0.8581[ ],  and Q1 = – sinθ1 0[ ]= −0.9546 0[ ],   Next, we observe
1

B2(z)
= 1

z + 0.3628
.   This implies, R3 = 1 and X3 = 0.  P3 = cosθ3 = −1,  Q3 = −sinθ3 = 0.

Thus,

∆r1 = (−R1P1 + X1Q1) ⋅ ∆c0 ∆c1[ ]T = X1Q1 ⋅ ∆c0 ∆c1[ ]T = 0.5827∆c0 ,

∆θ1 = –
1

r1
X1P1 + R1Q1( ) ⋅ ∆c0 ∆c1[ ]T = −0.2118∆c0 + 0.6104∆c1

∆r3 = (−R3P3 + X3Q3) ⋅ ∆d 0 = −R3P3 ⋅∆d0 = − ∆d 0

∆θ3 = –
1
r3

X3P3 + R3Q3( )⋅ ∆d 0 = –
1
r3

R3Q3 ⋅∆d0 = 0

9.7   In terms of transfer parameters, the input-output relation of the two-pair of Figure P9.3 is given
by

Y1 = t11X1 + t12X2,  and  Y2 = t21X1 + t22X2,   where X2 = αY2 .   From Eq. (4.156b) we get

H(z) =
Y1(z)

X1(z)
= t11 +

α t12 t21

1– α t22
.

From the above, 
∂ H(z)

∂α
=

t12t21 1 – α t22( )+ t22α t12t21

1 – α t22( )2 =
t12 t21

1 – α t22( )2 .

Substituting X2 = αY2  in Y2 = t21X1 + t22X2  we get the expression for the scaling transfer
function

Fα(z) =
Y2(z)

X1(z)
=

t21

1 – α t22
.   Now from the structure given below we observe that the noise

transfer function Gα(z)  is given by Gα(z) =
Y1

U X1=0
.  From the structure we also observe that

X2 = αY2 + U.   Substituting this in the transfer relations  we arrive at with X1 = 0,

Y1 = t12X2 = t12(αY2 + U),  and Y2 = t22X2 = t22(αY2 + U).   From these two equations we
obtain

Y1

Y2X1

α

U
X 2

after some algebra  Y1 =
α t12 t22

1 −α t22
U + t12U =

t12

1 − α t22
U.   Hence the noise transfer function is

given by Gα(z) =
Y1

U X1=0
=

t12

1 −α t22
.   Therefore, 

∂ H(z)
∂α

=
t21

1 – α t22
⋅

t12

1 – α t22
= Fα(z)Gα (z).
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9.8 (a) WN (ω) =
1

2N +1
N +

sin (N + 1)ω[ ]
sin(ω)

 
  

 
  

 

 
 
 

 

 
 
 

1/ 2

=
1

2N + 1
1 + 4 cos2(ωn)

n=1

N/ 2

∑
 

 
 

 

 
 

 

 
 
 

 

 
 
 

1/2

.

Since the maximum value of cos2 (ωn)  = 1 and the minimum value = 0,  hence

max{ WN (ω)} = 
1

2N + 1
1 + 4 N / 2( )( ) 

  
 
  
1/2

 = 1,  and min{WN (ω)} = 
1

2N + 1
 
  

 
  
1/2

 > 0.

Hence  0 < WN (ω)  ≤ 1.

(b) WN (0) =
1

2N +1
1 + 4 1

m=1

N /2

∑
 

 
 

 

 
 

 

 
 
 

 

 
 
 

1/ 2

 = 1.

      

WN (π) =
1

2N + 1
1 + 4 1

m=1

N/ 2

∑
 

 
 

 

 
 

 

 
 
 

 

 
 
 

1/2

 = 1.

(c) lim
N→∞

WN(π) = lim
N→∞

N

2N + 1
+ lim

N→∞

1

2N +1

sin((N + 1)ω)

sin(ω)

 

 
 

 

 
 
1/2

.

Since sin((N + 1)ω) ≤ 1 ,   lim
N→∞

1

2N + 1

sin((N+)ω)

sin(ω)
= 0,  and lim

N→∞
WN(π) =

1

2
.

9.9 From Eq. (9.75) SNRA / D = 6.0206 b +16.81– 20 log10(K) dB.   For a constant value of K, an
increase in b by 1 bit  increases the SNRA/D by 6.0206 dB and an increase in b by 2 bits
increases the SNRA/D by 12.0412 dB.

If K = 4 and b = 7 then SNRA/D = 6.0206 × 7 +16.81– 20 log10(4)

= 6.0206 × 7 +16.81– 20 × 0.6021 = 46.9122 dB.   Therefore for K = 4 and b = 9, SNRA/D =
46.91 + 12.04 = 58.95 dB; for K = 4 and b = 11, SNRA/D = 58.95 + 12.04 = 70.99 dB; for K
= 4 and b = 13, SNRA/D = 70.99+ 12.04 = 83.03; for K = 4 and b = 15, SNRA/D = 83.03 +
12.04 = 95.08.

If K = 6 and b = 7 then SNRA/D  = 6.0206 × 7 +16.81– 20 log10(6)

= 6.0206 × 7 +16.81– 20 × 0.7782 = 43.3902 dB.   Therefore for K = 6 and b = 9, SNRA/D =
43.39 + 12.04 = 55.43 dB; for K = 6 and b = 11, SNRA/D = 43.39 + 12.04 = 67.47 dB; for K
= 6 and b = 13, SNRA/D = 67.47 + 12.04 = 79.51; for K = 6 and b = 15, SNRA/D = 79.51 +
12.04 = 91.56.

If K = 8 and b = 7 then SNRA/D = 6.0206 × 7 +16.81– 20 log10(8)

= 6.0206 × 7 +16.81– 20 × 0.9031 = 40.8922 dB.   Therefore for K = 6 and b = 9, SNRA/D =
40.89 + 12.04 = 52.93 dB; for K = 6 and b = 11, SNRA/D = 52.93 + 12.04 = 64.97 dB; for K
= 6 and b = 13, SNRA/D = 64.97 + 12.04 = 77.01; for K = 6 and b = 15, SNRA/D = 77.01 +
12.04 = 89.05.

9.10  (a)  H(z) =
Ak

z + akk=1

N

∑ = Ck

akz +1

z + akk =1

N

∑ − Ckak
k =1

N

∑ = CkFk(z)
k =1

N

∑ + B,  where  Ck =
Ak

1 − ak
2 ,  

Fk (z) =
akz +1

z + ak
,  and B = − Ck ak

k =1

N

∑ .
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(b)  σo
2 = 1

2πj
H(z)H(z−1) z−1 dz

C
∫  = 1

2πj
CkFk(z)

k =1

N

∑ + B
 

 
 
 

 

 
 
 CkFk (z−1)

k =1

N

∑ + B
 

 
 
 

 

 
 
 z

−1 dz

C
∫  

  

= 1
2πj

B2

C
∫ z−1dz + B Ck

k=1

N

∑ Fk (z) z−1

C
∫ dz + B Cl

l =1

N

∑ Fl (z
−1) z−1

C
∫ dz  

  

+ CkCl
l =1

N

∑
k=1

N

∑ 1
2πj

Fk(z)Fk(z−1) z−1

C
∫ dz .

Now, 
1

2πj
B2 z−1

C
∫ dz = B2,  

1
2πj

Fk(z) z−1

C
∫ dz = ak,  

  

1
2πj

Fl (z) z−1

C
∫ dz = a l ,  and

  

1
2πj

Fk(z)Fk(z−1) z−1

C
∫ dz =

1− ak
2 − a l

2 + aka l

1 − akal
.   Therefore, 

  

σo
2 = B2 + 2 BCkak

k =1

N

∑ +
1 − ak

2 − al
2 + akal

1− aka ll =1

N

∑
k=1

N

∑ .   Since, Ckak
k=1

N

∑ = −B,  

  

σo
2 = −B2 +

1 − ak
2 − al

2 + akal

1− aka ll =1

N

∑
k=1

N

∑ CkCl  

  

= − CkCl akal
l =1

N

∑
k=1

N

∑ + CkCl

1 − ak
2 − al

2 + akal

1− aka ll =1

N

∑
k=1

N

∑  

  

= CkCl

1− ak
2 − a l

2 + aka l

1 − akal
− aka l

 

 
 
 

 

 
 
 

l =1

N

∑
k =1

N

∑  

  

=
Ak

(1 − ak
2 )

⋅
Al

(1 −a l
2 )

1 − ak
2 − a l

2 + ak
2 al

2

1 −aka l

 

 
 
 

 

 
 
 

l =1

N

∑
k =1

N

∑  

  

=
Ak

(1 − ak
2 )

⋅
Al

(1 −a l
2 )

(1− ak
2 )(1 − a l

2)

1 − aka l

 

 
 
 

 

 
 
 

l =1

N

∑
k =1

N

∑  

  

=
AkA l

1 − aka l
.

l =1

N

∑
k =1

N

∑ (A)

Further, 

  

σo
2 =

Ak
2

1 − ak
2 +

AkA l

1 − akall =k +1

N

∑
k=1

N−1

∑
k =1

N

∑ +
AkA l

1 − akalk =l +1

N

∑
l =1

N−1

∑  

  

=
Ak

2

1 −ak
2 + 2

AkA l

1− aka ll =k+1

N

∑
k =1

N−1

∑
k =1

N

∑ .

(c)  See Eq.(A).

9.11  (a)  H1(z) =
(z + 3)(z −1)

(z − 0.5)(z + 0.3)
= 1 +

− 2.1875

z − 0.5
+

4.3875

z + 0.3
.  Making use of Eq. (9.86) and Table 

9.4, we get  σ1,n
2 = 1 + (−2.1875)2

1 − (0.5)2 + (4.3875)2

1− (0.3)2 + 2 × (−2.1875)× 4.3875
1 − 0.15

= 1 + 6.3802 + 21.154 −16.692 =11.843 .

Output of Program 9_4 is  11.843.
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(b)  H2(z) = 3(2z +1)(0.5z2 − 0.3z +1)
(3z +1)(4z +1)(z2 − 0.5z + 0.4)

= −1.7049

z + 1

3

+ 2.8245

z + 1

4

+ −0.86955z + 0.52675
z2 − 0.5z + 0.4

.  Again, 

from Eq. (9.86) and Table 9.44, we get σ2,n
2 = (1.7049)2

1 − 1
3( )2 + (2.8245)2

1− 1
4( )2 + 2

−1.7049 × 2.8245

1− 1

12

 

 

 
  

 

 

 
  

 

+ 2 ×
−1.7049 −0.86955 + 0.52675 × (−1 / 3)( )

1 − 0.5(−1/ 3)+ 0.4(−1 /3)2  + 2 ×
2.8245 −0.86955 + 0.52675 × (−1/ 4)( )

1 − 0.5(−1/ 4) + 0.4(−1 / 4)2

+ [(−0.86955)2 + (0.52675)2](1 − 0.42 )− 2 × (−0.86955)× 0.52675 × (1− 0.4) ×(−0.5)
(1 − 0.42)2 + 2(0.4)(−0.5)2 −(1 + 0.42 )× (−0.5)2

= 3.271 + 8.5097 − 10.5065 + 2.9425 − 4.9183 + 0.9639 = 0.2613 .

Output of Program 9_4 is  0.26129.

(c)  H3z) = (z −1)2

z2 − 0.4 z + 0.7
= 1 + −1.6 z + 0.3

z2 − 0.4 z + 0.7
.  Again, from Eq. (9.86) and Table 9.44, we 

get  σ3,n
2 = 1 + (1.62 + 0.32 )(1 − 0.72 )− 2 × 0.3 × (−1.6)× (−0.4)× (1− 0.7)

(1 − 0.72 )+ 2 × 0.7 × 0.42 − (1 + 0.72) × 0.42  = 1 + 5.0317 = 6.0317.

Output of Program 9_4 is   6.0317.

9.12  H(z) = C + A
1 − αz−1 + B

1 −β z−1 = C + Az
z − α

+ Bz
z − β

 = C + Az − Aα + Aα
z − α

+ Bz − Bβ + Bβ
z − β

= (A + B + C) + Aα
z − α

+ Bβ
z − β

.   From Eq. (9.86) and using Table 9.4 we obtain

σ v,n
2 = (A + B+ C)2 + (Aα)2

1 − α2 + (Bβ)2

1 − β2 + 2AαBβ
1 − αβ

.  For the values given, we get

σ v,n
2 = (3)2 + (0.7 × 3)2

1 − (0.7)2 + (2 × 0.9)2

1 − (0.9)2 + 2 × 3 × (−0.7) × (−2) × 0.9
1− (−0.7)(0.9)

 

        = 16 + 8.6471+ 17.053 + 4.638 = 46.338

Output of Program 9_4 is   4.6338.

9.13  (a)  Quantization of products before addition.

Cascade Structure #1: H(z) = 1− 2 z−1

1+ 0.3z−1

 

 
  

 

 
  

1 + 3z−1

1− 0.4 z−1

 

 
  

 

 
  .  The noise model of this structure is

shown below:

−2
z−1 z−1

− 0.3 0.4

3

e1[n]

e2[n]

e3[n]

e4[n]
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The noise transfer function from the noise source e1[n] to the filter output is

G1(z) = H(z) = z2 + z − 6
z2 − 0.1z − 0.12

= 1+ −7.7714
z − 0.4

+ 8.8714
z + 0.3

.   The corresponding normalized noise

variance at the output is σ1
2 =1 + (−7.7714)2

1− (0.4)2 + (8.8714)2

1 −(−0.3)2 + 2
−7.7714 × 8.8714

1 − (0.4)(−0.3)

 

 
 

 

 
 = 36.271.

The noise transfer function from the noise sources e2[n]  and e3[n]  to the filter output is

G2(z) = z + 3
z − 0.4

= 1+ 3.4
z − 0.4

.   The normalized noise variance at the output due to each of these

noise sources is σ2
2 =1 + (3.4)2

1 − (0.4)2 = 14.762.  The noise transfer function from the noise source

e4[n]  to the filter output is G3(z) = 1,   The corresponding normalized noise variance at the

output is σ3
2 =1.   Hence the total noise variance at the output is  σo

2 = σ1
2 + 2 σ2

2 + σ3
2 = 66.795.

Cascade Structure #2: H(z) = 1 + 3z−1

1+ 0.3z−1

 

 
  

 

 
  

1 − 2 z−1

1− 0.4 z−1

 

 
  

 

 
  .  The noise model of this structure is

shown below:

z−1 z−1

− 0.3 0.4
e1[n]

e2[n]

e3[n]

e4[n]

−23

The noise transfer function from the noise source e1[n] to the filter output is

G1(z) = H(z) = z2 + z − 6
z2 − 0.1z − 0.12

= 1+ −7.7714
z − 0.4

+ 8.8714
z + 0.3

.   The corresponding normalized noise

variance at the output is σ1
2 =1 + (−7.7714)2

1− (0.4)2 + (8.8714)2

1 −(−0.3)2 + 2
−7.7714 × 8.8714

1 − (0.4)(−0.3)

 

 
 

 

 
 = 36.271.

The noise transfer function from the noise sources e2[n]  and e3[n]  to the filter output is

G2(z) = z − 2
z − 0.4

= 1+ −1.6
z − 0.4

.   The normalized noise variance at the output due to each of these

noise sources is σ2
2 =1 + (−1.6)2

1 − (0.4)2 = 4.0476.  The noise transfer function from the noise source

e4[n]  to the filter output is G3(z) = 1,   The corresponding normalized noise variance at the

output is σ3
2 =1.   Hence the total noise variance at the output is  σo

2 = σ1
2 + 2 σ2

2 + σ3
2 = 45.366.

Cascade Structure #3: H(z) = 1 + 3z−1

1− 0.4 z−1

 

 
  

 

 
  

1 − 2 z−1

1 + 0.3 z−1

 

 
  

 

 
  .  The noise model of this structure is

shown below:
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z−1 z−1

e1[n]

e2[n]

e3[n]

e4[n]

−23

− 0.30.4

The noise transfer function from the noise source e1[n] to the filter output is

G1(z) = H(z) = z2 + z − 6
z2 − 0.1z − 0.12

= 1+ −7.7714
z − 0.4

+ 8.8714
z + 0.3

.   The corresponding normalized noise

variance at the output is σ1
2 =1 + (−7.7714)2

1− (0.4)2 + (8.8714)2

1 −(−0.3)2 + 2
−7.7714 × 8.8714

1 − (0.4)(−0.3)

 

 
 

 

 
 = 36.271.

The noise transfer function from the noise sources e2[n]  and e3[n]  to the filter output is

G2(z) = z − 2
z + 0.3

=1 + −2.3
z + 0.3

.  The normalized noise variance at the output due to each of these

noise sources is σ2
2 =1 + (−2.3)2

1 − (−0.3)2 = 6.8132.  The noise transfer function from the noise source

e4[n]  to the filter output is G3(z) = 1,   The corresponding normalized noise variance at the

output is σ3
2 =1.   Hence the total noise variance at the output is  σo

2 = σ1
2 + 2 σ2

2 + σ3
2 = 50.897.

Cascade Structure #4: H(z) = 1− 2 z−1

1− 0.4 z−1

 

 
  

 

 
  

1 + 3 z−1

1 + 0.3 z−1

 

 
  

 

 
  .  The noise model of this structure is

shown below:

z−1 z−1

e1[n]

e2[n]

e3[n]

e4[n]
− 0.30.4

3−2

The noise transfer function from the noise source e1[n] to the filter output is

G1(z) = H(z) = z2 + z − 6
z2 − 0.1z − 0.12

= 1+ −7.7714
z − 0.4

+ 8.8714
z + 0.3

.   The corresponding normalized noise

variance at the output is σ1
2 =1 + (−7.7714)2

1− (0.4)2 + (8.8714)2

1 −(−0.3)2 + 2
−7.7714 × 8.8714

1 − (0.4)(−0.3)

 

 
 

 

 
 = 36.271.

The noise transfer function from the noise sources e2[n]  and e3[n]  to the filter output is

G2(z) = z + 3
z + 0.3

=1 + 2.7
z + 0.3

.  The normalized noise variance at the output due to each of these

noise sources is σ2
2 =1 + (2.7)2

1 − (−0.3)2 = 9.011.  The noise transfer function from the noise source

e4[n]  to the filter output is G3(z) = 1,   The corresponding normalized noise variance at the

output is σ3
2 =1.   Hence the total noise variance at the output is  σo

2 = σ1
2 + 2 σ2

2 + σ3
2 = 55.293.
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Hence, the Cascade Structure #2 has the smallest roundoffnoise variance.

(b)  Quantization of products after addition.

From the results of Part (a) we have here the following roundoff noise varainces:

Cascade Structure #1:   σo
2 = σ1

2 + σ2
2 + σ3

2 = 52.033.

Cascade Structure #2:   σo
2 = σ1

2 + σ2
2 + σ3

2 = 41.319.

Cascade Structure #3:   σo
2 = σ1

2 + σ2
2 + σ3

2 = 44.084.

Cascade Structure #4:   σo
2 = σ1

2 + σ2
2 + σ3

2 = 46.282.

In this case also the Cascade Form 2 has the smallest roundoffnoise variance.

9.14  (a)  Quantization of products before addition.

Parallel Form I:  H(z) = (z − 2)(z + 3)
(z + 0.3)(z − 0.2)

= 50 + −19.429
1 − 0.4 z−1 + −29.571

1 + 0.3z−1 .  The noise model is as

shown below

z−1

z−1

e1[n ]

e2 [n]

e3[n ]

e4[n] − 0.3

0.4

50

−19.429

29.571

e5[n]

–

The noise transfer function from the noise source e1[n]  to the filter output is G1(z) = 1 and its

corresponding normalized noise variance at the output is σ1
2 =1.    The noise transfer function

from the noise sources e2[n]  and e3[n]  to the filter output is

G2(z) = 1
1− 0.4 z−1 = z

z − 0.4
=1 + 0.4

z − 0.4
.   The normalized noise variance at the output due to

each of these noise sources is σ2
2 =1 + (0.4)2

1 − (0.4)2 = 1.1905.   The noise transfer function from the

noise sources e4[n]  and e5[n]   to the filter output is G3(z) = 1
1 + 0.3 z−1 = z

z + 0.3
= 1 + −0.3

z + 0.3
.

The normalized noise variance at the output due to each of these noise sources is
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σ3
2 =1 + (−0.3)2

1 − (−0.3)2 = 1.0989.    Hence the total noise variance at the output is

σo
2 = σ1

2 + 2 σ2
2 + 2 σ3

2 = 5.5788.

Parallel Form II:  H(z) = 1+ −7.7714
z − 0.4

+ 8.8714
z + 0.3

= 1 + −7.7714 z−1

1 − 0.4 z−1 + 8.8714 z−1

1 + 0.3z−1 .  The noise model

is as shown below

z−1

z−1

e2[n]

e3[n ]

e4[n ] − 0.3

0.4

e5[n]

8.8714

− 7.7714

The noise transfer function from the noise sources e2[n]  and e3[n]  to the filter output is

G2(z) = z−1

1− 0.4 z−1 = 1
z − 0.4

.   The normalized noise variance at the output due to each of these

noise sources is σ2
2 = 1

1 − (0.4)2 = 1.1905.   The noise transfer function from the noise sources

e4[n]  and e5[n]   to the filter output is G3(z) = z−1

1 + 0.3 z−1 = 1
z + 0.3

.   The normalized noise

variance at the output due to each of these noise sources is σ3
2 = 1

1 − (−0.3)2 = 1.0989.    Hence

the total noise variance at the output is  σo
2 = 2 σ2

2 + 2 σ3
2 = 4.5788.

Hence, Parallel Form #2 has the smaller roundoff noise variance.

(b)  Quantization of products after addition.

Parallel Form I:   From the results of Part (a) we note that the total noise variance at the output

is σo
2 = σ1

2 + σ2
2 + σ3

2 = 3.2894.

Parallel Form II:   From the results of Part (a) we note that the total noise variance at the output

is σo
2 = σ2

2 + σ3
2 = 2.2894.

9.15   H(z) =
2 + 2 z−1 − 1.5 z−2

1 + 0.5 z−1 + 0.06z−2 .

(a) The noise model of the Direct Form II realization of H(z) is shown below:
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z−1

z−1e1[n ]

e2 [n]

e3[n]

e4 [n ]

e5[n]

2

2

−1,5

− 0.5

− 0.06

The noise transfer function from the noise sources e3[n], e4[n]  and e5[n]  to the filter output is

G2(z) = 1,  and the noise transfer function from the noise sources e1[n] and e2[n]  to the filter

output is  G1(z) = H(z) = 2 + 2 z−1 −1.5 z−2

1 + 0.5z−1 − 0.06z−2 = 2 + −18.2
z + 0.2

+ 19.2
z + 0.3

.   Using Table 9.4, the

normalized noise variance at the output due to each of the noise sources e1[n] and e2[n]  is then

σ1
2 = 2 4 + (−18.2)2

1 − (−0.2)2 + (19.2)2

1− (−0.3)2 + 2
−18.2 ×19.2

1− (−0.2)(−0.3)

 

 
 

 

 
 

 

 
 
 

 

 
 
 

= 10.651,

and the normalized noise variance at the output due to each of the noise sources e3[n], e4[n]

and e5[n]  is σ2
2 =1.   Hence the total noise variance at the output is  σo

2 = 2σ1
2 + 3σ2

2 = 24.302.

(b)  Cascade Form Realization:  H(z) = 2(1− 0.5z−1)(1 +1.5 z−1)
(1 + 0.2 z−1)(1 + 0.3 z−1)

.  There are more than 2

possible cascade realizations.  We consider here only two such structures.

Cascade Form #1: H(z) = 2
1− 0.5z−1

1+ 0.2 z−1

 

 
  

 

 
  

1+1.5z−1

1 + 0.3 z−1

 

 
  

 

 
  .   The noise model of this realization is

shown below:

z− 1 z− 1

− 0, 5 1.5− 0.2 − 0.3

2

e1[n]

e2 [n] e3[n] e4[n] e5[n]

The noise transfer function from the noise sources e1[n] and e2[n]  to the filter output is

G1(z) = 1 +1z−1 − 0.75z−2

1 + 0.5 z−1 − 0.06z−2 =1 + −9.1
z + 0.2

+ 9.6
z + 0.3

.   Its contribution to the output noise variance

is σ1
2 =1 + (−9.1)(−9.1)

1 − (−0.2)(−0.2)
+ (9.6)(9.6)

1− (−0.3)(−0.3)
+ 2

(−9.1)(9.6)
1 − (−0.2)(−0.3)

 

 
 

 

 
 = 2.6628.
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The noise transfer function from the noise sourcese3[n], and e4[n]  to the filter output is

G2(z) = 1 +1.5 z−1

1+ 0.3z−1 = 1+ 1.2
z + 0.3

.    Its contribution to the output noise variance is  

σ2
2 =1 + (1.2)2

1 − (−0.3)2 = 2.5824.   Finally, the noise transfer function from the noise source e5[n]

to the filter output is  G3(z) = 1.    Its contribution to the output noise variance is σ3
2 =1.   Hence

the total noise variance at the output is σo
2 = 2σ1

2 + 2 σ2
2 + σ3

2 = 2(2.6628)+ 2(2.5824)+1 = 11.49.

Cascade Form #2: H(z) = 2
1 +1.5 z−1

1+ 0.2 z−1

 

 
  

 

 
  

1 − 0.5 z−1

1 + 0.3 z−1

 

 
  

 

 
  .   The noise model of this realization is

shown below:

z−1 z−1

− 0.2 − 0.3

e1[n ]

e2 [n] e3[n ] e4 [n ] e5[n]

1.5 − 0,5

2

The noise transfer function from the noise sources e1[n] and e2[n]  to the filter output is

G1(z) = 1 +1z−1 − 0.75z−2

1 + 0.5 z−1 − 0.06z−2 =1 + −9.1
z + 0.2

+ 9.6
z + 0.3

.   Its contribution to the output noise variance

is σ1
2 =1 + (−9.1)(−9.1)

1 − (−0.2)(−0.2)
+ (9.6)(9.6)

1− (−0.3)(−0.3)
+ 2

(−9.1)(9.6)
1 − (−0.2)(−0.3)

 

 
 

 

 
 = 2.6628.

The noise transfer function from the noise sources e3[n], and e4[n]  to the filter output is

G2(z) = 1− 0.5z−1

1+ 0.3z−1 = 1+ −0.8
z + 0.3

.    Its contribution to the output noise variance is  

σ2
2 =1 + (−0.8)2

1 − (−0.3)2 = 1.7033,   Finally, the noise transfer function from the noise source e5[n]

to the filter output is  G3(z) = 1.    Its contribution to the output noise variance is σ3
2 =1.   Hence

the total noise variance at the output is σo
2 = 2σ1

2 + 2 σ2
2 + σ3

2 = 2(2.6628)+ 2(1.7033) +1 = 9.7322.

(c)  Parallel Form I Realization:  H(z) = −25+ 91
1+ 0.2 z−1 + −64

1 + 0.3 z−1 .   The noise model of this

realization is shown below:
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e5[n]

e4[n]

e3[n]

e2[n]

e1[n]

91

−0.2

−0.3

z−1

z−1

− 25

The noise transfer function from the noise sources e1[n] and e2[n]  to the filter output is

G1(z) =
1

1 + 0.2 z−1 =1 +
−0.2

z + 0.2
.   Its contribution to the output noise variance is

σ1
2 =1 +

(−0.2)2

1 − (−0.2)2 = 1.0417.

The noise transfer function from the noise sources e3[n] and e4[n]  to the filter output is

G2(z) =
1

1 + 0.3 z−1 =1 +
− 0.3

z + 0.3
.   Its contribution to the output noise variance is

σ2
2 =1 +

(−0.3)2

1 − (−0.3)2 = 1.0989.

Finally, the noise transfer function from he noise sources e5[n]  to the filter output is  G3(z) = 1.

Its contribution to the output noise variance is σ3
2 =1.   Hence the total noise variance at the

output is σo
2 = 2 σ1

2 + 2 σ2
2 + σ3

2 = 5.2812.

 Parallel Form II Realization:  H(z) = 2 + −18.2
z + 0.2

+ 19.2
z + 0.3

.   The noise model of this realization is

shown below:

z−1

z−1

− 0.2

− 0.3

e1[n]

e2[n]

e3[n]

e4[n]

2

19.2

−18.2 e5[n]

373



The noise transfer function from the noise sources e1[n] and e2[n]  to the filter output is

G1(z) =
z−1

1 + 0.2 z−1 =
1

z + 0.2
.   Its contribution to the output noise variance is

σ1
2 =

1

1 − (−0.2)2 = 1.0417.

The noise transfer function from the noise sources e3[n] and e4[n]  to the filter output is

G2(z) =
z−1

1 + 0.3 z−1 =
1

z + 0.3
.   Its contribution to the output noise variance is

σ2
2 =

1

1 − (−0.3)2 = 1.0989.

Finally, the noise transfer function from he noise sources e5[n]  to the filter output is  G3(z) = 1.

Its contribution to the output noise variance is σ3
2 =1.   Hence the total noise variance at the

output is σo
2 = 2 σ1

2 + 2 σ2
2 + σ3

2 = 5.2812.

As a result, both Parallel Form structures have the smallest product roundoff noise variance.

9.16   H(z) = 2 + 2 z−1 −1.5 z−2

1+ 0.5z−1 − 0.06z−2 .  Using Program 6_4, the Gray-Markel realization of H(z) is found

to be as shown below where d2 = 0.472,  d1' = 0.06,  α1 = −1.5,  α2 = 2.75,  and α3 = 0.793.

  
X1

  
Y

o

–d2

d2

–d1 '

d1'

  z
–1

  z
–1

  
α1   

α2   
α3

  
Y

1

S2 S1

  W2

(a)  For quantization of products before addition, the noise model is as shown below:

–d 2

d 2

–d1'

d1'

  z
–1

  z
–1

  
α1   

α2   
α3

x1[n]

y1[n]

yo[n] + γ[ n]

e1[n] e2[n]

e3[n]e4[n]

e 5[n] e6[ n] e7[ n]

s1[n]s2[n]

Analyzing the above structure we obtain the noise transfer functions for each noise source,
e i[n] , 1 ≤ i ≤ 7 :
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G1(z) = H(z) = 2 + 2 z−1 −1.5 z−2

1 + 0.5z−1 − 0.06z−2 ,

G2(z) =
(α2d1' +α3) + α1(1 − d2

2 )d1' +α2[ ]z–1 + α1(1 − d2
2 ) z–2

1 + 0.5z–1 + 0.06z–2 = 2.091 + 2.0445z–1 −1.495z–2

1 + 0.5 z–1 + 0.06 z–2 ,

    G3(z) =
α2 + α1(1 − d2

2 )− α2d1' d2 − α3d2[ ]z–1 + α1(1 − d2
2 )d2d1' z

–2

1 + 0.5 z–1 + 0.06z–2 = 2.75 −1.6201z–1 − 0.7055 z–2

1+ 0.5z–1 + 0.06z–2 ,

G4(z) = α1 = −1.5,

G5(z) = G6(z) = G7(z) =1.

Using Program 9_4 we get σ1,n
2 = 10.651,  σ2,n

2 = 11.021,  σ3,n
2 = 16.945,  σ 4,n

2 = 2.25.   Hence, the
total normalized output noise variances = 10.651 + 11.021 + 16.945 + 2.25 + 3(1) = 43.87.

(b)  The noise model of the above structure assuming quntization of products after addition is
as given below:

x[n]

z−1 z−1

y[n]

− d2

d 2

− d1
'

d1
'

α1 α2 α3

e2[n]

e5[n]

e4[n] e3[n ]

The pertinent noise transfer functions here are: G2(z) = 2.091+ 2.0445z–1 −1.495 z–2

1 + 0.5 z–1 + 0.06z–2 ,

 G3(z) = 2.75 −1.6201z–1 − 0.7055z–2

1 + 0.5z–1 + 0.06z–2 ,  G4(z) = −1.5,  and G5(z) =1.   Hence, the total

normalized output noise variances = 11.021 + 16.945 + 2.25 + 1 = 31.22.

9.17   The noise model of Figure P9.8 is as shown below:

z−1 z−1x[n] y[n ]

−1 d1

d2
e1[n]

e2[n]

The noise transfer function from the noise sources e1[n] and e2[n]  to the output is given by
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G1(z) = 1 − z−2

1 + d1z−1 + d2z−2 = z2 −1
z2 + d1z + d 2

=1 −
d1z + (1+ d2)

z2 + d1z + d2
Using Table 9.4 we arrive at the total normalized output noise power as

σ n
2 = 2 1 +

d1
2 + (1+ d 2)2( )(1− d2

2) − 2 d1(1 + d2 )− d1(1 + d2 )d2( )d1

(1 − d2
2)2 + 2 d2d1

2 − (1 + d2
2 )d1

2

 

 

 
 
 

 

 

 
 
 
       

 = 2 1 +
(1 − d2

2) (1 + d2)2 − d1
2( )

(1 − d2)2 (1 + d2)2 − d1
2( )

 

 

 
 
 

 

 

 
 
 

= 4
1 − d2

.

9.18  (a)  Quantization of products before addition

The noise model second-order coupled form structure is shown below.

V(z)

U(z)

Y(z)

E1(z)

E2( z)

E3(z)

E4 (z)

z−1
z−1

α

β

γ

δ

We observe from Example 9.2 that α = δ = r cosθ , β = −γ = r sinθ , α + δ = 2 rcosθ  and

αδ − βγ = r2 .

Analysis yields U(z) = β z−1Y(z) + αV(z)+ E 3(z),  V(z) = z−1U(z),  and

Y(z) = γ V(z) + δ z−1Y(z) + E1(z).   Eliminating the variables U(z) and V(z) from these equations

we arrive at 
1 − (α + δ) z−1 + (α δ −β γ )z−2

1 − αz−1 Y(z) = γ z−1

1 − αz−1 E3(z) + E1(z).   Hence, the noise

transfer function from the noise sources e1[n] and e2[n]  to the output is given by

G1(z) =
Y(z)

E1(z) E3 (z )=E4 (z)=0

=
1 − α z−1

1 − (α + δ)z−1 + (α δ − β γ ) z−2 =
z2 − α z

z2 − (α + δ) z + (αδ − βγ )

= 1 + δ z − (αδ −β γ )
z2 − (α + δ) z +(αδ − βγ )

= 1 + r cosθz − r2

z2 − 2 rcosθz + r2 ,  and the noise transfer function from the

noise sources e3[n] and e4[n]  to the output is given by

G2(z) =
Y(z)

E3 (z) E1 (z)=E2 (z )=0

=
γ z−1

1 − (α + δ) z−1 + (αδ − βγ ) z−2 =
γ z

z2 − (α + δ) z + (α δ − β γ )

=
−r sinθ z

z2 − 2 r cosθ z + r2 .
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The output roundoff noise variance due to each of the noise sources e1[n] and e2[n]  is

σ1
2 =1 + (r2 cos2 θ + r 4)(1− r4 )− 2(−r 3 cosθ + r3 cosθ⋅ r2 )(−2rcosθ)

(1 − r 4 )2 + 2 r 2(4 r 2 cos2 θ) −(1 + r 4)(4r2 cos2 θ)

= 1 + r 2(1 + r2 )(r2 + cos2 θ) − 4 r 4 cos2 θ
(1− r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] ,  and the output roundoff noise variance due to each of

the noise sources e3[n] and e4[n]  is σ2
2 = r2(1 + r 2) sin2 θ

(1− r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] .   Hence, the total

roundoff noise variance at the output is

σo
2 = 2 (σ1

2 + σ 2
2) = 2 1+ r2 (1 + r 2)(r 2 + cos2 θ)− 4 r4 cos2 θ

(1 − r 2) (1 + r2 )2 − 4 r 2 cos2 θ[ ] + r2 (1+ r2 )sin2 θ
(1 − r 2) (1 + r2 )2 − 4 r2 cos2 θ[ ]

 

 

 
  

 

 

 
  
.

(b)  Quantization of products after addition

Here, the total roundoff noise variance at the output is

σo
2 = σ1

2 + σ2
2 = 1 + r 2(1 + r2 )(r2 + cos2 θ) − 4 r 4 cos2 θ

(1− r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] + r2(1 + r 2) sin2 θ
(1 − r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] .

9.19  (a)  Quantization of products before addition

The noise model of the Kingsbury structure is shown below:

x[n]
u[n] v[n]

y[n]

e1[n] e2[n]

e3[n]

− k1

k1 k2z−1

z−1

Analysis yields U(z) = k1Y(z) + E1(z),  V(z) = 1
1− z−1 U(z)+ k2Y(z)+ E 2(z),  and

Y(z) = −k1V(z) + E3(z)[ ] z−1

1 − z−1 = −
k1z

−1

1 − z−1 V(z) +
z−1

1 − z−1 E3(z).  Eliminating U(z) and V(z)

from these equations we arrive at

1 − 2 − k1(k1 + k2 )[ ]z−1 + (1 − k1k 2)z−2

(1 − z−1)2 Y(z) = −
k1z

−1

(1 − z−1)2 E1(z) −
k1z

−1

1 − z−1 E 2(z) +
z−1

1 − z−1 E3(z).

Hence, the noise transfer function from the noise source e1[n] to the output is given by

G1(z) =
Y(z)

E1(z) E2 (z)=E3 (z)=0

=
− k1z−1

1 − 2 − k1(k1 + k2 )[ ]z−1 + (1 − k1k2 )z−2 =
− k1z

z2 − 2 r cosθ z + r2 .  Its

corresponding output noise variance is thus given by
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σ1
2 =

k1
2 (1 − r 4)

(1 − r 4)2 + 2 r 2(−2 r cosθ)2 − (1 + r4 )(−2 r cosθ)2 =
k1

2(1 − r 2 )(1 + r 2)

(1 − r2 )2(1 + r 2 )2 − 4 r2 cos2 θ(1 − r2 )2

=
k1

2(1 + r 2)

(1 − r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] .

The noise transfer function from the noise source e2[n]  to the output is given by

G2(z) =
Y(z)

E 2(z) E1(z)=E3 (z )=0

=
− k1z

−1(1 − z−1)

1 − 2 − k1(k1 + k2 )[ ]z−1 + (1 − k1k2 )z−2 =
− k1z + k

z2 − 2 rcosθz + r 2 .

Its corresponding output noise variance is thus given by σ2
2 =

2 k1
2 (1 + r2 )

(1 − r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] .

Finally, the noise transfer function from the noise source e3[n] to the output is given by

G3(z) =
Y(z)

E3(z) E1(z)=E2 (z)=0

=
z−1(1 − z−1)

1 − 2 − k1(k1 + k2 )[ ]z−1 + (1 − k1k2 )z−2 =
z −1

z2 − 2 r cosθz + r2   Its

corresponding output noise variance is thus given by  σ3
2 =

2 (1 + r2 )

(1 − r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] .

Hence, the total normalized output noise variance due to product roundoff before (after)

summation is given by σo
2 = σ1

2 + σ2
2 + σ3

2 =
3k1

2 + 2( ) (1 + r2 )

(1 − r2 ) (1 + r2 )2 − 4 r2 cos2 θ[ ] .

9.20   Let e[n] be a noise source due to product roundoff inside H(z) with an associated noise 
transfer function Ge(z)  to the output of H(z).  Then the normalized noise power at the output 

of the cascade structrure due to e[n] is given by σe,n
2 = 1

2πj
Ge(z)A2(z)Ge(z−1)A2 (z−1)

C
∫ z−1dz  

= 1
2πj

Ge(z)Ge(z−1)

C
∫ z−1dz  since A2(z)A2 (z−1) =1.

Assuming H(z) is realized in a cascade form with the lowest product roundoff noise power 

σ h,n
2 , the normalized noise power at the output of the cascade due to product roundoff in 

H(z) still remains σ h,n
2 .  From the solution of Problem 9.13, we note that the lowest 

roundoff noise power is σ h,n
2 = 45.366  for cascade form #2.  Next, from the solution of 

Problem 9.17 we note that the normalized output noise power due to noise sources in A2(z)  is 

σa,n
2 = 4

1 − d2
.  Substituting d2 = 0.8  we get σa,n

2 = 4
1 − 0.8

= 20.   Hence total output noise 

variance of the cascade is given by σo
2 = σ h,n

2 + σa,n
2 = 45.366 + 20 = 65.366 .

9.21   The noise model for the structure is as shown below
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z −1 z −1

0.4 − 0.5

e1[n] e2[n]
The noise transfer function from e1[n] to the output is

G1(z) = 1
(1− 0.4z−1)(1 + 0.5z−1)

= 1+ −27.778
z + 0.5

+ 17.778
z − 0.4

.   Thus, the normalized noise power at the

output due to e1[n] is σ1
2 =1 + −0.27778( )2

1 − (−0.5)2 + 0.17778( )2
1− (0.4)2 + 2 ×

–0.27778( )× 0.17778( )
1 −(−0.5)(0.4)

= 1.0582.

The noise transfer function from e2[n]  to the output is G2(z) = 1
1+ 0.5z−1 = 1 + −0.5

z + 0.5
.

Thus, the normalized noise power at the output due to e2[n]  is σ2
2 =1 + −0.5( )2

1 − −0.5( )2 = 1.3333.

Therefore, the total normalized noise at the output = 1.0582 + 1.3333 = 2.3915.

For a 9-bit signed two's-complement number representation, the quantization level

δ = 2−8 = 0.0039062.   Hence, the total output noise power due to product roundoff is

σo
2 = δ2

12
(2.3915) = 3.0409 ×10−6.

9.22  The unscaled structure is shown below.

z−1

0.5 − 0.3

F1 (z)

X(z) Y(z)

Now, F1(z) = 1
1 − 0.5 z−1 =1 + 0.5

z − 0.5
.     Using Table 9.4 we obtain F1 2

2
= 1+ (0.5)2

1− (0.5)2 = 1.3333.

 Next, H(z) = 1− 0.3z−1

1− 0.5z−1 = z − 0.3
z – 0.5

=1 + 0.2
z – 0.5

.  Using Table 9.4 we obtain

H 2
2 = 1 + (0.2)2

1 − (0.5)2 = 1.0533.

From Eq. (9.129a), F1 2
= α1 =1.1547,  and from Eq. (9.129b),

H 2 = α2 = 1.0533 = 1.0263.
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The scaled structure is as shown below, where b 01 = β1  and b 11 = −0.3β1.   From Eqs. (9.130)

and (9.133a), K = β0K = β0 = 1
α1

= 0.86603 , and from Eq. (9.133b), β1 =
α1

α2
=

1.1547

1.0263
= 1.1251.

Therefore, b 01 = β1 =1.1251,  and b 11 = − 0.3β1 = − 0.3375.

z−1

0.5

K b 01

b 11

9.23  The unscaled structure is shown below.

x[n] y[n]

z−1

z−1

–0.6

–0.4

0.3

1.5

F1(z)

Here, F1(z) = 1
1 + 0.6 z−1 + 0.4z−2 = z2

z2 + 0.6 z + 0.4
=1 − 0.6z + 0.4

z2 + 0.6z + 0.4
.  Using Table 9.4, we

get F1 2

2
= 1+ [0.62 + 0.42][1− 0.42]− 2 × (1− 0.4) × 0.6 × 0.4 × 0.8

[1 − 0.42 ]2 + 2 × 0.4 × (0.6)2 −[1 + (0.4)2 ]× (0.6)2 =1.4583 .

Next, we note H(z) = 1 + 0.3z−1 + 1.5z−2

1+ 0.6 z−1 + 0.4 z−2 = z2 + 0.3z + 1.5
z2 + 0.6 z + 0.4

= 1 + − 0.3z −1.1
z2 + 0.6 z + 0.4

.

Using Table 9.4 we then get

H 2
2 = 1 + [0.32 + 1.12 ][1 − 0.42 ]− 2 × 0.6 × 0.3 ×(−1.1) ×(1 − 0.4)

[1 − 0.42 ]2 + 2 × 0.4 × (0.6)2 −[1 + 0.42 ]× (0.6)2 = 3.3083.

From Eq. (9.129a), F1 2
= α1 = 1.4583 , and H 2 = α2 = 3.3083.   Hence, from

Eq. (9.133a), β0 = 1

α1
= 1

1.4583
= 0.8281,  and from Eq. (9.133b),

β1 =
α1
α2

= 1.4583
3.3083

= 0.6639.

The scaled structure is as shown below, where K = β0K = β0 = 0.8281,

b 01 = (1)(β1) = 0.6639,  b 11 = (0.3)(β1) = 0.1992,  and b 21 = (1.5)(β1) = 0.9959.
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y[n]

z−1

z−1

–0.6

–0.4

x[n]
K b 01

b 11

b 21

9.24  H(z) = 3 + 3
1+ 0.7z−1 + −2

1 − 0.9 z−1 .  The unscaled structure is shown below:

F1(z)

F2 (z)

x[n] y[n]

z− 1

z−1

– 0.7

0.9

C = 3

A = 3

B = – 2

Note that F1(z) = 3
1 + 0.7 z−1 = 3 + −2.1

z + 0.7
.   Hence, using Table 9.4 we get

F1 2
2 = 9 +

(2.1)2

1 − (0.7)2 =17.6471.   Likewise, F2(z) = −2
1− 0.9z−1 = −2 + −1.8

z − 0.9
.   Hence, using Table

9.4 we get F2 2
2 = 4 +

(1.8)2

1 − (0.9)2
= 21.0526.   Also,

H(z) = 3 + 3 z
z + 0.7

+ −2 z
z − 0.9

= 4 + −2.1
z + 0.7

+ −1.8
z − 0.9

.   Hence, using Table 9.4 we get

H 2
2 = 42 +

(−2.1)2

1 − (−0.7)2 +
(−1.8)2

1 − 0.92 + 2
(−2.1)(−1.8)

1 − (−0.7)(0.9)
= 46.338.   Using Progam 9_4 we get

46.338.

Denote  γ 0 = H 2 = 46.338 = 6.8072,   γ 1 = F1 2 = 17.6471 = 4.2008,

γ 2 = F2 2 = 21.0526 = 4.5883,

Hence, A =
A

γ 1
=

3

4.2008
= 0.71415,  B =

B

γ1
=

−2

4.5883
= − 0.43589,  C =

C

γ 0
=

3

6.8072
= 0.44071,

K1 =
γ 1

γ 0
=

4.2008

6.8072
= 0.61711,  K2 =

γ 2

γ 0
=

4.5883

6.8072
= 0.67404.
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The scaled structure is shown below:

x[n] y[n]

z− 1

z− 1

– 0.7

0.9

K 2 = 0.67404

K1 = 0.61711

C = 0.44071

B = −0.43589

A = 0.71415

The noise model for the above structure is shown below:

x[n] y[n]

z−1

z−1

– 0.7

0.9

0.71415

0.67404

0.61711

0.44071

− 0.43589

eC[n]

eA[n]

eB[n]

eα[n]

eβ[n]

eK1
[n]

eK2
[n]

The noise transfer function from the noise sources eA[n]  and eα[n]  is given by:

G1(z) =
0.61171

1 + 0.7z−1 = 0.61171 +
−0.4282

1 + 0.7 z−1 .   Hence, the normalized output noise variance due to

these two noise sources is given by σ1
2 = 2 (0.61171)2 +

(−0.4282)2

1 − (0.7)2

 

 
 

 

 
 = 1.4674.

Likewise, the noise transfer function from the noise sources eA[n]  and eα[n]  is given by:

G2(z) =
0.60664

1 − 0.9 z−1 = 0.60664 +
0.546

1 − 0.9z−1 .   Hence, the normalized output noise variance due to

these two noise sources is given by σ2
2 = 2 (0.60664)2 +

(0.546)2

1 − (−0.9)2

 

 
 

 

 
 = 3.8738.

The noise transfer function from the remaining three noise sources is G3(z) = 1.   Hence, the

normalized output noise variance due to these three noise sources is given by σ3
2 = 3.

Therefore, the total normalized output noise variance is

σo
2 = σ1

2 + σ2
2 + σ3

2 = 1.4674 + 3.8738+ 3 = 8.3412.

9.25   (a)  The scaled structure is shown below.  The value of the scaling constants is found below.
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  z
–1

  z
–1

k1

a1 a2

b2k3b1k2

k2
k3

Cascade Structure #1: H(z) = 1− 2 z−1

1+ 0.3z−1

 

 
  

 

 
  

1 + 3z−1

1− 0.4 z−1

 

 
  

 

 
  .    Here, a1 = − 0.3,  b1 = −2,  a2 = 0.4,

and b2 = 3.

 F1(z) = z−1

1 + 0.3 z−1 = 1
z + 0.3

.  Thus, using Program 9_4 we get F1 2

2
= 1.9089.   Hence,

γ 1 = F1 2
= 1.9089 = 1.0483.   F2(z) = 1 − 2 z−1

1+ 0.3z−1 ⋅ z−1

1 − 0.4 z−1 = z − 2
z2 − 0.1z − 0.12

.   Using Program

9_4 we get F2 2

2
= 4.6722.   Hence, γ 2 = F2 2

= 4.6722 = 2.1615.   Next,

H(z) = z2 + z − 6
z2 − 0.1z − 0.12

.   Using Program 9_4 we get H 2
2 = 36.271.   Hence,

γ 0 = H 2 = 36.271 = 6.0226.

The scaling multipliers are therefore given by

k1 = 1
γ 1

= 0.95393,   k2 =
γ1

γ 2
= 0.48499,   k3 =

γ 2

γ 0
= 0.3589.  b1k2 = −0.96998,  and

b2 k3 =1.0767.

The noise at the output due to the scaling constant k1  and multiplier a1 have a variance

σ1
2 = γ 1

2 =1.9089.

Noise at the output due to a2 , k2  and b1k2  have variance σ2
2  which is calculated below.

The noise transfer function for these noise sources is

G2(z) = 0.3589 +1.0767z−1

1 − 0.4z−1 = 0.3589z + 1.0767
z − 0.4

.  Using Program 9_4 we get  σ2
2 =1.1654. .

Hence the total noise power (variance) at the output = 2× 1.9089 + 3× 1.1654 + 2 = 9.314.

In case quantization is carried out after addition, then the total noise power at the output  =
1.9089 + 1.1654 + 1 = 4.0743.

Cascade Structure #2: H(z) = 1 + 3z−1

1+ 0.3z−1

 

 
  

 

 
  

1 − 2 z−1

1− 0.4 z−1

 

 
  

 

 
  .  Here a1 = − 0.3,  b1 = 3,  a2 = 0.4,  and

b2 = − 2.
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F1(z) = z−1

1 + 0.3 z−1 = 1
z + 0.3

.  Thus, using Program 9_4 we get F1 2

2
= 1.9089.   Hence, 

γ 1 = F1 2
= 1.9089 = 1.0483.   F2(z) = 1 +3 z−1

1+ 0.3z−1 ⋅ z−1

1 − 0.4 z−1 = z +3
z2 − 0.1z − 0.12

.   Using

Program 9_4 we get F2 2

2
= 10.98.   Hence, γ 2 = F2 2

= 10.98 = 3.3136.   Next,

H(z) = z2 + z − 6
z2 − 0.1z − 0.12

.   Using Program 9_4 we get H 2
2 = 36.271.   Hence,

γ 0 = H 2 = 36.271 = 6.0226.

The scaling multipliers are therefore given by

k1 = 1
γ 1

= 0.95393,   k2 =
γ1

γ 2
= 0.31636,   k3 =

γ 2

γ 0
= 0.55019.   b1k2 = 0.94908,  and

b2 k3 = −1.1004.

The noise at the output due to the scaling constant k1  and multiplier a1 have a variance

σ1
2 = γ 1

2 =1.9089.

Noise at the output due to a2 , k2  and b1k2  have variance σ2
2  which is calculated below.

The noise transfer function for these noise sources is

G2(z) = 0.55019 −1.1004z−1

1 − 0.4 z−1 = 0.55019 z −1.1004
z − 0.4

.  Using Program 9_4 we get  σ2
2 =1.2253.

Hence the total noise power (variance) at the output = 2× 1.9089 + 3× 1.2253 + 2 = 9.4937.

In case quantization is carried out after addition, then the total noise power at the output  =
1.9089 + 1.2253 + 1 = 4.1342.

Cascade Structure #3: H(z) = 1 + 3z−1

1− 0.4 z−1

 

 
  

 

 
  

1 − 2 z−1

1 + 0.3 z−1

 

 
  

 

 
  .  Here a1 = 0.4,  b1 = 3,  a2 = −0.3,  and

b2 = − 2.

F1(z) = z−1

1 − 0.4 z−1 = 1
z − 0.4

.  Thus, using Program 9_4 we get F1 2

2
= 1.1905.   Hence, 

γ 1 = F1 2
= 1.1905 = 1.0911.   F2(z) = 1 + 3z−1

1− 0.4 z−1 ⋅ z−1

1 + 0.3z−1 = z +3
z2 − 0.1z − 0.12

.   Using

Program 9_4 we get F2 2

2
= 10.98.   Hence, γ 2 = F2 2

= 10.98 = 3.3136.   Next,

H(z) = z2 + z − 6
z2 − 0.1z − 0.12

.   Using Program 9_4 we get H 2
2 = 36.271.   Hence,

γ 0 = H 2 = 36.271 = 6.0226.

The scaling multipliers are therefore given by

k1 = 1
γ 1

= 0.91652,   k2 =
γ1

γ 2
= 0.32928,   k3 =

γ 2

γ 0
= 0.55019.   b1k2 = 0.98784,  and

b2 k3 = −1.1004.
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The noise at the output due to the scaling constant k1  and multiplier a1 have a variance

σ1
2 = γ 1

2 =1.1905.

Noise at the output due to a2 , k2  and b1k2  have variance σ2
2  which is calculated below.

The noise transfer function for these noise sources is

G2(z) = 0.55019 −1.1004z−1

1+ 0.3z−1 = 0.55019 z −1.1004
z + 0.3

.  Using Program 9_4 we get  σ2
2 = 2.0625.

Hence the total noise power (variance) at the output = 2× 1.1905 + 3× 2.0625 + 2 = 10.568.

In case quantization is carried out after addition, then the total noise power at the output  =
1.1905 + 2.0625 + 1 = 4.253.

Cascade Structure #4: H(z) = 1− 2 z−1

1− 0.4 z−1

 

 
  

 

 
  

1 + 3 z−1

1 + 0.3 z−1

 

 
  

 

 
  .  Here a1 = 0.4,  b1 = −2,  a2 = −0.3,  and

b2 = 3.

F1(z) = z−1

1 − 0.4 z−1 = 1
z − 0.4

.  Thus, using Program 9_4 we get F1 2

2
= 1.1905.   Hence, 

γ 1 = F1 2
= 1.1905 = 1.0911.   F2(z) = 1− 2 z−1

1− 0.4 z−1 ⋅ z−1

1 + 0.3z−1 = z − 2
z2 − 0.1z − 0.12

.   Using

Program 9_4 we get F2 2

2
= 4.6722.   Hence, γ 2 = F2 2

= 4.6722 = 2.1615.   Next,

H(z) = z2 + z − 6
z2 − 0.1z − 0.12

.   Using Program 9_4 we get H 2
2 = 36.271.   Hence,

γ 0 = H 2 = 36.271 = 6.0226.

The scaling multipliers are therefore given by

k1 = 1
γ 1

= 0.91651,   k2 =
γ1

γ 2
= 0.50479,   k3 =

γ 2

γ 0
= 0.3589.  b1k2 = −1.0096,  and b2 k3 =1.0767.

The noise at the output due to the scaling constant k1  and multiplier a1 have a variance

σ1
2 = γ 1

2 =1.1905.

Noise at the output due to a2 , k2  and b1k2  have variance σ2
2  which is calculated below.

The noise transfer function for these noise sources is

G2(z) = 0.3589 +1.0767z−1

1 − 0.4z−1 = 0.3589z + 1.0767
z − 0.4

.  Using Program 9_4 we get  σ2
2 =1.9015.

Hence the total noise power (variance) at the output = 2× 1.1905 + 3× 1,9015 + 2 = 10.085.

In case quantization is carried out after addition, then the total noise power at the output  =
1.1905 + 1.9105 + 1 = 4.092.

9.26  Parallel form I realization:  The corresponding structure is obtained from a partial fraction 

expansion of H(z) in z–1 the form:  H(z) = 50 + −19.429
1 − 0.4 z−1 + −29.571

1 + 0.3z−1 ,  and is shown below:
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−19.429

− 29.571

F1 (z)

F2( z)

z− 1

z −1

50

0.4

− 0.3

 Here the scaling transfer function F1(z) for the middle branch is given by 

F1(z) = −19.429 z
z − 0.4

.   Hence using Program 9_4 we get, F1 2

2
= 449.39.   This implies 

γ 1 = F1 2
= 449.39 = 21.199.   Similarly, the scaling transfer function for the bottom branch 

is given by F2(z) = – 29.571z
z + 0.3

.   Hence using Program 9_4 we get, F2 2

2
= 960.93.   This 

implies γ 2 = F2 2
= 960.93 = 30.999.    Finally using Program 9_4 we get, H 2

2 = 36.271.   

Hence, γ 0 = H 2 = 36.271 = 6.0226.    The scaled structure with noise sources is shown 
below:

z−1

z−1

0.4

− 0.3

A 

B 

C 

k1

k2

where A = −19.429
γ 1

= − 0.91651, B = −29.571
γ 2

=− 0.95393,  C = 50
γ 0

=8.3021, k1 =
γ1

γ 0
=3.5199,  

and k2 =
γ 2

γ 0
= 5.1471.

The noise transfer function from each of the noise sources eC[n], ek1[n], and ek2[n] is 

G3(z) = 1.   The corresponding output noise variance is σ3
2 =1.   The noise transfer function 

from each of the noise sources eA[n] and ea1[n] is G1(z) =
k1

1 − 0.4 z−1 = 3.5199z
z − 0.4

.    Using 

Program 9_4 we get the corresponding output noise variance as σ1
2 =14.75.    Likewise, the 

noise transfer function from each of the noise sources eB[n] and ea2[n] is 
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G2(z) =
k2

1+ 0.3z−1 = 5.1471z
z + 0.3

.    Using Program 9_4 we get the corresponding output noise 

variance as σ2
2 = 29.113.   Total noise variance at the output is therefore 

σo
2 = 2 σ1

2 + 2 σ2
2 +3 σ3

2 = 2(14.75) + 2 (29.113) + 3 = 90.726.

Parallel form II realization:  The corresponding unscaled structure is obtained from a partial 

fraction expansion of H(z) in z in the form:  H(z) = 1+ −7.7714
z − 0.4

+ 8.8714
z + 0.3

.  and is shown 

below.

z−1

z−1

0.4

− 0.3

F1(z)

F2(z)
8.8714

− 7.7714

Here the scaling transfer function F1(z) for the middle branch is given by F1(z) = –
7.7714
z − 0.4

.   

Hence using Program 9_4 we get, F1 2

2
= 71.898.   This implies γ 1 = F1 2

= 71.898 = 8.4793.   

Similarly, the scaling transfer function for the bottom branch is given by F2(z) = 8.8714
z + 0.3

.   

Hence using Program 9_4 we get, F2 2

2
= 86.485.   Thus, γ 2 = F2 2

= 86.485 = 9.2998.   

Finally using Program 9_4 we get, H 2
2 = 36.271.   Hence, γ 0 = H 2 = 36.271 = 6.0226.    

The scaled structure with noise sources is shown below:

A 

B 

C 

k1

k2

z−1

z−1

0.4

− 0.3

where A = − 7.7714
γ1

= − 0.91651,  B = 8.8714
γ 2

= 0.95394,  C = 1
γ 0

= 0.16604,  k1 =
γ1

γ 0
=1.4079,

k2 =
γ 2

γ 0
=1.5441.
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The noise transfer function from each of the noise sources eC[n], ek1[n], and ek2[n] is 

G3(z) = 1.   The corresponding output noise variance is σ3
2 =1.   The noise transfer function 

from each of the noise sources eA[n] and ea1[n] is G1(z) =
k1 z−1

1 − 0.4 z−1 = 1.4079
z − 0.4

.    Using 

Program 9_4 we get the corresponding output noise variance as σ1
2 = 2.3597.    Likewise, the 

noise transfer function from each of the noise sources eB[n] and ea2[n] is 

G2(z) =
k 2 z−1

1+ 0.3z−1 = 1.5441
z + 0.3

.    Using Program 9_4 we get the corresponding output noise 

variance as σ2
2 = 2.62.   Total noise variance at the output is therefore 

σo
2 = 2 σ1

2 + 2 σ2
2 +3 σ3

2 = 2(2.3597)+ 2(2.62) + 3 = 12.959.

For quantization of products after addition, the total output noise variance in the case of

Parallel form I structure (after scaling) is σo
2 = σ1

2 + σ2
2 + σ3

2 = 14.75 + 29.113 +1 = 44.863.  and 
total output noise variance in the case of Parallel form II structure (after scaling) is 

σo
2 = σ1

2 + σ2
2 + σ3

2 = 2.3597 + 2.62 +1 = 5.9797.   In either case, Parallel form II structure (after 
scaling) has the lowest roundoff noise variance.

9.27  H(z) =
2 + 2 z−1 − 1.5 z−2

1 + 0.5 z−1 + 0.06z−2 =
2 z2 + 2 z − 1.5

z2 + 0.5 + 0.06
= 2

z2 + z − 0.75

z2 + 0.5 + 0.06

 

 
 

 

 
 ..

(a) Direct Form:   The unscaled structure is shown below:

y[n]

z
−1

x[n]

z
−1

2
F1(z)

–0.5

–0.06 –0.75

Scaling:  F1(z) =
2

1 + 0.5z−1 + 0.06 z−2 =
2 z2

z2 + 0.5 + 0.06
.   Using Program 9_4 we get,

F1 2
2 = 5.1633.   This implies, β0 =

1

F1 2

=
1

5.1633
= 0.44009.   The other scaling transfer

function is H(z) = 2 z2 + 2 z −1.5
z2 + 0.5 + 0.06

.  Using Program 9_4 we get, H 2
2 = 10.6512.   This implies

β1 =
F1 2

H 2
=

5.1633

10.6512
= 0.69625.
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The scaling multipliers are therefore K = β0K = 0.44009 × 2 = 0.88018,

b 01 = β1 = 0.69625, b 11 =1 ×β1 = 0.69625,  and b 21 = (−0.75)β1 = −0.52219.

The scaled structure with the noise sources is shown below:

K b 01

b 11

b 21

y[n]

z
−1

x[n]

z
−1

–0.5

–0.06

e1[n] + e2[ n] + e3[n] e4[n] + e5[n] + e6[n]

G1(z)
G4(z)

Product roundoff noise analysis, quantization before addition:

G1(z) = G2(z) = G3(z) =
b 01 z2 + b 11z + b 21

z2 + 0.5z + 0.06
.  Using Program 9_4 we get,

σ1,n
2 = σ2,n

2 = σ3,n
2 = 1.2908.  G4(z) = G5(z) = G6(z) = 1.   This implies, σ 4,n

2 = σ5,n
2 = σ 6,n

2 = 1.

Hence, total normalized output noise power is σ n
2 = 3 ×1.2908 + 3 ×1 = 6.8725.

Product roundoff noise analysis, quantization after addition:

Here,
 
 total normalized output noise power is σ n

2 = 1.2908 +1 = 2.2908.

(b) Cascade Structure #1:  H(z) =
2(1 − 0.5z−1)(1 +1.5z−1)

(1 + 0.2 z−1)(1 + 0.3z−1 )
.  The unscaled structure is shown

below:

F1(z)
F2(z)

2

1.5
z−1 z−1

− 0.3− 0.5− 0.2

Scaling:  F1(z) = 2
1 + 0.2 z−1 .   Using Program 9_4 we get F1 2

2
= 4.1667.   This implies

β0 = 1
F 2

= 1
4.1667

= 0.4899.   The second scaling transfer function is
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F2(z) = 2(1 − 0.5z−1)
(1 + 0.2 z−1)(1 + 0.3 z−1)

= 2 z2 − z
z2 + 0.5 z + 0.06

.   Using Program 9_4 we get, F2 2

2
= 8.8896.

This implies β1 =
F1 2

F2 2

= 4.1667
8.8896

= 0.68463.   The third scaling transfer function is

H(z) = 2 z2 + 2 z −1.5
z2 + 0.5 + 0.06

.  Using Program 9_4 we get, H 2
2 = 10.6512.   This implies

β2 =
F2 2

H 2
= 8.8896

10.6512
= 0.91357.

The scaling multipliers are therefore K1 = β0K = 0.4899 × 2 = 0.9798,  b 01 = β1 = 0.68463,

b 11 = −0.5 ×β1 = −0.34231,  b 02 = β2 = 0.91357,  and b 12 = 1.5 ×β2 =1.3704.

The scaled structure with the noise sources is shown below:

y[n]

z
−1

x[n]

z
−1

–0.2 –0.3

K1

b 01

b 11

b 02

b 12

e1[n ] e3[n ] e6 [n]

e2 [n] e4 [n ] e5[n] e6 [n]

Product roundoff noise analysis, quantization before addition:

G1(z) = G2 (z) =
(0.68463 − 0.34231z−1)(0.91357 + 1.3704 z−1)

(1 + 0.2 z−1)(1 + 0.3z−1)
=

0.6255z2 + 0.6255 z − 0.4691

z2 + 0.5 z + 0.06
.

Using Program 9_4 we get σ1,n
2 = σ2,n

2 = 1.0417.

G3(z) = G4 (z) =
0.91357 +1.3704z−1

1 + 0.3z−1 =
0.91357z + 1.3704

z + 0.3
.   Using Program 9_4 we get

σ3,n
2 = σ4,n

2 = 2.1553.    Finally, G5(z) = G6(z) =1.   This implies, σ5,n
2 = σ6,n

2 =1.

Hence, total normalized output noise power is σ n
2 = 2 ×1.0417 + 2 × 2.1553 + 2 × 1 = 8.3940.

Product roundoff noise analysis, quantization after addition:

Here,
 
 total normalized output noise power is σ n

2 = 1.0417 + 2.1553 + 1 = 4.1970.

(c) Cascade Structure #2:  H(z) =
2(1 + 1.5z−1)(1 − 0.5z−1)

(1 + 0.2 z−1)(1 + 0.3z−1 )
.  The unscaled structure is shown

below:
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F1(z)
F2(z)

2

1.5
z−1 z −1

− 0.3 − 0.5− 0.2

Scaling:  F1(z) = 2
1 + 0.2 z−1 .   Using Program 9_4 we get F1 2

2
= 4.1667.   This implies

β0 = 1
F 2

= 1
4.1667

= 0.4899.   The second scaling transfer function is

F2(z) =
2(1 + 1.5 z−1)

(1 + 0.2 z−1)(1 + 0.3 z−1)
=

2 z2 + 3z

z2 + 0.5 z + 0.06
.   Using Program 9_4 we get, F2 2

2 = 9.4741.

This implies β1 =
F1 2

F2 2

=
4.1667

9.4741
= 0.6632.   The third scaling transfer function is

H(z) = 2 z2 + 2 z −1.5
z2 + 0.5 + 0.06

.  Using Program 9_4 we get, H 2
2 = 10.6512.   This implies

β2 =
F2 2

H 2
=

9.4741

10.6512
= 0.9431.

The scaling multipliers are therefore K1 = β0K = 0.4899 × 2 = 0.9798,  b 01 = β1 = 0.6632,

b 11 =1.5 ×β1 = 0.9948,  b 02 = β2 = 0.9431,  and b 12 = −0.5 ×β2 = −0.4716.

The scaled structure with the noise sources is shown below:

y[n]

z
−1

x[n]

z
−1

–0.2 –0.3

K1

b 01

b 11

b 02

b 12

e1[n ] e3[n] e6 [n]

e2 [n] e4[n ] e5[n] e6 [n]

Product roundoff noise analysis, quantization before addition:

G1(z) = G2 (z) =
(0.6632 + 0.9948z−1 )(0.9431 − 0.4716z−1)

(1 + 0.2 z−1)(1 + 0.3 z−1)
  =

0.6255z2 + 0.6255z − 0.4691

z2 + 0.5 z + 0.06
.

Using Program 9_4 we get σ1,n
2 = σ2,n

2 = 1.0417.
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G3(z) = G4 (z) =
0.9431− 0.4716 z−1

1 + 0.3z−1 =
0.9431z − 0.4716

z + 0.3
.   Using Program 9_4 we get

σ3,n
2 = σ4,n

2 = 1.5151.    Finally, G5(z) = G6(z) =1.   This implies, σ5,n
2 = σ6,n

2 =1.

Hence, total normalized output noise power is σ n
2 = 2 × 0.1.0417 + 2 ×1.5151+ 2 × 1 = 7.1136.

Product roundoff noise analysis, quantization after addition:

Here,
 
 total normalized output noise power is σ n

2 = 0.1.0417 + 1.5151 + 1 = 3.5568.

Hence, the scaled direct form realization has the smallest roundoff noise in both cases.

9.28   The noise model for the allpass structure is shown below

x[n]   z
−1

v[n]
w[n]

–1

r[n]

e[n]
d i

y[n]

Analysis yields W(z) = E(z) + diV(z), R(z) = X(z) – W(z), V(z) = X(z) + z–1R(z), and
Y(z) = W(z) + z–1R(z).

To determine the noise transfer function we set X(z) = 0 in the above equations.  This leads to
R(z) = – W(z), V(z) = z–1R(z) = – z–1W(z), and hence W(z) = E(z) – diz

–1W(z) or
E(z) = (1 + diz

–1)W(z).  As a result, Y(z) = W(z) – z–1W(z) =  (1 – z–1)W(z).  Consequently,
the noise transfer function is given by

G(z) = Y(z)
E(z)

= 1– z–1

1 + diz
–1 = z –1

z + d i
=1 +

– (1 + di )

z + di
.

Thus σe
2 =1 +

(1+ d i)
2

1− di
2 = 

2
1 − di

.

(b) Let G1(z) be the noise transfer function for d1, G2(z) be the noise transfer function for d2 
and G3(z) be the noise transfer function for d3 then

G1(z) = 
z −1

z + d1
 A2(z), G2(z) = 

z −1
z + d 2

  and G3(z) = 
z −1

z + d3
. From the results of part (a) it 

follows that the noise variances due to d1, d2 and d3 are given by

σ k
2 = 2

1− dk
  for k = 1, 2, 3. Hence the total noise power at the output is given by

σ2 = 2
1 − d1

+ 2
1− d 2

+ 2
1 − d3

.
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9.29  Let the total noise power at the output of G(z) due to product-off  be given by σG
2 .   Asuming

a total of L multipliers in the realization of G(z) we get σG
2  = 

  

kl
1

2π
Gl (e jω )

2
dω

0

2π

∫
 

 

 
  

 

 

 
  l =1

L

∑  where

  G l (z)  denotes the noise transfer function due to   l -th noise source in G(z).  Now if each delay is

replaced by two delays then each of the noise transfer function becomes   G l (e
2jω) . Thus the

total noise power at the output due to noise sources in G(z2) is given by ˆ σ G
2  =

  

kl
1

2π
Gl (e2jω)

2
dω

0

2π

∫
 

 

 
  

 

 

 
  l =1

L

∑ .   Replacing ω  by ˆ ω / 2  in the integral we get ˆ σ G
2  =

  

kl
1

2π
Gl (e j ˆ ω )

2 1

2( )d ˆ ω 
0

4π

∫
 

 

 
  

 

 

 
  l =1

L

∑  

  

= 1

2
kl

1
2π

G l (e j ˆ ω )
2
d ˆ ω 

0

4π

∫
 

 

 
  

 

 

 
  l =1

L

∑  =  σG
2 .   Since

  

1
2π

G l (e jω)
2

A(e jω)
2

dω
0

2π

∫ = 1
2π

Gl (e jω )
2
dω

0

2π

∫ , the total noise power at the output of the

cascade is still equal to σ0
2 .

9.30 For the first factor in the numerator there are R possible choices of factors. Once this factor has
been choosen, there are R – 1 choices for the next factor and continuing further we get that the
total number of possible ways in which the factors in the numerator can be generated equal to

  R(R −1)(R − 2)L2 ×1 = R!.   Similarly the total number of ways in which the factors in the
denominator can be generated = R!.  Since the numerator and denominator are generated
independent of each other hence the total number of possible realizations are N = (R!)(R!) =
(R!)2 .

9.31 (a) First we pair the poles closest to the unit circle with their nearest zeros resulting in the

second-order section Ha(z) = 
z2 + 0.2z + 0.9
z2 + 0.1z + 0.8

.  Next, the poles that are closest to the poles of

Ha(z) are matched with their nearest zeros resulting in the second-order section Hb(z) =

z2 + 0.3z + 0.5
z2 + 0.2z + 0.4

.  Finally, the remaining poles and zeros are matched yielding the second-order

section Hc(z) =  
z2 + 0.8z + 0.2
z2 + 0.6z + 0.3

.

For odering the sections to yield the smallest peak output noise due to product round-off under
an L2-scaling rule, the sections should be placed from most peaked to least peaked as shown
below.

Ha (z) H b(z) Hc (z)

For odering the sections to yield the smallest peak output noise power due to product round-off
under an L∞-scaling rule, the sections should be placed from least peaked to most peaked as
shown below.
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Ha (z)Hb (z)Hc (z)

(b) The poles closest to the unit circle is given by the denominator (z2 – 0.2z + 0.9), the next
closer pole is given by the factor (z + 0.9), followed by the factor (z2 + 0.4z + 0.7) and finally
the factor (z + 0.2).  Pairing these poles with their closest zeros we get the following pairings:

Ha(z) = 
z2 + 0.1z + 0.7
z2 − 0.2z + 0.9

, Hb(z) = 
z +1.1
z + 0.9

, Hc(z) = 
z2 + 0.5z + 0.6
z2 + 0.4z + 0.7

 and Hd(z) = 
z + 0.3
z + 0.2

.

For odering the sections to yield the smallest peak output noise due to product round-off under
an L2-scaling rule, the sections should be placed from most peaked to least peaked as shown
below.

Hc (z)Ha (z) Hb(z) Hd (z)

For odering the sections to yield the smallest peak output noise power due to product round-off
under an L∞-scaling rule, the sections should be placed from least peaked to most peaked as
shown below.

Hc (z) Ha (z)Hb (z)Hd (z)

9.32 SNR = 
σ x

2

σ0
2 . After scaling σ x  changes to Kσ x  where K is given by Eq. (9.150).

Therefore SNR = 
σ x

2 1− α( )2

σ 0
2 .

(i) For uniform density function σ x
2 = 1

2
x2dx

−1

1

∫ = 1
3

.

Thus SNR = 
1− α( )2

3σ 0
2 . With b = 12 σ0

2 = 
2−24

12
 = 4.967× 10–9 and α  = 0.95,

Hence SNRdB = 10 log10

1 − α( )2

3σ0
2

 

 

 
  

 

 

 
  

 = 52.24 dB.

(ii) For Gaussian input with σ x
2 = 1

9
.   Hence SNR = 

1− α( )2

9σ0
2 .  Again with b  = 12 and

α  = 0.95,  SNRdB = 10 log10

1 − α( )2

9σ0
2

 

 

 
  

 

 

 
  

 = 47.97 dB.

(iii) For a sinusoidal input of known frequency, i.e. x[n] = sin(ω 0n) .

In this case average power =σ x
2 = 1

2
.  Hence SNR =  

(1 − α )2σ x
2

σ 0
2  = 

(1 − α )2

2σ0
2 .

394



Therefore SNRdB = 10 log10
(1 − α )2

2σ0
2

 

 
 
 

 

 
 
 = 69.91 dB.

9.33 (a) HLP(z) =  
1

2
1 + A1(z){ } where A1(z) = −α + z−1

1 −αz−1 .

Hence HLP (e jω )
2

= 1 − α
2

 
  

 
  

2 2 1 + cos(ω)( )
1− 2α cos(ω)+ α2 .

Proving 
∂ HLP(e jω )

∂α
ω=0

 = 0 is equivalent to proving 
∂ HLP(e jω )

2

∂α
ω=0

 = 0. Now

∂ HLP(e jω )
2

∂α
 = − 1 − α

2
2(1+ cos(ω))

1 − 2αcos(ω) + α2 − 1 − α
2

 
  

 
  

2 2(1 + cos(ω))(−2 cos(ω)+ α)
1 − 2α cos(ω)+ α2 .

Thus, 
∂ HLP(e jω )

2

∂α
ω=0

 = −2
1 − α

+ 2
1 − α

= 0.

(b)  HHP(z) =  
1

2
1 − A1(z){ } where A1(z) = −α + z−1

1 −αz−1 .

Hence HHP (e jω)
2

= 1 + α
2

 
  

 
  

2 2(1 − cos(ω))
1− 2αcos(ω)+ α2 .

 Now  
∂ HHP(e jω )

2

∂α
 = − 1 + α

2
2(1− cos(ω))

1 − 2αcos(ω) + α2 − 1 + α
2

 
  

 
  

2 2(1− cos(ω))(−2 cos(ω)+ α)
1 − 2α cos(ω)+ α2 .

Thus, 
∂ HHP(e jω )

2

∂α
ω=π

= −2
1 + α

+ 2
1 + α

= 0.

9.34  (a) HBP(z) = 
1

2
1 − A2 (z){ }  where A2(z) = 

α − β(1 + α)z−1 + z−2

1 − β(1 + α)z−1 + αz−2 ,  with α  and β  being real.

Therefore, HBP(e jω )
2

=
1 − α

2

 
  

 
  

2 2(1 − cos(ω))
1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  .  Now,

∂ HBP(e jω)
2

∂α
 = 

−2
1 − α

 
  

 
  

1 − α
2

 
  

 
  

2 2(1 − cos(ω))
1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  

+ 1 −α
2

 
  

 
  

2 2(1 − cos(ω))
1 +β2(1 + α)2 + α2 + 2α cos(2ω) − 2β(1+ α)2 cos(ω)

 

 
  

 

 
  ×

                         
2β2(1 + α)+ 2α + 2 cos(2ω)− 4β(1 + α) cos(ω)

1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  .
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Using the fact β = cos(ω 0)  we get  
∂ HBP(e jω)

2

∂α
ω=ω0

= −2
1 − α

−
2β2 + 2α − 2 − 2αβ2( )

1 + α2 − 2α + 2αβ2 − β2 − α2β2

= −2
1 − α

+ 2
1 − α

= 0.

Similarly, 
∂ HBP(e jω)

2

∂β
 = 

1 − α
2

 
  

 
  

2 2(1 − cos(ω))
1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  ×

                        − 2β(1 + α)2 − 2(1+ α)2 cos(ω)
1 + β2(1 + α)2 + α2 + 2α cos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  .

Again using the fact that β = cos(ω 0)  it can be seen that 
∂ HBP(e jω)

2

∂β
ω=ω0

= 0.

(b) For bandstop filters  HBS(z) = 
1

2
1 + A2 (z){ }  where A2(z) is as given in (a). Thus

HBS(e jω )
2
 = 

1 + α
2

 
  

 
  

2 4β2 + 2 + 2 cos(2ω)− 8βcos(ω)
1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  .  Thus,

∂ HBS(e jω )
2

∂α
 = 1 + α

2

 
  

 
  

4β2 + 2 + 2 cos(2ω)− 8βcos(ω)
1 + β2(1 + α)2 + α2 + 2α cos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  

                        – 
1 + α

2

 
  

 
  

2 4β2 + 2 + 2 cos(2ω)− 8βcos(ω)
1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  × ×

                           
2(1 + α)β2 + 2α + 2 cos(2ω)− 4β(1 + α) cos(ω)

1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  .

Substituting β = cos(ω 0)  it can be seen that

∂ HBS(e jω )
2

∂α
ω=0

 = 2
1 − α

− 1 + α
2

 
  

 
  

2 2(1 + α)(β +1)2

(1+ α)2 (β +1)2

 

 
  

 

 
  = 0.

Similarly, 
∂ HBS(e jω )

2

∂α
ω=π

= 2
1 − α

 
  

 
  − 1 + α

2

 
  

 
  

2 2(1 + α)(β + 1)2

(1 + α)2(β + 1)2

 

 
  

 

 
  = 0.

Now, 
∂ HBS(e jω )

2

∂β
 = 1 + α

2

 
  

 
  

2 8β −8 cos(ω)
1 + β2(1 + α)2 + α2 + 2α cos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  

− 1 +α
2

 
  

 
  

2 4β2 + 2 + 2 cos(2ω) − 8β cos(ω)
1 +β2(1 + α)2 + α2 + 2α cos(2ω) − 2β(1+ α)2 cos(ω)

 

 
  

 

 
  ×

                             
(1+ α)2 2(β − cos(ω)

1 + β2 (1 + α)2 + α2 + 2αcos(2ω)− 2β(1 + α)2 cos(ω)

 

 
  

 

 
  .

Again substituting β = cos(ω 0)  it can be seen that
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∂ HBS(e jω )
2

∂β
ω=0

 = 0 and also 
∂ HBS(e jω )

2

∂β
ω=π

=0.

9.35 For a BR transfer function G(z) realized in a parallel allpass form,  its power-complementary

transfer funnction H(z) is also BR atisfying the condition G(e jω)
2

= 1 − H(e jω )
2
.   Let  ω = ωo

be a frequenncy where G(e jω)  is a maximum, i.e. G(e jωo ) = 1.  Then, it follows that

H(e jωo ) = 0.   From the power-complementary condition it follows that

2 G(e jω)
∂ G(e jω )

∂ω
= −2 H(e jω )

∂H(e jω)

∂ω
.   Therefore at ω = ωo ,

G(e jωo )
∂G(e jω)

∂ω
ω=ωo

= − H(e jωo )
∂ H(e jω)

∂ω
ω=ωo

,  or 
∂ G(e jω )

∂ω
ω=ωo

= 0  whether or not

∂ H(e jω )

∂ω
ω=ωo

= 0.   Hence, lowpassband sensitivity of G(z) does not necessarily imply low

stopband sensitivity of H(z).

9.36 Without error feedback

The transfer function H(z) of the structure without feedback is given by

H(z) = 1
1+ α1z

−1 + α1z
−1 = 1

1 − 2 r cosθz−1 + r2z−1 ,   where r = 1 – ε.

The corresponding impulse response h[n] is given by h[n] = rn sin(n +1)θ
sinθ

⋅µ[n].

To keep y[n] from overflowing we  must insert a multiplier of value  1
L

 at the input where

L = h[n]
n=0

∞

∑ .   From Eq. (9.163) we get 
1

(1 − r)2(1 − 2 rcosθ + r 2)
≤ L2 ≤ 16

π2(1 − r)2 sin2 θ
.   (24)

The quantization noise model for H(z) is as shown below:

  z
–1

  z
–1

x[n] y[n]

e[n]

2 r cosθ

– r
2

1
L
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The output noise power is given by σ n
2 = σ e

2 h[n]2

n=0

∞

∑ = 1 + r 2

1 − r 2 ⋅ 1
r 4 − 2 r2 cosθ+ 1

⋅σe
2

The output signal power, assuming an input signal of variance σ x
2  is given by

σ y
2 =

σ x
2

L2 h[n] 2

n=0

∞

∑ .   Hence, the SNR is given by SNR =
σy

2

σn
2 =

σx
2

L2σe
2 .   For a (b+1)-bit signed

 representation, σe
2 = 2−2b

12
.   Hence, SNR = S

N
=

12σ x
2

L2 2−2b .   Therefore, from the inequality of Eq.

 (24) we get  
2−2b

12 σx
2(1 − r)2 (1 − 2 r cosθ+ r2 )

≤ N
S

≤ 16 × 2 −2b

12 σx
2π2(1 − r)2 sin2 θ

.

(a)  For an WSS uniformly distributed input between [– 1, 1],  σ x
2 = 1

3
.   Hence,

2−2b

4(1− r)2 (1− 2 rcosθ + r2 )
≤ N

S
≤ 4

π2
2−2b

(1− r)2 sin2 θ
.

If  ε → 0,   and  θ → 0,  then (1 − r)2 → ε2,  cos2θ =1 − 2 sin2 θ ≅ 1 − 2θ2 ,  and  sin2 θ ≅ θ2.

In this case we have  
2−2b

4ε2 (ε2 + 4θ 2)
≤ N

S
≤ 2−2b

π2ε2θ2 .

(b)  For an input with a Gaussian distribution between [– 1, 1],  σ x = 1

3
.

In this case we have  3
2−2b

4ε2(ε2 + 4θ2)
≤ N

S
≤ 3

π2
2−2b

ε2θ2 .

(c)  For a sinusoidal input between [– 1, 1] of known frequency ωo ,  σ x
2 = 1

2
.

The output noise variance here is therefore σ n
2 = σ e

2 h[n]2

n=0

∞

∑ = 2−2b

12
⋅1 + r 2

1 − r 2 ⋅ 1
r 4 − 2r 2 cos2θ +1

.

Thus, 
N
S

= 1+ r2

1− r2 ⋅ 1

6 r 4 − 2r2 cos2θ +1( ) = 2−2b

24ε ε2 + θ2( ) ≅ 2−2b

24 εθ2 .

With error feedback

G(z) = 1 − 2 z−1 + z−1

1− 2 rcosθz−1 + r 2z−1 = z2 − 2 z +1
z2 − 2 r cosθz + r2  = 1 + 2(r cosθ −1)z +1− r2

z2 − 2 r cosθz + r2 .

Thus, G 2 = 1 +
4(1− r cosθ)2 + (1− r2 )2( )(1 − r 4 )+ 8r cosθ(1− r2 )2(r cosθ −1)

(1 − r 2)2 + 2r2(4r 2 cos2 θ)− 4(1 + r 4)r2 cos2 θ

For r = 1− ε   with ε → 0,  and θ → 0,  we get after some manipulation G 2 = 1 + θ 4

4ε(ε2 +θ 2)
,  

and σ n
2 = σ e

2 G 2 .

Now L2 remains the same as before since it depends only upon the denominator.  Also the 
overall transfer function of the structure remains the same as before.  The output noise power 
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with error feedback is thus ˆ N = σe
2 G 2,  whereas, the output noise power without error feedback

is N = σe
2 H 2.   Hence, 

ˆ N 
N

= G 2

H 2 .

Now, G 2 = 1 + θ 4

4ε(ε2 +θ 2)
,   Since θ >> ε , G 2 ≅ θ4

4εθ2 = θ2

4ε
.

Also, H 2 = 1 + r 2

1 − r 2 ⋅ 1
r 4 − 2r 2 cos2 θ +1

 = 1 + (1− ε)2

1 − (1 − ε)2 ⋅ 1
(1 − ε)4 − 2(1− ε)2(1− 2θ2 )+1

≈ 1
4ε(θ2 + ε2 )

≈ 1
4εθ2 .

Thus,  
ˆ N 

N
≅ θ4.   As a result, with error feedback, the 

N
S

 ratio gets multiplied by θ4 .

(a)  input with uniform density: 
2−2b θ2

16ε2 ≤ N
S

≤ θ 2

π2
2−2b

ε2

(b) Wide-sense stationary, Gaussian density, white: 
2−2b3θ2

16ε2 ≤ N
S

≤ 3θ2

π2
2−2b

ε2

(c) sinusoid with known frequency: 
N
S

= 2−2bθ2

24 ε

9.37   The coupled form with error feedback is shown below:

z−1

z−1

z−1

z−1

α

β

δ

γ

  Q

  Q

λ1

λ2
–

+

+

–
e1[n]

e2[n]

v2[n]

v1[n]
y[n]

u[n]

Analysis yields  V1(z) = λ1z−1E1(z) + δ z−1Y(z) + γ z−1U(z),  E1(z) = Y(z) − V1(z),

V2 (z) = λ2z−1E 2(z) + βz−1Y(z) + α z−1U(z),  and E 2(z) = Y(z) − V2 (z).  Eliminating
U1(z), V1(z), U2 (z), and V2 (z)  from these equations we arrive at the noise transfer functions

G1(z) =
Y(z)

E1(z) E2 (z)=0

=
(1 − α z−1)(1 + λ1 z−1)

1 − (α + δ)z−1 + (αδ − βγ ) z−2 ,  and

G2(z) =
Y(z)

E 2(z) E1(z)=0

=
γ z−1(1 + λ2 z−1)

1 − (α + δ) z−1 + (αδ − βγ ) z−2 .   The total output noise
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power is thus given by σo
2 = G1 2

2 σe1
2 + G2 2

2 σe2
2 .   Hence, the output noise power, for a

lowpass filter design, can be reduced by placing zeros of the noise transfer functions in the
passband.  For each of the noise transfer functions given above, we can only place a zero at z =
1 by choosing λ i = −1, i = 1, 2,

Using the notations b = −(α + δ)  and d = αδ − βγ  we rewrite the noise transfer functions as

G1(z) =
z2 − (1 + α)z + α

z2 + b z + d
= 1 +

−(1 + α + b) + (α − d)

z2 + bz + d
,  and G2(z) =

γ z − γ
z2 + b z + d

.   Using Table

9.4 we obtain G1 2
2 = 1 +

(1 + α + b)2 + (α − d)2[ ](1 − d2) + 2(1 + α + b)(α − d)(1 − d)

(1 − d2 )2 + 2 d b2 − (1 + d2 )b2 ,  and

G2 2
2 =

2 γ 2 (1 − d2 )

(1 − d2 )2 + 2 d b2 − (1 + d2 )b2 .

9.38   The Kingsbury structure with error feedback is shown below:

–

+

e1[n] e2[n]

v2[n]v1[n] y[n]

z−1

z−1

z−1 z−1

  Q   Q

λ1 λ 2

z−1

  Q

λ3

k1 k2

− k1u1[n]

u2[n] u3[n]

v3[n]

e3[n]

–

+

–

+

Analysis yields:  V1(z) = k1Y(z) + z−1U1(z) + λ1z
−1E1(z),    E1(z) = U1(z) − V1(z),

V2 (z) = k2Y(z) + U1(z) + λ2z−1E 2(z),    E 2(z) = U2(z) − V2 (z),

V3(z) = Y(z) − k1U2(z) + λ3z
−1E3 (z),  E 3(z) = U3(z) − V3(z),  and Y(z) = z−1U1(z).  Eliminating

U1(z), V1(z), U2 (z), V2(z), U3(z)  and V3(z)  from these equations we get

G1(z) =
Y(z)

E1(z) E2 (z)=E3 (z)=0

=
− k1z−1(1 + λ1z

−1)

1 − 2 − k1(k1 + k2 )[ ]z−1 + (1 − k1k2 )z−2 ,

G2(z) =
Y(z)

E 2(z) E1(z)=E3 (z )=0

=
− k1z

−1(1 − z−1)(1 + λ2z−1)

1 − 2 − k1(k1 + k2 )[ ]z−1 + (1 − k1k2 )z−2 ,  and

G3(z) =
Y(z)

E3(z) E1(z)=E2 (z)=0

=
z−1(1 − z−1)(1 + λ3z−1)

1 − 2 − k1(k1 + k2 )[ ]z−1 + (1 − k1k2 )z−2 .   The total output noise

power is thus given by σo
2 = G1 2

2 σe1
2 + G2 2

2 σe2
2 + G3 2

2 σe3
2 .   Hence, the output noise power,

for a lowpass filter design, can be reduced by placing zeros of the noise transfer functions in
the passband.  For each of the noise transfer functions given above, we can only place a zero at
z = 1 by choosing λ i = −1, i = 1, 2, 3, in which case, using the notations b = −[2 − k1(k1 + k 2 )],

and d =1 − k1k 2.  the noise transfer functions reduce to G1(z) =
− k1z

−1(1 − z−1 )

1 + b z−1 + d z−2 =
− k1z + k1

z2 + b z + d
,
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G2(z) =
−k1z

−1(1 − z−1)

1 + b z−1 + d z−2 =
− k1(z

2 − 2 z + 1)

z(z2 + b z + d)
=

− k1A

z
+

−k1(Cz + D)

z2 + bz + d
 and

G3(z) =
z−1(1 − z−1 )2

1 + b z−1 + d z−2 =
z2 − 2 z + 1

z(z2 + b z + d)
=

A

z
+

C z + D

z2 + b z + d
 where A =

1

d
, C = 1 −

1

d
,  and

D = − 2 +
b

d
 
   

  .   Using Table 9_4 we then obtain G1 2
2 = k1

2 2 (1 − d2 ) − 2 (1 − d)b

(1 − d2 )2 + 2 d b2 − (1 + d2 )b2 ,

G3 2
2 = A2 + 2 BC +

(C2 + D2 )(1 − d2 ) − 2 C D(1 − d)b

(1 − d 2)2 + 2 d b2 − (1 + d2)b2 ,  and G2 2
2 = k1

2 G3 2
2

.

9.39   The transfer function of the coupled-form structure shown below is given by Eq. (9.42) where
α = δ = r cos(θ)  and β = −γ = r sin(θ) .  Analysis yields

x[n] y[n]

  z–1
  z–1

α

β

γ

δ

s1[n + 1]

s2[n + 1]

s1[n +1]= α x[n]+ s1[n]( ) +βs2[n] and  s2[n +1] = γ x[n]+ s1[n]( ) + δ s2[n]. Rewriting these

equations in matrix form we get 
s1[n +1]
s2[n +1]

 
  

 
  =

α β
γ δ

 
  

 
  

s1[n]
s2[n]

 
  

 
  +

α
γ

 
  

 
  x[n]

Thus A = 
α β
γ δ

 
  

 
  .   Therefore, ATA = 

α γ
β δ

 
  

 
  

α β
γ δ

 
  

 
  = α2 + γ 2 αβ + γδ

αβ + γδ β2 + δ2

 

 
 
 

 

 
 
 

= r 2 0
0 r2

 

 
 

 

 
 .

Likewise, AAT = α β
γ δ

 
  

 
  

α γ
β δ

 
  

 
  =

α2 + β2 αγ + βδ
αγ + βδ γ 2 +δ 2

 

 
 
 

 

 
 
 

= r2 0
0 r 2

 

 
 

 

 
 .

Thus A is of normal form and hence, the structure will not support limit cycles.

9.40  The transfer function of the modified coupled-form structure shown below is given by

x[n] y[n]  z–1   z–1
c c

d d

s1[n + 1] s2[n +1]

        –1

s1[n +1]= cd s1[n]−cs2[n]+ x[n],  s2[n +1] = cs1[n]+ c ds2[n], and y[n] = cs2[n].
In matrix form these equations can be written as

s1[n +1]
s2[n +1]

 
  

 
  =

cd −c
c cd

 
  

 
  

s1[n]
s2[n]

 
  

 
  + 1

0
 
  

 
  x[n],  and y[n] = 0 c[ ] s1[n]

s2[n]
 
  

 
  + [0]x[n].  Thus,
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A  = cd −c
c cd

 
  

 
  .  Now, in the z-domain the equations describing the structure are

zS1(z) = cd S1(z)− cS2(z)+ X(z),  zS2(z) = c S1(z) + cd S2 (z),  and Y(z) = c S2(z).  From the

equation on the left we get ( z − cd)S1(z) = −cS2 (z) + X(z)  and from the equation on the right we

get ( z − cd)S2(z) = cS1(z).   Eliminating S1(z)  we arrive at S2 (z) = cX(z)
z2 − 2cd z + c2d2 + c2 .  Hence

H(z) = Y(z)
X(z)

= c2

z2 − 2 cd z + c2(1 + d2 )
.

Comparing denominator of H(z) with the denominator z2 − 2 rcosθz + r2  of a second order

transfer function we get c = r sinθ , d = cot θ .  Then A = cd −c
c cd

 
  

 
  = r cosθ −r sinθ

r sinθ r cosθ
 
  

 
  .

Thus  ATA = 
r2 0

0 r2

 

 
 

 

 
 , and similarly AAT = 

r2 0

0 r2

 

 
 

 

 
 .   Since for stability r < 1,

A is normal form matrix, and thus the structure does not support limit cycles.

9.41  A block-diagram representation of a digital filter structure based on the state-space description 
given by Eqs. (9.200) and (9.201) is as shown below.

s[n +1]B

A C
z−1I

s[n]

x[n]

y[n]

D

The feedback loop under zero-input conditions is thus as indicated below:

A

v[n +1]

s[n + 1]

s[n]

z−1I

Q

Hence, under zero-input conditions we have

v[n +1]= As[n],

  s[n +1] = Q v[n +1]( ).

 The quadratic function f(s[n]) = sT[n] D s[n], where D is a positive-definite diagonal matrix, is 
related to the power stored in the delays.  The changes in this quantity can provide information
regarding oscillations under zero-input conditions:

∆f (s[n]) = f(s[n +1]) − f (s[n]) = − sT[n]⋅D ⋅s[n]+ sT[n +1]⋅D ⋅s[n +1]

= − sT[n]⋅D ⋅s[n]+ sT[n +1]⋅D ⋅s[n +1]+ vT[n +1]⋅D ⋅v[n +1]− vT[n + 1] ⋅D ⋅v[n +1]
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= − sT[n]⋅D ⋅s[n]+ sT[n +1]⋅AT ⋅D ⋅A ⋅s[n + 1]− vk

2 [n + 1]−Q (vk[n +1])2( )k =1

N∑ dkk

  
= − sT[n] D − AT ⋅D ⋅A( ) s[n]− v k

2 [n + 1]−Q (vk[n +1])2( )k =1

N∑ dkk .

Now if sT[n] D− AT DA( ) s[n]  ≥ 0,and vk[n] are quantized such that 
  
Q (vk[n +1]) ≤ vk[n +1],

(i.e. using a passive quantizer), then the power stored in the delays will not increase with 
increasing n.  So under passive quantization, limit cycles will be eliminated if 

sT[n] D− AT DA( ) s[n]  ≥ 0,  or D − AT DA  is positive-definite.  For second order stable IIR 
filters, eigen values of A = [aij] are less than 1.  This condition is satisfied if

a12a21 ≥ 0,

or, a12a21 < 0   and  a11 − a22 + det(A) ≤1.

For the given structure,

A =
α1 α1 +1

α2 −1 α2

 
  

 
  ,   B =

α1 − β1
α2 − β2

 

 
 

 

 
 ,   C = 1 1[ ],   and  D = 1.

The transfer function of the filter is given by

H(z) =
z2 − (β1 + β2 ) z + (1 + β1 −β2)

z2 −(α1 + α2 ) z + (1 + α1 − α2 )
.

The filter is stable if  1 + α1 − α2 < 1,  and  α1 + α2 <1 + (1+ α1 − α2),  or equivalently, if

α1 − α2 < 0,  and  α1 + α2 < 2 + α1 −α2.

Now, a1a2 = (α1 +1)(α2 −1) = 1

4
(α1 + α2 )2 − (2 + α1 − α2)2[ ],  and since, 

(α1 + α2 )2 < (2 + α1 − α2 )2,  a12a21 < 0.

Next, a11 − a22 + det(A) = α1 − α2 + α1α2 − (α1 +1)(α2 −1)

= = − (α1 − α2 ) + α1α2 − (α1α2 + α2 − α1 −1) = 1.

Hence, the structure does not support zero-input limit cycles.

9.42 From Section 8.3.1 we know that each computation of a DFT sample requires 2N + 4 real
multiplications. Assuming that quantization noise generated from each multiplier is independent

of the noise generated from other multipliers, we get σ r
2 = (2N + 4)σ0

2 = 2−2b (N + 2)
6

.

9.43 SNR = 
22b

N2 .  Hence, an SNR of 25 dB implies 
22b

N2  = 102.5 or

b = 
1

2
log2 (10)2.5 × (512)2( ) = 13.1524.   Therefore b = 14 bits should be chosen to get an SNR of

25 dB. Therefore number of bits required for each sample = 14 + 1 = 15.

9.44 Let N = 2ν . Consider the mth  stage. The output sees 4(2ν −m ) noise sources from the mth  stage.

Each noise source has a variance reduction by a factor of 1
4( )ν−m

 due to multiplication by 
1

2
 at

each stage till the output. Hence the total noise variance at the output due to the noises injected

in the mth  stage is  4 2 ν−m( ) 2−2(ν−m)( )σ 0
2 .
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Therefore the total noise variance at the output =σ2 = 4 2ν −m( ) 2 −2(ν −m)( )σ0
2

m=1

ν

∑

 4σ0
2 2−ν 2m

m=1

ν

∑  = 4
2−2b

12
2−ν 2(2ν −1)

2 −1
 = 

2

3
2−2b (1 − 2−ν)  ≈ 2

3
2−2b  for large N.

9.45   SNR = 
22b

2N
.  Hence b =

1

2
log2 (10)2.5 × 2 × 512( )  = 8.652.

Hence we choose b + 1 = 10 bits per sample to get an SNR of 25 dB.

M9.1  % This is the function to obtain the pole distribution
% plot of a second order transfer function with a denominator
% of the form Z*Z - KZ + L.  For stability 0 < L < 1 and
% abs(K) < 1+L so the range of K is (-2,2).
% for a b-bit wordlength, 1 bit is reserved for  the sign
% as the coefficients are sorted in the sign magnitude form.
% Both L and the K are quantizd to b-1 bits.
%
function[]=pole_plot(bits);
%
% This part prints the unit circle for reference
%
z = [0 1];
p = [0 1];
zplane(z,p);
hold;
axis([-1 1 -1 1]);
%
% One bit is kept for the sign so effectively for the
quantization
% the remaining number of bits is bits-1
%
bits = bits-1;
%
% The quantization step.
%
step = power(2,-bits);
for index_1 = 0:1:(power(2,bits)-1)
L = index_1*step;
for index_2 = -(power(2,bits)-1):1:(power(2,bits)-1)
K = 2*index_2*step;
p1 = (-K+(sqrt(K*K-4*L)))/2;
p2 = (-K-(sqrt(K*K-4*L)))/2;
if abs(p1) < 1
if (imag(p1) ~= 0)
plot(p1,'.');
plot (p2,'.');
end
end
end
end
hold;

M9.2  The pole-distribution plot of the second-order Direct Form structure is obatined by running
the MATLAB program given in Exercise M9.1.  Running this program using the statement
pole_plot(5) yields the following plot.
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For plotting the pole distribution of the Kingsbury structure, we use the following MATLAB
program:

% This is the function to obtain the pole distribution plot
of the Kingsbury
% structure.  Here, the transfer function has a denominator
of the form
% Z*Z - (2 - k1*k2 - k1*k1)Z + (1 - k1*k2) where the k1 and
k2 are the
% multiplier  coefficients of the structure.
% For stability of the structure the range of k1 is  (-2,2)
and the range
% of k2 is such that 0 < k1*k2 < 2; Hence k2 can take any
value.
% In this program the range of k1 is taken to be (-2,2) and
the range of
% k2 is  also (-2,2). The wordlength is specified by the
argument "bits"
% of the function.
%
function[] = pole_plot_kb(bits);
%
% This part prints the unit circle for reference
%
z = [0 1];
p = [0 1];
zplane(z,p);
hold;
axis([-1 1 -1 1]);
%
% The numbers are stored in the sign-magnitude form so one
bit is
% reserved for the sign. Hence for the quantization, the
available bits
% = bits - 1
%
bits = bits-1;
step = power(2,-bits);
% This part of the program finds out the various possible
combinations
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% of the  quantized values of k1 and k2. with this set of
values of k1
% and k2, a set of transefer  functions is possible and hence
a set of
% poles is possible. The possible values of poles within the
stability
% region thus obtained are plotted with the help of the plot
command.
%
for index_1 = -(power(2,bits)-1):1:(power(2,bits)-1)
k1 = 2*index_1*step;
for index_2 = -(power(2,bits)-1):1:(power(2,bits)-1)
k2 = 2*index_2*step;
if (k1*k2 < 2)
if (k1*k2 > 0)
if (k1*k1 < 4-2*k1*k2)
c = 1 - k1*k2;
b = -(2 - k1*k2 - k1*k1);
p1 = (- b + (sqrt(b*b-4*c)))/2;
p2 = (-b - (sqrt(b*b-4*c)))/2;
if (imag(p1) ~= 0)
if (real(p1) ~= 0)
if (abs(p1) < 1)
plot(p1,'.');
end
end
end
if (imag(p2) ~= 0)
if (real(p2) ~= 0)
if (abs(p2) < 1)
plot(p2,'.');
end
end
end
end
end
end
end
end
hold;

Running this program using the statement pole_plot_kb(6) yields the following plot.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Real part
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M9.3

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

ω /π

unquantized
quantized  

M9.4  N = 5; wn = 0.45; Rp = 0.5; Rs = 45;
[B,A] = ellip(N,Rp,Rs,wn);
zplane(B,A);
z = cplxpair(roots(B)); p = cplxpair(roots(A));
disp('Factors for the numerator');
const = B(1)/A(1);
k = 1;
while k <= length(z),
      if(imag(z(k)) ~=0)
    factor = [1 -2*real(z(k)) abs(z(k))^2]
    k = k+2;

      else
    factor = [1 -z(k)]
    k = k+1;

      end
end
disp('Factors for the denominator');
k = 1;
while k <= length(p),
if(imag(p(k)) ~=0)

factor = [1 -2*real(p(k)) abs(p(k))^2]
k = k+2;

        else
factor = [1 -p(k)]
k = k+1;

        end
end
sos = zp2sos(z,p,const)

The above program yields

Factors for the numerator

factor =
   1.0000e+00   1.0358e+00   1.0000e+00

factor =
   1.0000e+00   3.7748e-01   1.0000e+00

factor =
   1.0000e+00   1.0000e+00
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Factors for the denominator

factor =
   1.0000e+00  -2.6433e-01   8.6522e-01

factor =
   1.0000e+00  -5.8090e-01   5.0030e-01

factor =
   1.0000e+00  -4.4817e-01

Hence H(z) = 1+ 1.0358z−1 + z−2

1− 0.26433z−1 + 0.86522z−2

 

 
  

 

 
  

1 + 0.37748 z−1 + z−2

1 − 0.5809z−1 + 0.5003z−2

 

 
  

 

 
  

1+ z−1

1 − 0.44817 z−1

 

 
  

 

 
  .

Note that the ordering has no effect if   L∞ − scaling is used.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real part

1
1

1
1

2
2

2
2

3 3

sos =
2.7591e-01   2.7591e-01   0   1.0000e+00   -4.4817e-01   0
3.0285e-01   3.1370e-01   3.0285e-01   1.0000e+00 -5.8090e-01
5.0030e-01
6.7335e-01   2.5418e-01   6.7335e-01   1.0000e+00 -2.6433e-01
8.6522e-01

M9.5   [B,A] = ellip(5,0.5,45,0.45);
p = roots(A);
lenp = length(p);
[Y,I] = sort(angle(p));
for k = 1:lenp
    if(rem(k,2)==1)
   p1((k+1)/2) = p(I(k));

    else
           p2(k/2) = p(I(k));
    end
end
b1 = poly(p1); b2 = poly(p2);
a1 = fliplr(b1); a2 = fliplr(b2);
B1 = 0.5*(conv(b2,a1)-conv(b1,a2));
A1 = conv(b1,b2);
[H,W] = freqz(B,A,512); [H1,W] = freqz(B1,A1,512);
plot(W/pi,abs(H),'-',W/pi,abs(H1),'--');axis([0 1 0 1.2]);
xlabel('\omega/\pi');ylabel('Magnitude');
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pause
a1 = 1.01*a1; a2 = 1.01*a2;
b1 = [b1(1) 1.01*b1(2:length(b1))];
b2 = [b2(1) 1.01*b2(2:length(b2))];
A3 = conv(b1,b2);
B3 = 0.5*conv(a1,b2)+0.5*conv(a2,b1);
B4 = 1.01*B;
A4 = [A(1) 1.01*A(2:length(B))];
[H2,W] = freqz(B3,A3,512); [H3,W] = freqz(B4,A4,512);
plot(W/pi,abs(H2),'-',W/pi,abs(H3),'--');axis([0 1 0 1.2]);
xlabel('\omega/\pi');ylabel('Magnitude');
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M9.6 num1 = input('The first factor of numerator = ');
num2 = input('The second factor of numerator =');
den1 = input('The first factor of denominator =');
den2 = input('The second factor of denominator =');
% The numerator and denominator of the scaling
% functions f1 and f2 are
f1num = 1; f1den = [den1]; f2num = num1;
f2den = conv(den1,den2); f3num = conv(num1,num2);
f3den = conv(den1,den2);
x = [1 zeros([1,511])];
% Sufficient length for impulse response
% to have decayed to nearly zero
f1 = filter(f1num,f1den,x); f2 = filter(f2num,f2den,x);
f3 = filter(f3num,f3den,x);
k1 = sqrt(sum(f1.*f1)); k2 = sqrt(sum(f2.*f2));
k3 = sqrt(sum(f3.*f3));
disp('The first scaling factor ='); disp(k1);
disp('The second scaling factor ='); disp(k2);
disp('The third scaling factor ='); disp(k3);
% The noise transfer functions
g1num = conv(num1,num2)/(k2*k3);
g1den = conv(den1,den2)/k3;
g2num = num2;     g2den = den2;
g1 = filter(g1num,g1den,x); g2 = filter(g2num,g2den,x);
var = sum(f1.*f1)*3+sum(g2.*g2)*5+3;
disp('The normalized noise variance'); disp(var);
% num1 and num2 can be interchanged to come up with the
% second realization

M9.7 The parallel form I structure and the parallel form II structure used for simulation are shown 
below:
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  z
−1

  z
−1

  z
−1

  z
−1

k4

k0 k5

k2 k6

–0.3445k1

–2.29k3

–6.9422k3

–0.0188

–0.801

–0.777

–0.3434

1.6528 k1

        

  z−1

  z
−1

  z−1

  z
−1

k4

k0

k5

k2

k6

1.6592 k1

0.2759 k1

–5.162k3

0.7867 k3

–0.0188

–0.801

–0.777

–0.3434

Parallel Form I Parallel Form II

num1 = input('The first factor in the numerator =');
num2 = input('The second factor in the numerator =');
den1 = input('The first factor in the denominator =');
den2 = input('The second factor in the denominator =');
num = conv(num1,num2);
den = conv(den1,den2);
[r1,p1,k11] = residuez(num,den);
[r2,p2,k21] = residue(num,den);
% Simulation of structure for Eq. 9.244
R1 = [r1(1) r1(2)];P1 = [p1(1) p1(2)];
R2 =[r1(3) r1(4)];P2 = [p1(3) p1(4)];
R3 = [r2(1) r2(2)];P3 = [p2(1) p2(2)];
R4 = [r2(3) r2(4)];P4 = [p2(3) p2(4)];
[num11,den11] = residuez(R1,P1,0);
[num12,den12] = residuez(R2,P2,0);
[num21,den21] = residue(R3,P3,0);
[num22,den22] = residue(R4,P4,0);
disp('The numerators for Parallel Form I');
disp(k11); disp(num11); disp(num12);
disp('The denominators for Parallel Form I');
disp(den11); disp(den12);
disp('The numerators for Parallel Form II');
disp(k21); disp(num21); disp(num22);
disp('The denominators for Parallel Form II');
disp(den21); disp(den22);
imp = [1 zeros([1,2000])];
y0 = filter([1 0 0],den11,imp); y1 = filter(num11,den11,imp);
y2 = filter([1 0 0],den12,imp); y3 = filter(num12,den12,imp);
gamma0 = sum(y0.*conj(y0)); gamma1 = sum(y1.*conj(y1));
gamma2 = sum(y2.*conj(y2)); gamma3 = sum(y3.*conj(y3));
k0 = sqrt(1/gamma0); k1 = sqrt(gamma0/gamma1);
k2 = sqrt(1/gamma2); k3 = sqrt(gamma2/gamma3);
y = filter(num,den,imp);
gamma = sum(y.*conj(y));
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k4 = sqrt(1/gamma); k5 = k4/(k0*k1); k6 = k4/(k2*k3);
disp('For parallel form I');
disp('The scaling constants are'); disp(k0);disp(k1);
disp(k2);disp(k3);disp(k4);disp(k5);disp(k6);
disp('The product roundoff noise variance');
noise = 3*(k5/k0)^2+3*(k6/k2)^2+2*k5^2+2*k6^2+3;
disp(noise);
%%%%%%%%%%For Parallel From II %%%%%%%%%%%%%%%%
y0 = filter([0 0 1],den21,imp);
y1 = filter(fliplr(num21),den21,imp);
y2 = filter([0 0 1],den22,imp);
y3 = filter(fliplr(num22),den22,imp);
gamma0 = sum(y0.*conj(y0)); gamma1 = sum(y1.*conj(y1));
gamma2 = sum(y2.*conj(y2)); gamma3 = sum(y3.*conj(y3));
k0 = sqrt(1/gamma0); k1 = sqrt(gamma0/gamma1);
k2 = sqrt(1/gamma2); k3 = sqrt(gamma2/gamma3);
y = filter(num,den,imp);
gamma = sum(y.*conj(y));
k4 = sqrt(1/gamma); k5 = k4/(k0*k1); k6 = k4/(k2*k3);
disp('For parallel form II');
disp('The scaling constants are');disp(k0);disp(k1);disp(k2);
disp(k3);disp(k4);disp(k5);disp(k6);
disp('The product roundoff noise variance');
noise = 3*(k5/k0)^2+3*(k6/k2)^2+2*k5^2+2*k6^2+3; disp(noise);

M9.8 The scaled Gray-Markel cascaded lattice structure used for simulation is shown below:
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% Use Program_6_3.m pg. 384 to generate the lattice
% parameters and feedforward multipliers
d = [0.19149189348920   0.75953417365130   0.44348979846264
0.27506340000000];
alpha = [1.00000000000000  -3.50277000000000
4.61511974525466  -1.70693992124303 -0.90009664306164];
imp = [1 zeros([1,499])];
qold1 = 0;
for k = 1:500
    w1 = imp(k)-d(1)*qold1;
    y1(k) = w1;
    qnew1 = w1;
    qold1 = qnew1;
end
k1 = sqrt(1/(sum(y1.*conj(y1))));
imp = [1 zeros([1,499])];
qold1 = 0;qold2 = 0;
for k = 1:500
    w2 = imp(k)-d(2)*qold2*1/k1;
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    w1 = k1*w2-d(1)*qold1;
    y1(k) = w1;y2(k)=w2;
    qnew1 = w1;
    qnew2 = w1*d(1)+qold1;
    qold1 = qnew1;qold2 = qnew2;
end
k2 = sqrt(1/(sum(y2.*conj(y2))));
qold1 = 0;qold2 = 0;qold3 = 0;
for k = 1:500
    w3 = imp(k)-d(3)*qold3*1/k2;
    w2 = k2*w3-d(2)*qold2*1/k1;
    w1 = k1*w2-d(1)*qold1;
    y3(k) = w3;
    qnew1 = w1;
    qnew2 = w1*d(1)+qold1;
    qnew3 = w2*d(2)+qold2*1/k1;
    qold1 = qnew1;qold2 = qnew2;qold3 = qnew3;
end
k3 = sqrt(1/sum(y3.*conj(y3)));
qold1 = 0;qold2 = 0;qold3 = 0;qold4 = 0;
for k = 1:500

w4 = imp(k)-d(4)*qold4/k3;
w3 = k3*w4-d(3)*qold3/k2;
w2 = k2*w3-d(2)*qold2/k1;
w1 = k1*w2-d(1)*qold1;
y4(k) = w4;
qnew1 = w1;
qnew2 = w1*d(1)+qold1;

        qnew3 = w2*d(2)+qold2*1/k1;
        qnew4 = w3*d(3)+qold3*1/k2;

qold1 = qnew1;qold2 = qnew2;qold3 = qnew3;qold4 = qnew4;
end
k4 = sqrt(1/sum(y4.*conj(y4)));
const = 0.135127668
% Obtained by scaling the o/p of the actual TF
disp('The scaling parameters are');
disp(k1);disp(k2);disp(k3); disp(k4);
alpha(5) = alpha(5)/(k1*k2*k3*k4);
alpha(4) = alpha(4)/(k1*k2*k3*k4);
alpha(3) = alpha(3)/(k2*k3*k4);
alpha(2) = alpha(2)/(k3*k4);
alpha(1) = alpha(1)/k4;
alpha = const*alpha;
%%%% Computation of noise variance %%%%%%
% Noise variance due to k4 and d4 = 1/k4^2= 1.08185285036642
% To compute noise variance due to k3,d3' = 1.33858225
imp = [1 zeros([1,499])];
for k = 1:500
    w4 = -d(4)*qold4/k3;
    w3 = k3*w4-d(3)*qold3/k2;
    w2 = k2*w3-d(2)*qold2/k1;
    w1 = k1*w2-d(1)*qold1;
    qnew1 = w1;
    qnew2 = w1*d(1)+qold1;
    qnew3 = w2*d(2)+qold2*1/k1;
    qnew4 = w3*d(3)+qold3*1/k2;
    y11 = w4*d(4)+qold4/k3;
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    y0(k) = alpha(1)*y11+alpha(2)*qnew4+alpha(3)*qnew3 +
alpha(4)*qnew2+alpha(5)*qnew1;
    qold1 = qnew1;qold2 = qnew2;qold3 = qnew3;qold4 = qnew4;
end
nv = sum(y0.*conj(y0));
% for k2,-d2'' nv = 3.131899935
% for k1,-d1''' nv = 1.00880596097028
% for d1''' nv = 0.95806646140013
% for d2'' nv = 2.61615077290574
% for d3' nv = 0.41493478856386
% for d4 nv = 0.01975407768839
% for 1/k1 nv = 0.75359663926391
% for 1/k2 nv = 0.58314964498424
% for 1/k3 nv = 0.09095345118133
% Total nv = 23.55888782866100
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In all three cases, the condition of Eq. (9.186) is satisfied and hence, the structure exhibits zero-
input granular limit cycles.

M9.10
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Chapter 10 (2e)

10.1 For an input x1[n] and x2[n], the outputs of the factor-of-L up-sampler are, respectively, given 
by

  
x u1[n] = x1[n / L], n = 0,± L,± 2L,K

0, otherwise,
 
  and 

  
x u2[n]= x2[n / L], n = 0, ± L, ± 2L,K

0, otherwise.
 
  

Let x2[n] = x1[n – no], where no is an integer.  Then x2[n / L]= x1[(n / L) – no].   Hence,

  
x u2[n]= x1[(n / L) – no ], n = 0,± L,± 2L,K

0, otherwise.
 
  

But 
  
x u1[n – no] = x1[(n – no ) / L], n – no = 0, ± L, ± 2L,K

0, otherwise,
 
   Since x u2[n]≠ xu1[n – n o], the up-

sampler is a time-varying system.

10.2 Consider first the up-sampler.  Let x1[n] and x2[n] be the inputs with corresponding outputs 

given by y1[n] and y2[n].  Now,  
  
y1[n] = x1[n / L], n = 0,± L,± 2L,K

0, otherwise,
 
   and

  
y2[n] = x2[n / L], n = 0,± L,± 2L,K

0, otherwise.
 
    Let us now apply the input x3[n] = αx1[n]+βx2[n],  

with the corresponding output given by y3[n], where 

  
y3[n] = αx1[n / L]+ βx2[n / L], n = 0,± L,± 2L,K

0, otherwise,
 
 
 

 

  
= αx1[n / L]

0
 
  + βx2[n / L] n = 0,± L,± 2L,K

0 otherwise,
 
 
 

 = αy1[n]+ βy2[n].   Thus, the up-sampler is a 

linear system.

Now, consider the down-sampler.   Let x1[n] and x2[n] be the inputs with corresponding 
outputs given by y1[n] and y2[n].  Now, y1[n] = x1[Mn], and y2[n] = x2[Mn].  Let us now apply

the input x3[n] = αx1[n]+βx2[n],  with the corresponding output given by y3[n], where  

y3[n] = x3[Mn]= αx1[Mn]+ βx2[Mn].   Thus, the down-sampler is a linear system.

10.3

From the figure, V(z) = 1

2
X(z1/ 2 )+ 1

2
X(–z1/ 2),  W(z) = z–1 /2

2
X(z1/ 2 )–

z–1/ 2

2
X(–z1/ 2),

Vu(z) = 1

2
X(z) + 1

2
X(–z),   Wu (z) = z–1

2
X(z) –

z–1

2
X(–z).   Hence, 

Y(z) = z–1Vu (z) + Wu (z) = z–1X(z),  or in other words, y[n] = x[n–1].
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10.4 c[n] = 1

M
WM

kn

k=0

M–1

∑ = 1

M

1 – WM
nM

1 – WM
n

 

 
 
 

 

 
 
 .   Hence, if n ≠ rM, c[n] = 1

M

1 – 1
1 – WM

n

 

 
 
 

 

 
 
 = 0.   On the other 

hand, if n = rM, then c[n] = 1

M
WM

kn = 1

M
WM

krM

k=0

M–1

∑
k=0

M–1

∑ = 1

M
1

k=0

M–1

∑ = 1.   Thus, 

c[n] = 1, if n = rM,
0, otherwise.{

10.5

For the left-hand side figure, we have V1(z) = X(zL ), Y1(z) = 1

M
X(zL / MWM

kL

k =0

M–1

∑ ).

For the right-hand side figure,we have V2 (z) = 1

M
X(z1 / MWM

k )
k=0

M–1

∑ ,  Y2 (z) = 1

M
X(zL / MWM

k )
k=0

M–1

∑ .

Since L and M are relatively prime, WM
k  and WM

kL  take the same set of values for k = 0, 1, . .., 
M–1.  Hence, Y1(z) = Y2(z).

10.6

     For the left-hand side figure, we have V1(z) = 1

M
X(z1/ MWM

k )
k =0

M–1

∑ , Y1(z) = 1

M
H(z)X(z1/ MWM

k )
k =0

M–1

∑ ,

     For the right-hand side figure,we have V2 (z) = H(zM)X(z), Y2 (z) = 1

M
H(zWM

kM)X(z1/ MWM
k )

k=0

M–1

∑  

= 1

M
H(z)X(z1/ MWM

k )
k=0

M–1

∑ .   Hence, Y1(z) = Y2(z).

For the left-hand side figure, we have V1(z) = X(zL ), Y1(z) = H(zL )X(zL).   For the right-hand 

side figure,we have V2 (z) = H(z)X(z),  Y2 (z) = H(zL )X(zL ).  Hence, Y1(z) = Y2(z).

10.7

x[n] y[n]5 10 2
  

≡

x[n] y[n]5 25 2
  

≡
  

x[n] y[n]2 2
x1[n ]
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Hence, x1[n] = x[2n]  and y[n] =
x1[n / 2], for n = 2r,

0, otherwise
 
 
 

=
x[n], for n = 2 r,

0, otherwise
 
 
 

  Therefore, 

y[n] =
x[n], for n = 2r,

0, otherwise.
 
 
 

10.8

x[n] 3 3
w[n] u[n]

H0 (z)

H1(z)

H2 (z)

y0[n]

y1[n]

y2[n]

      

10.9 As outlined in Section 6.3, the transpose of a digital filter structure is obtained by reversing all 
paths, replacing the pick-off node with an adder and vice-versa, and interchanging the input 
and the output nodes.  Moreover, in a multirate structure, the transpose of a factor-of-M down-
sampler is a factor-of-M up-sampler and vice-versa.  Applying these operations to the factor-
of-M decimator shown on the left-hand side, we arrive at a factor-of-M interpolator as indicated
on the right-hand side in the figure below.

10.10 Applying the transpose operation to the M-channel analysis filter bank shown below on the 
left-hand side, we arrive at the M-channel synthesis filter bank shown below on the right-hand 
side.
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x[n] H0 (z)

H1(z)

v0[ n]

v1[n ]

vM−1[n]H M−1(z)

M

M

M
 

≡

 

y[n] H0 (z)

H1(z)

v 0[n]

v1[n]

v M− 1[n]H M−1(z)

M

M

M

≡

y[n]H0 (z)

H1(z)

v0[ n]

v1[n]

vM−1[n] H M−1(z)

M

M

M

10.11 Specifications for H(z) are as follows:
Fp = 180 Hz, Fs = 200 Hz,  δp = 0.002, δs = 0.001.

H(z) 30

12 kHz 12 kHz 400 Hz

We realize H(z) as H(z) = G(z6 )F(z) .

12 kHz 12 kHz 400 Hz2 kHz12 kHz

56F(z) G(z6 )

Therefore, specifications for G(z) are as follows:

Fp = 1080 Hz, Fs = 1200 Hz,  δp = 0.001, δs = 0.001.  Here, ∆f = 120
12000

.   Hence, from 

Eq. (7.15), order of G(z) is given by NG =
–20log10 0.001 × 0.001 – 13

14.6(120 /12000)
= 47×12000

14.6 ×120
= 321.92.

Likewise, specifications for F(z) are :  Fp = 180 Hz, Fs = 1800 Hz,  δp = 0.001, δs = 0.001.  

Here, ∆f = 1620
12000

.    Hence, order of F(z) is given by  

NF =
–20 log10 10–6 – 13

14.6(1620/ 12000)
= 47 ×12000

14.6 ×1620
= 23.846.   Thus, we choose NG = 322  and NF = 24 .

RM,G = (322 +1)× 2000
5

= 129,200  muliplications/second (mps), and

RM,F = (24 +1) × 12000
6

= 50,000  mps
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Hence, total no. of mps = 179,200.  Hence the computational complexity of this particular IFIR
implementation is slightly higher here than that in Example 10.8.

12 kHz 12 kHz 400 Hz

6 5G(z)

2 kHz 2 kHz

F(z)

10.12  We realize H(z) as H(z) = G(z5)F(z) .

12 kHz 12 kHz 400 Hz12 kHz

5 6F(z) G(z5 )

2.4 kHz

Specifications for G(z) are:  Fp = 900 Hz, Fs = 1000 Hz,  δp = 0.001, δs = 0.001.  Here, 

∆f = 100
12000

.   Hence, from Eq. (7.15), order of G(z) is given by  

NG =
–20log10 0.001 × 0.001 – 13

14.6(100 /12000)
= 47×12000

14.6 ×100
= 386.3.   Likewise, specifications for F(z) 

are :  Fp = 180 Hz, Fs = 2200 Hz,  δp = 0.001, δs = 0.001.  Here, ∆f = 2020
12000

.    Hence, order of

F(z) is given by  NF =
–20 log10 10–6 – 13

14.6(2020 /12000)
= 47×12000

14.6 × 2020
= 19.124.   Thus, we choose NG = 387

and NF = 20 .

G(z)

12 kHz 12 kHz 400 Hz

5 6F(z)

2.4 kHz 2.4 kHz

RM,G = (387 +1)× 2400
6

=155,200  muliplications/second (mps), and

RM,F = (20 +1)× 12000
5

= 50, 400  mps

Hence, total no. of mps = 205,600.  Hence the computational complexity of this particular IFIR
implementation is slightly higher here than that in Example 10.8 and in Problem 10.11.

10.13

H(z) 20

60 kHz 60 kHz 3 kHz

Specifications for H(z) are:  Fp = 1250  kHz, Fs =1500  kHz, δp = 0.02  and δs = 0.01.   Hence, 

from Eq. (7.15), order N of H(z) is given by 

N =
–20log10 0.02 × 0.01 –13

14.6(250 / 60000)
= 23.989 × 60000

14.6 × 250
= 394.34 .  We thus choose N = 395.  

Computational complexity is therefore = 396 × 60,000
20

= 1,188,000 .
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10.14  Original decimation filter H(z) specifications:  Fp = 1250 Hz,  Fs =1500 , δp = 0.02,  δs = 0.01.

The 4 possible IFIR implementations of H(z) are as follows: (A)  H(z) = G(z5)F(z),

(B) H(z) = G(z4)F(z),  (C) H(z) = G(z2)F(z), and (D)  H(z) = G(z10)F(z).

Case A:  Specfications for G(z):  Fp = 1250 × 5 = 6250  Hz,  Fs =1500 × 5 = 7500 Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
1250

60,000
.  Hence, using Eq. (10.26), we obtain the order of G(z)

as NG =
−20 log10 0.01 × 0.01 −13

14.6(1250 / 60000)
= 88.767.

Specfications for F(z):  Fp = 1250 Hz,  Fs =
60000 − 5 × 1500

5
=10,500  Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
9250

60,000
.  Hence, using Eq. (10.26), we obtain the order of F(z)

as NF =
−20log10 0.01 × 0.01 − 13

14.6(9250 / 60000)
= 11.996 .  We thus choose  NG = 89 and  NF = 12.

Hence, RM,G = (89 + 1) ×
12000

4
= 270,000  mps and RM,F = (12 + 1) ×

60000

5
=156,000  mps.  

Hence, total computational complexity = 426,000 mps.

Case B:  Specfications for G(z):  Fp = 1250 × 4 = 5000 Hz,  Fs =1500 × 4 = 9000  Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
1000

60,000
.  Hence, using Eq. (10.26), we obtain the order of G(z)

NG =
−20 log10 0.01 × 0.01 −13

14.6(1000 / 60000)
= 110.96

Specfications for F(z):  Fp = 1250 Hz,  Fs =
60000 − 5 × 1500

5
=10,500  Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
12250

60,000
.  Hence, using Eq. (10.26), we obtain the order of F(z)

NF =
−20log10 0.01 × 0.01 − 13

14.6(12250 / 60000)
= 0.0579 .  We thus choose  NG = 111 and  NF = 10.

Hence, RM,G = (111 + 1) ×
15000

5
= 336,000  mps and RM,F = (10 + 1) ×

60000

4
=165,000  mps.  

Hence, total computational complexity = 501,000 mps.

Case C:  Specfications for G(z):  Fp = 1250 × 2 = 2500 Hz,  Fs =1500 × 2 = 3000  Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
500

60,000
.  Hence, using Eq. (10.26), we obtain the order of G(z)

NG =
−20 log10 0.01 × 0.01 −13

14.6(500 / 60000)
= 221.92 .
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Specfications for F(z):  Fp = 1250 Hz,  Fs =
60000 − 2 ×1500

2
= 28,500  Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
12250

60,000
.  Hence, using Eq. (10.26), we obtain the order of F(z)

 NF =
−20log10 0.01 × 0.01 − 13

14.6(27250 / 60000)
= 4.0179 .  We thus choose NG = 222  and NF = 5.

Hence, RM,G = (222 + 1) ×
30000

10
= 669,000  mps and RM,F = (5 + 1) ×

60000

2
= 180,000  mps.  

Hence, total computational complexity = 849,000 mps.

Case D:  Specfications for G(z):  Fp = 1250 × 10 =12500  Hz,  Fs =1500 ×10 = 15000  Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
2500

60,000
.  Hence, using Eq. (10.26), we obtain the order of G(z)

NG =
−20 log10 0.01 × 0.01 −13

14.6(2500 / 60000)
= 44.384 .

Specfications for F(z):  Fp = 1250 Hz,  Fs =
60000 − 10 × 1500

10
= 4,500  Hz, 

δp = 0.01, δs = 0.01.   Here ∆f =
3250

60,000
.  Hence, using Eq. (10.26), we obtain the order of F(z)

NF =
−20log10 0.01 × 0.01 − 13

14.6(3250 / 60000)
= 34.141 .  We thus choose NG = 45 and NF = 35.

Hence, RM,G = (45 + 1) ×
6000

2
=138,000  mps and RM,F = (35 +1) ×

60000

10
= 216,000  mps.  

Hence, total computational complexity = 354,000 mps.

Thus, Case D has the lowest computational complexity.

10.15  (a)  Specifications for H(z) are: Fp = 200  Hz, Fs = 300  Hz, δp = 0.002  and δs = 0.004.

15 H(z)

600 Hz 9 kHz 9 kHz

Here, ∆f = 100
9000

.   Hence, from Eq. (10.26), order N of H(z) is given by 

N =
–20log10 0.002 × 0.004 – 13

14.6(100 / 9000)
= 37.969 × 9000

14.6 × 100
= 234.06.  We choose N = 235.  Hence, 

computational complexity = (235 +1)× 9000
15

= 141,600  mps.

(b)  We realize  H(z) = G(z5)F(z).

600 Hz 9 kHz9 kHz

3 5G(z) F(z)

1.8 kHz 1.8 kHz
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Specifications for G(z) are: Fp =  200 Hz, Fs =   300 Hz, δp = 0.002  and δs = 0.004.   Here, 

∆f = 100
9000

.   Hence, from Eq. (7.15), order N of H(z) is given by

10.16  (a)  H1(z) =
p0 + p1z

–1

1 + d1z
–1 .  

 
H1(zW2

1) = H1(−z) =
p0 − p1z

–1

1 − d1z
–1 .   Thus, 

E 0(z2 ) = 1
2

H1(z)+ H1(−z)[ ]= 1
2

p0 + p1z
–1

1 + d1z
–1 +

p0 − p1z
–1

1 − d1z
–1

 

 
 
 

 

 
 
 =

p0 − p1d1z
−2

1 − d1
2z−2 ,  and 

z–1E1(z2 ) = 1
2

H1(z)− H1(−z)[ ] = 1
2

p0 + p1z
–1

1 + d1z–1 −
p0 − p1z–1

1 − d1z–1

 

 
 
 

 

 
 
 =

(p1 − p0d1)z−1

1 − d1
2z−2 .   Hence, a two-

band polyphase decomposition of H1(z)  is given by 

H1(z) =
p0 − p1d1z−2

1 − d1
2z−2

 

 
 
 

 

 
 
 + z−1 p1 − p0d1

1 − d1
2z−2

 

 
 
 

 

 
 
 .

(b)  H2(z) = 2 + 3.1z–1 +1.5 z–2

1+ 0.9 z–1 + 0.8 z–2 .  
 
H2(zW2

1) = H2 (−z) = 2 − 3.1z–1 + 1.5z–2

1− 0.9z–1 + 0.8 z–2 .  Thus, 

E 0(z2 ) = 1
2

H2(z) + H2 (−z)[ ] = 1
2

2 + 3.1z–1 + 1.5z–2

1 + 0.9z–1 + 0.8z–2 + 2 − 3.1z–1 + 1.5z–2

1 − 0.9z–1 + 0.8z–2

 

 
 
 

 

 
 
 

= 4 + 0.62z–2 + 2.4z–4

1 + 0.79 z–2 + 0.64z–4 .

z−1E1(z
2) = 1

2
H2 (z) − H2(−z)[ ]= 1

2
2 + 3.1z–1 + 1.5z–2

1 + 0.9z–1 + 0.8z–2 − 2 − 3.1z–1 + 1.5z–2

1 − 0.9z–1 + 0.8z–2

 

 
 
 

 

 
 
 

= 2.6z–1 + 2.26z–3

1 + 0.79 z–2 + 0.64z–4 .   Hence, a two-band polyphase decomposition of H2(z)  is given by 

H2(z) = 4 + 0.62 z–2 + 2.4 z–4

1+ 0.79z–2 + 0.64 z–4

 

 
  

 

 
  + z−1 2.6 + 2.26 z–2

1 + 0.79 z–2 + 0.64z–4

 

 
  

 

 
  .

(c)   H3(z) = 2 + 3.1z–1 +1.5z–2 + 4 z–3

(1– 0.5z–1) (1+ 0.9z–1 + 0.8 z–2)
= 2 + 3.1z–1 +1.5 z–2 + 4 z–3

1 + 0.4 z–1 + 0.35z–2 − 0.4 z–3 .  

H3(−z) = 2 − 3.1z–1 + 1.5z–2 − 4 z–3

1− 0.4 z–1 + 0.35z–2 + 0.4 z–3 .

E 0(z2 ) = 1
2

H3(z)+ H3(−z)[ ] = 1
2

2 + 3.1z–1 +1.5z–2 + 4 z–3

1 + 0.4 z–1 + 0.35z–2 − 0.4 z–3 + 2 − 3.1 z–1 +1.5 z–2 − 4 z–3

1 − 0.4 z–1 + 0.35z–2 + 0.4 z–3

 

 
 
 

 

 
 
 

= 4 +1.92 z–2 + 0.33z–4 +3.2 z–6

1 + 0.54 z–2 + 0.4425z–4 − 0.16z–6 .
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z−1E1(z
2) = 1

2
H3(z)− H3(−z)[ ]= 1

2
2 + 3.1z–1 +1.5z–2 + 4 z–3

1 + 0.4 z–1 + 0.35z–2 − 0.4 z–3 − 2 − 3.1 z–1 +1.5 z–2 − 4 z–3

1 − 0.4 z–1 + 0.35z–2 + 0.4 z–3

 

 
 
 

 

 
 
 

= 4.6 z–1 +10.57z–3 + 4z–5

1 + 0.54 z–2 + 0.4425z–4 − 0.16z–6 .   Hence, a two-band polyphase decomposition of H3(z)  is

given by H3(z) = 4 +1.92 z–2 + 0.33z–4 +3.2 z–6

1 + 0.54 z–2 + 0.4425z–4 − 0.16 z–6

 

 
  

 

 
  + z−1 4.6 +10.57z–2 + 4 z–4

1 + 0.54z–2 + 0.4425z–4 − 0.16z–6

 

 
  

 

 
  

10.17  (a)  H1(z) =
p0 + p1z

–1

1 + d1z
–1 = z−k

k =0

2

∑ E k(z3).   Thus,

H1(z)

H1(W3
1z)

H1(W3
2z)

 

 

 
 
 
 

 

 

 
 
 
 

=
1 1 1
1 W3

−1 W3
−2

1 W3
−2 W3

−4

 

 

 
 
 
 

 

 

 
 
 
 

E0 (z3)

z−1E1(z
3 )

z−2E2(z3 )

 

 

 
 
 
 

 

 

 
 
 
 

=
1 1 1
1 W3

−1 W3
−2

1 W3
−2 W3

−1

 

 

 
 
 
 

 

 

 
 
 
 

E 0(z3 )

z−1E1(z3)

z−2E 2(z3)

 

 

 
 
 
 

 

 

 
 
 
 
 or 

E0(z3 )

z−1E1(z3)

z−2E 2(z3)

 

 

 
 
 
 

 

 

 
 
 
 

=
1 1 1
1 W3

−1 W3
−2

1 W3
−2 W3

−1

 

 

 
 
 
 

 

 

 
 
 
 

−1
H1(z)

H1(W3
1z)

H1(W3
2z)

 

 

 
 
 
 

 

 

 
 
 
 

= 1
3

1 1 1
1 W3

1 W3
2

1 W3
2 W3

1

 

 

 
 
 
 

 

 

 
 
 
 

H1(z)

H1(W3
1z)

H1(W3
2z)

 

 

 
 
 
 

 

 

 
 
 
 
.   Theefore, 

E 0(z3) = 1
3

H1(z)+ H1(zW3
1) + H1(z W3

2)[ ] 
= 1

3

p0 + p1z−1

1 + d1z
−1 +

p0 + p1e
j2π /3z−1

1 + d1e j2π / 3z−1 +
p0 + p1e

j4π / 3z−1

1+ d1e
j4π / 3z−1

 

 
 
 

 

 
 
  =

p0 + p1d1
2z−3

1 + d1
3z−3 .

z−1E1(z
3 ) = 1

3
H1(z)+ W3

1 H1(z W3
1) + W3

2 H1(z W3
2)[ ]  

= 1
3

p0 + p1z−1

1 + d1z
−1 + e j2π / 3 p0 + p1e

j2π /3z−1

1 + d1e
j2π /3z−1 + e j4π / 3 p0 + p1e j4π / 3z−1

1 + d1e j4π / 3z−1

 

 
 
 

 

 
 
  = z−1 p1 − p0d1

1+ d1
3z−3 .

z−2E2 (z3) = 1
3

H1(z)+ W3
2 H1(z W3

1)+ W3
1 H1(z W3

2 )[ ]  

= 1
3

p0 + p1z−1

1 + d1z
−1 + e j4π / 3 p0 + p1e

j2π / 3z−1

1 + d1e
j2π / 3z−1 + e j2π / 3 p0 + p1e j4π / 3z−1

1 + d1e j4π / 3z−1

 

 
 
 

 

 
 
  = z−2 −p1d1 + p0d1

2

1 + d1
3z−3 .

Hence, E 0(z) =
p0 + p1d1

2z−1

1 + d1
3z−1 ,  E1(z) =

p1 − p0d1

1 + d1
3z−1 ,  and E 2(z) =

−p1d1 + p0d1
2

1 + d1
3z−1 .

(b)  H2(z) = 2 + 3.1z–1 +1.5 z–2

1+ 0.9 z–1 + 0.8 z–2 .

H2 (z)

H2(W3
1z)

H2 (W3
2z)

 

 

 
 
 
 

 

 

 
 
 
 

=
1 1 1
1 W3

−1 W3
−2

1 W3
−2 W3

−1

 

 

 
 
 
 

 

 

 
 
 
 

E 0(z3)

z−1E1(z3)

z−2E2 (z3)

 

 

 
 
 
 

 

 

 
 
 
 
 or 

E0(z3 )

z−1E1(z3)

z−2E 2(z3)

 

 

 
 
 
 

 

 

 
 
 
 

= 1
3

1 1 1
1 W3

1 W3
2

1 W3
2 W3

1

 

 

 
 
 
 

 

 

 
 
 
 

H2(z)

H2(W3
1z)

H2(W3
2z)

 

 

 
 
 
 

 

 

 
 
 
 
.  
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Thus,  E 0(z3) = 1
3

H2(z) + H2 (z W3
1) + H2 (z W3

2 )[ ]  

= 1
3

2 + 3.1z–1 +1.5 z–2

1 + 0.9 z–1 + 0.8 z–2 + 2 + 3.1e j2π / 3z–1 +1.5 e j4π /3z–2

1 + 0.9 e j2π / 3z–1 + 0.8 e j4π / 3 z–2 + 2 + 3.1e j4π / 3z–1 + 1.5e j2π / 3z–2

1 + 0.9 e j4π / 3z–1 + 0.8e j2π / 3 z–2

 

 
 
 

 

 
 
 

= 6 − 8.277 z–3 + 2.88z–6

1 −1.431z–3 + 0.512 z–6 .

z−1E1(z
3 ) = 1

3
H2(z) + W3

1 H2 (z W3
1) + W3

2 H2 (zW3
2 )[ ]

= 1
3
[2 + 3.1z–1 +1.5 z–2

1 + 0.9 z–1 + 0.8 z–2 + e j2π /3 2 + 3.1e j2π /3z–1 +1.5e j4π / 3z–2

1 + 0.9 e j2π / 3z–1 + 0.8e j4π / 3 z–2  

+ e j4π / 3 2 + 3.1e j4π / 3z–1 +1.5 e j2π / 3z–2

1 + 0.9 e j4π / 3z–1 + 0.8 e j2π / 3 z–2 ]= z−1 3.9 − 2.811z–3

1 −1.431z–3 + 0.512 z–6 .

z−2E2 (z3) = 1
3

H3(z)+ W3
2 H3(zW3

1)+ W3
1 H3(z W3

2)[ ] 
= 1

3
[2 + 3.1z–1 +1.5 z–2

1 + 0.9 z–1 + 0.8 z–2 + e j4π / 3 2 + 3.1e j2π / 3z–1 +1.5e j4π / 3z–2

1 + 0.9 e j2π / 3z–1 + 0.8e j4π / 3 z–2  

+ e j2π / 3 2 + 3.1e j4π / 3z–1 + 1.5e j2π / 3z–2

1 + 0.9 e j4π / 3z–1 + 0.8 e j2π / 3 z–2 ]= z−2 −3.81+ 2.712 z–3

1 −1.431z–3 + 0.512 z–6 .   Hence, 

E 0(z) = 6 −8.277z–1 + 2.88z–2

1− 1.431z–1 + 0.512 z–2 ,  E1(z) = 3.9 − 2.811z–1

1 −1.431z–1 + 0.512 z–2 ,  and 

E 2(z) = −3.81+ 2.712 z–1

1−1.431z–1 + 0.512 z–2 .

10.18  A computationally efficient realization of the factor-of-4 decimator

 

is obtained by applying a 4-branch polyphase decomposition to H(z):

H(z) = E0 (z4) + z–1E1(z4 )+ z–2E2(z4) + z–3E3(z4 ).
 and then moving the down-sampler through the polyphase filters resulting in

E0 (z)

E1(z)

E2 (z)

E3 (z)

  z
− 1

  z
− 1

  z
−1

4

4

4

4

w1[n]

w2[n]

w3[n]

w4[n]

y[n]
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Further reduction in computational complexity is achieved by sharing comon multipliers if 
H(z) is a linear-phase FIR filter.   For example, for a length-16 Type I FIR transfer function 

H(z) = h[0]+ h[1]z–1 + h[2]z–2 + h[3]z–3 + h[4]z–4 + h[5]z–5 + h[6]z–6 + h[7]z–7 + h[7]z–8

+h[6]z–9 + h[5]z–10 + h[4]z–11 + h[3]z–12 + h[2]z–13 + h[1]z–14 + h[0]z–15,

for which E 0(z) = h[0]+ h[4]z–1 + h[7]z–2 + h[3]z–3,   E1(z) = h[1]+ h[5]z–1 + h[6]z–2 + h[2]z–3,

E 2(z) = h[2]+ h[6]z–1 + h[5]z–2 + h[1]z–3,   and  E 3(z) = h[3]+ h[7]z–1 + h[4]z–2 + h[0]z–3.

      From the above figure it follows that Y(z) = E0 (z)W1(z)+ E1(z)W2 (z) + E2 (z)W3(z)+ E3(z)W4 (z)

= h[0] W1(z) + z−3W4(z)( ) + h[4] z−1W1(z)+ z−2W4(z)( )
+h[7] z−2 W1(z)+ z−1W4 (z)( )+ h[3] z−3W1(z)+ W4 (z)( )

+ h[1] W2 (z)+ z−3W3(z)( ) + h[5] z−1W2 (z) + z−2W3(z)( )
+h[6] z−2 W2 (z) + z−1W3(z)( )+ h[2] z−3W2 (z)+ W3(z)( ) .

A computationally efficient factor-of-4 decimator structure based on the above equation is then
as shown below:

  z−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1

  z
−1   z

−1
  z

−1

y[n]

w1[ n]

w4[n]

w2[n]

w3[n]

x[n] 4

4

4

4

h[0]

h[4]

h[7]

h[1]

h[5]

h[6]

h[2]

h[3]

10.19 A computationally efficient realization of the factor-of-3 interpolator is obtained by applying
a 3-branch Type II polyphase decomposition to the interpolation filter H(z):

H(z) = R2(z3) + z–1R1(z
3 )+ z–2 R0(z3),

 and then moving the up-sampler through the polyphase filters resulting in

425



  z−1

  z
−1

3

3

3

R0(z)

R1(z)

R 2(z)

x[n]
w1[n]

w2[n]

w3[n]

From the above figure it follows that

W3(z) = h[0]X(z) + h[3]z−1X(z)+ h[6]z−2 X(z) + h[5]z−3X(z) + h[2]z−4X(z),

W1(z) = h[2]X(z) + h[5]z−1X(z)+ h[6]z−2X(z) + h[3]z−3X(z) + h[0]z−4X(z),   and

W2(z) = h[1] X(z) +z−4X(z)( )+ h[4] z−1X(z)+ z−3X(z)( ) + h[7]z−2X(z).
A computationally efficient factor-of-3 interpolator structure based on the above equations is 
then as shown below:

x[n]

  z−1   z−1  z−1  z−1 y[n]

h[0]

h[4]

h[7]

h[1]

h[5] h[6]h[2] h[3]

  z−1   z−1  z−1  z−1

  z−1   z−1

  z−1  z−1

3

3

3

  z−1

  z−1

w1[n]

w2[n]

w3[n]

10.20  

  

H(z) = z−i

i=0

N−1

∑ = (1 + z−1)+ (z−2 + z−3 )+L+ (z−(N−2) + z−(N−1))

  
= (1+ z−1) 1 + z−2 + z−4 +L+ z− (N−2)( ) = (1 + z−1)G(z2 )   where  G(z) = z−2i

i=0

(N / 2)−1

∑ .  Using a 

similar technique we can show that G(z) = (1 + z−1) z−2i

i=0

(N / 4)−1

∑
 

 
 
 

 

 
 
 .  Therefore we can write 

H(z) = (1 + z−1)(1 + z−2 ) z−2i

i=0

(N / 4)−1

∑
 

 
 
 

 

 
 
 = (1 + z−1)(1 + z−2 )F(z4 )  where F(z) = z−i

i=0

(N / 4)−1

∑ .  Continuing 
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this decomposition process further we arrive at    H(z) = (1 + z−1)(1 + z−2 )L(1+ z−2K −1
), where 

N = 2K.   Realization of a factor-of-16 decimator using a box-car decimation filter is as 
indicated below:

x[n] y[n]16

16

16

16

z
–1

z
–1

z
–1

z
–1

10.21  Let u[n] denote the output of the factor-of-L interpolator.  Then,

  

E =

u[n] − u[n − 1]( )2

n=−∞

∞
∑

u2 [n]
n =−∞

∞

∑
 (1)

and C =

u[n]u[n − 1]
n=−∞

∞
∑

u2[n]
n =−∞

∞

∑
. (2)

Substituting Eq. (2) in Eq. (1) we get   E = 2(1 − C).   Hence, as C →1,  i.e., as the signal u[n] 
becomes highly correlated,   E → 0.

Now, by Parseval's relation, u[n]v[n]
n =−∞

∞
∑ =

1

2π
U(e jω )V * (e jω )

−π

π

∫ dω,  where U(e jω )  and 

V(e jω )  are the DTFTs of u[n] and v[n], respectively.  If we let v[n] = u[n–1] in the numerator 
of Eq. (1) and v[n] = u[n] in the denominator of Eq. (1), then we can write 

  

E =

1
2π

U(e jω )
2
e jω dω

−π

π

∫
1

2π
U(e jω )

2
dω

−π

π

∫
=

U(e jω)
2

cos(ω)dω
0

π

∫

U(e jω )
2

dω
0

π

∫
,

assuming u[n] to be a real sequence.  If x[n] is assumed to be a broadband signal with a flat 

magnitude spectrum, i.e., X(e jω ) =1 for 0 ≤ ω ≤ π,  then the magnitude spectrum of u[n] is 
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bandlimited to the range 0 ≤ ω ≤ π / L,  i.e., U(e jω ) =
1, for 0 ≤ ω < π / L,

0, otherwise.

 
 
 

  Therefore, 

C =

cos(ω)dω
0

π /L

∫

dω
0

π/ L

∫
=

sin(π / L)

(π / L)
.   Hence, as L → ∞, C →1.

10.22  Analysis of the structure of Figure P10.4 yields

W(e jω) = X(e jω / M),  R(e jω) = H(e jω)X(e jω / M),  

S(e jω ) = e− jωLR(e jω ) = e− jωLH(e jω )X(e jω / M), Y(e jω ) =
1

M
S(e− jωk / M

k=0

M−1

∑ e jω / M).

If the lowpass filter is assumed to be close to an ideal lowpass filter with a cutoff at ω / M, we 

can assume that all images of  X(e jω )  are suppressed leaving only the k = 0 term in the 

expression for Y(e jω ) .  Hence, we can write

Y(e jω ) ≅
1

M
S(e jω / M) ≅

1

M
H(e jω /M ) e− jωL/ M X(e jω ).

Since H(z) is a Type 1 FIR filter with exact linear phase and a delay of (N −1) / 2 = KM  
samples and a magnitude response equal to M in the passband, we have 

Y(e jω ) =e− jωK e− jωL /M X(e jω).

Thus, the structure of Figure P10.4 is approximately an allpass filter with a fixed delay of K 
samples and a variable noninteger delay of L/M samples.

10.23   An ideal M-th band lowpass filter H(z) is characterized by a frequency response 

H(e jω) = 1, – π
M

≤ ω ≤ π
M

,
0, otherwise.

 
 
 

  

H(z) can be expressed in an M-branch polyphase form as: H(z) = z−kHk (zM

k=0

M−1

∑ ) .

From above H(zWM
r

r=0

M−1

∑ ) = MH0(zM).   Therefore, H0(e jωM) = 1

M
H(e j(ω−2πr / M))

r=0

M−1

∑ = 1

M
.   Or

in other words, H0(zM )  is an allpass function.
Similarly for the remaining subfilters.

10.24  An equivalent realization of the structure of Figure 10.34 obtained by realizing the filter H(z)
in a Type I polyphase form is as shown below on the left.  By moving the down-sampler 
through the system and invoking the cascade equivalence #1 of Figure 10.14 we arrive at the 
structure shown below on the right.
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  z−1

  z−1

  z
−1

E L–1 (zL)

L L

E1 (zL )

E0 (zL )

E2 (zL )
≡

  z
−1

  z
−1

  z
−1

E0(z)

E1(z)

E2(z)

EL–1(z)

L L

L

L

L

which reduces to the structure shown below on the left from which we arrive at the simplified 
equivalent structure shown below on the right.

E0(z)L L ≡ E0(z )

10.25   (a)  H(z) = h[n]z−n

n=0

N−1

∑ .

Let  H0(z2 ) = 1
2

h[2i]+ h[2i + 1]( )z−2i

i=0

N

2
−1

∑ ,  and H1(z2) = 1
2

h[2i]− h[2i +1]( )z−2i

i=0

N

2
−1

∑ .   Then

(1 + z−1)H0 (z2) + (1 − z−1)H1(z2) = h[2i] z−2i + h[2i +1]z−2i+1

i=0

N

2
−1

∑
i=0

N

2
−1

∑ = H(z).

(b)  H(z) = (1 + z−1)H0 (z2 )+ (1 − z−1)H1(z2 )

= H0(z2) + H1(z
2 )( )+ z−1 H0(z2 )− H1(z2 )( ) = E0 (z2) + z−1E1(z2 ).  Therefore, 

E 0(z) = H0 (z) + H1(z),  and E1(z) = H0(z)− H1(z).

(c)  Now H(z) = 1 z−1[ ] 1 1
1 −1

 
  

 
  

H0(z2 )

H1(z
2 )

 

 
 
 

 

 
 
 = 1 z−1[ ] H0 (z2) + H1(z2)

H0 (z2) − H1(z2)

 

 
 
 

 

 
 
 

= H0(z2) + H1(z
2 )( )+ z−1 H0(z2 )− H1(z2 )( )  = (1+ z−1)H0(z2 ) +(1 − z−1)H1(z

2).

(d)  If L = 2, i.e. N = 22, then we can express H0(z2 ) = (1 + z−2)H00(z4 ) +(1 − z−2)H01(z4), and

H1(z2) = (1+ z−2 )H10(z4 )+ (1 − z−2 )H11(z4).   Substituting these expressions in 

H(z) = (1 + z−1)H0 (z2 )+ (1 − z−1)H1(z2 )  we get

        H(z) = (1 + z−1) (1 + z−2)H00(z4) + (1 − z−2)H01(z4 )[ ]+ (1− z−1) (1 + z−2 )H10(z4 ) +(1 − z−2)H11(z4 )[ ]
= (1+ z−1)(1 + z−2)H00(z4) + (1 + z−1)(1 − z−2 )H01(z4 )
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+(1 − z−1)(1 + z−2 )H10(z4 ) +(1 − z−1)(1 − z−2 )H11(z4)

= 1 z−1 z−2 z−3[ ]
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 

 

 
 
 

 

 

 
 
 

H00(z4 )

H01(z4 )

H10(z4 )

H11(z4)

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

= 1 z−1 z−2 z−3[ ]R4

ˆ H 0 (z4 )
ˆ H 1(z4 )
ˆ H 2 (z4 )
ˆ H 3(z4)

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.

Continuing this process it is easy to establish that for N = 2L, we have

  

H(z) = 1 z−1 L z−(L −1)[ ]RL

ˆ H 0(zL )
ˆ H 1(z

L)
M

ˆ H L −1(z
L)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

.

10.26 Now H(z) = 1 z−1 z−2 z−3[ ]R4

ˆ H 0(z4)
ˆ H 1(z4)
ˆ H 2(z4)
ˆ H 3(z4 )

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 = 1 z−1 z−2 z−3[ ]
E0(z4)

E1(z4)

E2(z4)

E3(z4 )

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.

Therefore, 

ˆ H 0 (z)
ˆ H 1(z)
ˆ H 2 (z)
ˆ H 3(z)

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

= R4
−1

E0 (z)
E1(z)
E2 (z)
E3(z)

 

 

 
 
 
 

 

 

 
 
 
 

= 1
4

R4

E0(z)
E1(z)
E2(z)
E3(z)

 

 

 
 
 
 

 

 

 
 
 
 

= 1
4

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 

 

 
 
 

 

 

 
 
 

E0(z)
E1(z)
E2(z)
E3(z)

 

 

 
 
 
 

 

 

 
 
 
 
.

A length-16 Type 1 linear-phase FIR transfer function is of the form

H(z) = h0 + h1z−1 + h2z−2 + h3z
−3 + h 4z−4 + h5z−5 + h6z−6 + h 7z

−7

+h7z−8 + h6z−9 + h5z−10 + h4z−11 + h3z−12 + h2z−13 + h1z
−14 + h0z−15.

Hence, E 0(z) = h0 + h4z−1 + h7z−2 + h3z−3,   E1(z) = h1 + h5z−1 + h6z−2 + h2z−3,

E 2(z) = h2 + h6z−1 + h 5z
−2 + h1z

−3,   E 3(z) = h3 + h7z−1 + h 4z−2 + h0z−3.

Thus, ˆ H 0(z) = g0 + g1z
−1 + g1z

−2 + g0z−3,   ˆ H 1(z) = g2 + g3z
−1 − g3z−2 − g2z−3,

ˆ H 2(z) = g4 + g5z−1 − g4z−2 − g5z−3,   ˆ H 3(z) = g6 + g7z
−1 + g7z−2 + g8z

−3,

where  g0 = 1
4

(h0 + h1 + h2 + h3),   g1 = 1
4

(h 4 + h 5 + h6 + h7 ),   g2 = 1
4

(h0 − h1 + h 2 − h3),

g3 = 1
4

(h4 − h5 + h6 − h7 ),  g4 = 1
4

(h0 + h1 − h2 − h3),  g5 = 1
4

(h 4 + h5 − h6 − h7 ),

g6 = 1
4

(h0 − h1 − h2 + h3 ),  and  g7 = 1
4

(h4 − h5 − h 6 + h 7).   Observe that ˆ H 0(z)  and 

ˆ H 3(z)  are Type 1 linear-phase FIR transfer functions, where as, ˆ H 1(z)  and ˆ H 2(z)  are Type 2 
linear-phase FIR transfer functions.  A computationally efficient realization of a factor-of-4 
decimator using a four-band structural subband decomposition of the decimation filter H(z) is 
developed below.
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  z
−1

  z
−1

  z
−1

4

4

4

4

ˆ H 0(z)

ˆ H 1(z)

ˆ H 2(z)

ˆ H 3(z)

4 × 4

Hadamard

matrix

R4

Because of the symmetric or antisymmetric impulse response, each subband filter ˆ H i(z)  can be
realized using only 2 multipliers.  Hence, the final realization uses only 8 multipliers.  Note also
that by delay-sharing, the total number of delays in implementing the four subband filters can 
be reduced to 3.

10.27  y[n] = P−2(α)x[n − 2]+ P−1(α)x[n −1]+ P0(α)x[n]+ P1(α)x[n + 1]+ P2(α)x[n + 2]  where 

P−2(α) = (α +1)α(α −1)(α − 2)
(−2 +1)(−2)(−2 −1)(−2 − 2)

= 1
24

α4 − 2 α3 − α2 + 2 α( ),
P−1(α) = (α + 2)α(α −1)(α − 2)

(−1+ 2)(−1)(−1 −1)(−1 − 2)
= − 1

6
α4 − α3 − 4α2 + 4 α( ),

P0(α) = (α + 2)(α + 1)(α −1)(α − 2)
(0 + 2)(0 + 1)(0 −1)(0 − 2)

= 1
4

α4 − 5α2 + 4( ),
P1(α) = (α + 2)(α +1)α(α − 2)

(1+ 2)(1+1)(1− 0)(1− 2)
= − 1

6
α4 +α3 − 4 α2 − 4 α( ),

P2(α) = (α + 2)(α +1)α(α −1)
(2 + 2)(2 + 1)(2 − 0)(2 −1)

= 1
24

α4 + 2 α3 − α2 − 2 α( ).
We consider the computation of y[n], y[n+1], y[n+2], y[n+3] using 5 input samples: x[n-2] 
through x[n+2].

For α0 = 0,  P−2(α0 ) = 0,  P−1(α0) = 0,  P0(α0 ) = 1,  P1(α0 ) = 0,  and P2(α0 ) = 0.

For α1 = 5 / 4,  P−2(α1) = −0.022,  P−1(α1) = 0.127,  P0(α1) = −0.3428,  P1(α1) = 1.1426,  and  

P2(α1) = 0.0952.

For α2 =10 / 4,  P−2(α2 ) = 0.2734,  P−1(α2) = −1.4062,  P0(α2 ) = 2.9531,  P1(α2) = −3.2812,  and 

P2(α2 ) = 2.4609.

For α3 = 15/ 4,  P−2(α3 ) = 3.5718,  P−1(α3) = −17.2949,  P0(α3 ) = 32.86,  P1(α3) = −29.873,  and 

P2(α3) = 11.7358.

The block filter implementation is thus given by
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y[n]
y[n + 1]
y[n + 2]
y[n + 3]

 

 

 
 
 

 

 

 
 
 

=
0 0 1 0 0

−0.022 0.127 −0.3428 1.1426 0.0952
0.2734 −1.4062 2.9531 −3.2812 2.4609
3.5718 −17.2949 32.86 −29.873 11.7358

 

 

 
 
 

 

 

 
 
 

x[n − 2]
x[n −1]

x[n]
x[n +1]
x[n + 2]

 

 

 
 
 
 

 

 

 
 
 
 
.

Another implementation is given by

y[n] = α4 1

24
x[n − 2]− 1

6
x[n − 1]+ 1

4
x[n]− 1

6
x[n +1]+ 1

24
x[n + 2]( )  

         + α3 −
1

12
x[n − 2]+ 1

6
x[n −1]− 1

6
x[n + 1]+ 1

12
x[n + 2]( )  

         + α2 −
1

24
x[n − 2]+ 4

6
x[n −1]− 5

4
x[n]+ 4

6
x[n +1]− 1

24
x[n + 2]( )  

         + α 1

12
x[n − 2]− 4

6
x[n −1]+ 4

6
x[n +1]− 1

12
x[n + 2]( )  + x[n].

The Farrow structure implementation of the interpolator is shown below:

H0(z) H1(z) H2(z) H3 (z)

α α α α

where  H0(z) = 1

24
z−2 − 1

6
z−1 + 1

4
− 1

6
z + 1

24
z2,  H1(z) = − 1

12
z−2 + 1

6
z−1 + 1

6
z − 1

24
z2,

H2(z) = − 1

24
z−2 + 4

6
z−1 − 5

4
+

4

6
z − 1

24
z2,  and H3(z) = 1

12
z−2 − 4

6
z−1 + 4

6
z − 1

12
z2.

10.28  For a half-band zero-phase lowpass filter, the transfer function is of the form 

 H(z) = h[0] + z−1 h[2n]
n=–∞
n≠0

∞
∑ z−2n ,  where h[0] =

1

2
.   If the half-band filter has a zero at

z = –1, then H(−1) = h[0] − h[2n]
n= –∞
n≠0

∞
∑ = 0  or h[0] = h[2n]

n=–∞
n≠0

∞
∑ .

10.29  From Eq. (10.81), a zero-phase half-band filter H(z) satisfies the condition
H(z) + H(–z) = a constant.

(a)  The zero-phase equivalent here is given by H1(z) = z + 2 + z−1.   Hence, 

H1(z) + H1(−1z) = z + 2 + z−1 − z + 2 − z−1 = 4.   A plot of the magnitude response of H1(z)
is given below:
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(b)  The zero-phase equivalent here is given by  H2(z) = −z3 + 9 z +16 + 9 z−1 − z−3 . Hence, 

H2(z)+ H2(−z) = −z3 + 9 z +16 + 9 z−1 − z−3 + z3 − 9z + 16 − 9z−1 +z−3 = 32.   A plot of the 

magnitude response of H2(z)  is given below:
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ω /π
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(c)  The zero-phase equivalent here is given by H3(z) = −3 z3 +19 z + 32 +19z−1 − 3z−3.  Hence 

H3(z) + H3(−z) = −3z3 +19z + 32 +19 z−1 − 3z−3 + 3z3 −19z + 32 − 19z−1 + 3 z−3 = 64.   A plot of

the magnitude response of H3(z)  is given below:
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ω /π

H3(z)

(d)  The zero-phase equivalent here is given by 

H4(z) = 3 z5 − 25z3 +150 z + 256 +150 z−1 − 25z−3 + 3 z−5 .  Hence, H4(z) + H4 (−z) = 512.   A plot

of the magnitude response of H4(z)  is given below:
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(e)  The zero-phase equivalent here is given by 

H5(z) = 9 z5 − 44z3 + 208z + 346 + 208 z−1 − 44 z−3 + 9z−5 .  Hence H5(z)+ H5(−z) = 692.   A plot

of the magnitude response of H5(z)  is given below:
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10.30   H0(z) =
Y0(z)

X(z)
= h[0]+ h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 + h[5]z−5 + h[6]z−6 ,

H1(z) =
Y1(z)

X(z)
= h[0]− h[1]z−1 + h[2]z−2 − h[3]z−3 + h[4]z−4 − h[5]z−5 + h[6]z−6.

  z
−1   z

−1
  z

−1
  z

−1
  z

−1
  z

−1

h[0] h[1] h[2] h[3] h[4] h[5] h[6]

–1 –1 –1

x[n]

y0[n]

y1[n]

10.31 H0(z) =
Y0(z)

X(z)
= h[0]+ h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 + h[5]z−5 + h[6]z−6 ,

H1(z) =
Y1(z)

X(z)
= h[6]+ h[5]z−1 + h[4]z−2 + h[3]z−3 + h[2]z−4 + h[1]z−5 + h[0]z−6 .
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y1[n]

x[n]

y0[ n]

  z−1   z −1   z
−1

  z−1   z
−1

  z−1

  z
−1

  z
−1   z

−1
  z

−1   z
−1

  z
−1

h[0]h[1]h[2]h[3]h[4]h[5]h[6]

10.31  (a)  

H0 (z)
H1(z)
H2 (z)
H3(z)

 

 

 
 
 
 

 

 

 
 
 
 

=
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

 

 

 
 
 

 

 

 
 
 

E 0(z4)

z−1E1(z4 )

z−2E 2(z4 )

z−3E3(z4)

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.   Hence,

H0(z) = E0 (z4) + z−1E1(z
4) + z−2E 2(z4 )+ z−3E3(z4 )  

= 1 + 2 z−1 + 4z−2 + z−3 + 0.3z−4 − 1.5z−5 − 0.9z−6 + 3.7z−7 − 0.8 z−8 + 3.1z−9 + 2.3 z−10 +1.7 z−11 ,

H1(z) = E 0(z4 )− jz−1E1(z4) − z−2E2(z4) + jz−3E3(z4)  = 1 − j2 z−1 − 4 z−2

                  + jz−3 + 0.3 z−4 + j1.5 z−5 − 0.9z−6 + j3.7z−7 − 0.8z−8 − j3.1z−9 + 2.3 z−10 + j1.7 z−11 ,

H2(z) = E0 (z4) − z−1E1(z4 )+ z−2E2(z4) −z−3E3(z4 ) =1 − 2 z−1 + 4 z−2

− z−3 + 0.3 z−4 +1.5 z−5 − 0.9 z−6 − 3.7 z−7 − 0.8z−8 − 3.1z−9 + 2.3z−10 −1.7 z−11 ,

H3(z) = E 0(z4 )+ jz−1E1(z4) − z−2E2(z4) − jz−3E3(z4 ) = 1+ j2 z−1 − 4 z−2

− jz−3 + 0.3 z−4 − j1.5z−5 + 0.9z−6 − j3.7z−7 + 0.8z−8 + j3.1z−9 − 2.3 z−10 − j1.7z−11

(b)

H0 (e jω )

1

0
ωπ

4

π
2

−
π
4

H1(e jω)

1

0 3π
4

π
ωπ

4

H3( ejω )

1

0 5π
4

2ππ
ω

7π
4
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10.33   Y(z) = H0(z)G0(z)+ H1(z)G1(z)( )X(z).  Now, H0(z) = 1+ z−1

2
,   and  H1(z) = 1 − z−1

2
.   Choose

G0(z) = 1+ z−1

2
,   and  G1(z) = − 1 − z−1

2
.   Then,

Y(z) = 1
4

(1 + z−1)2 − 1
4

(1− z−1)2 
  

 
  X(z) = 1

4
(1 + 2z−1 + z−2 −1+ 2z−1 − z−2 )X(z) = z−1X(z).

Or in other words, y[n] = x[n–1] indicating that the structure of Figure P10.7 is a perfect 
reconstruction filter bank.

10.34 (a)  Since H0(z) and H1(z) are power-complementary, H0(z)H0 (z−1)+ H1(z)H1(z−1) =1.

Now Y(z) = H0(z)G0(z)+ H1(z)G1(z)( )X(z)  = z−N H0(z)H0(z−1)+ H1(z)H1(z
−1)( )X(z)  

  
= z−NX(z).  Or in other words, y[n] = x[n–N] indicating that the structure of Figure P10.7 is a

perfect reconstruction filter bank.

(b)  If H0(z) and H1(z) are causal FIR transfer functions of order N each, H0(z) and H1(z) are 

polynomials in z–1.  As a result, H0(z–1) and H1(z–1) are polynomials in z with the highest 

power being zN.  Hence, z–NH0(z–1) and z–NH1(z–1) are polynomials in z–1, making the 
synthesis filters G0(z) and G1(z) causal FIR transfer functions of order N each.

(c) From Figure P10.7, for perfect reconstruction we require H0(z)G0(z) + H1(z)G1(z) = z–N .

From part (a) we note that the PR condition is sdatisfied with G0(z) = z– NH0(z–1)  and 

G1(z) = z– NH1(z
–1), if  H0(z)H0 (z−1)+ H1(z)H1(z−1) =1,  i.e. if H0(z) and H1(z) are power-

complementary.  The last condition is satisfied if and only if  H0(z) = z−N /2

2
(z

−n0 + z
n0 ),

and  H1(z) = z−N / 2

2
(z

−n0 − z
n0 ) .  As a result, G0(z) and G1(z) are also of the form

G0(z) = z−N/ 2

2
(z

−n0 + z
n0 ),  and G1(z) = –

z−N / 2

2
(z

−n0 − z
n0 ) .

10.35 From Eq. (10.97), Y(z) = T(z)X(z) + A(z)X(–z).  Let Z–1{T(z)} = t[n], and Z–1{A(z)} = 
a[n].  Then an inverse z-tranform of Eq. (10.97) then yields

  

y[n] = t[l ]x[n – l ]
l =–∞

∞

∑ + a[l ](−1)n− l x[n – l]
l =–∞

∞

∑  

  

= t[l]+ (−1)n− l a[l ]( )x[n – l ]
l =– ∞

∞

∑ .

Define f0[n]= t[n]+ (−1)−n a[n],  and  f1[n] = t[n]− (−1)−n a[n].  Then we can write

  

y[n] =
f0[l ]x[n − l ],

l =–∞

∞∑ for n even,

f1[l ]x[n − l ],
l =–∞

∞∑ for n odd.

 

 
 

 
 

The corresponding equivalent realization of the 2-channel QMF bank is therefore as indicated 
below:
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x[n] y[n]

f1[n]

f0[n]
n  even

n  odd

As can be seen from the above representation, the QMF bank is, in general, a linear, time-
varying system with a period 2.  Note that if A(z) = 0, then it becomes a linear, time-invariant 
system.

10.36  (a)  
  
H0(z) = 1

4
A0(z2 ) + z−1A1(z2 ){ },  and 

  
H1(z) = 1

4
A0 (z2 )− z−1A1(z2){ }.   Hence,

E(z) = 
  

A0 (z) A1(z)
A0 (z) −A1(z)

 

 
 

 

 
 ,  and R(z) = 

  

A1(z) A1(z)
A0 (z) −A0(z)

 
  

 
  .

(b)  To prove E(z) is lossless, we need to show  E† (e jω )E(e jω )  = c2 I for some constant c:

E† (e jω )E(e jω )  = 
  

A0
*(e jω ) A0

*(e jω)

A1(e
jω) −A1(e jω )

 

 
 
 

 

 
 
 

A0 (e jω ) A1(e
jω)

A0 (e jω ) −A1(e jω )

 

 
 
 

 

 
 
 

  

=
A0 (e jω )

2
+ A0(e jω )

2
0

0 A1(e jω )
2

+ A1(e jω)
2

 

 

 
 
 

 

 

 
 
 

= 2 I.  Hence E(z) is lossless.

(c)  R(z)E(z) = 
  

1

4

2 A1(z)A0 (z) 0
0 2 A1(z)A0 (z)

 

 
 

 

 
 =

A1(z)A0 (z)

2
I.  Therefore,

R(z) = 
  

A1(z)A0(z)

2
E-1(z).

(d)  As in (c),  R(z)E(z) = 
  

A1(z)A0(z)

2
.

10.37   (a) G(z) = 1+ 3z−1 + 3z−2 + z−3

6 + 2z−2 = 1
2

1 + 3z−2

3 + z−2 + 3z−1 + z−3

3 + z−2

 

 
  

 

 
  = 1

2
1 + 3z−2

3 + z−2 + z−1
 

 
  

 

 
  

  
= 1

2
A0 (z2) + z−1A1(z

2)( ),  where  
  
A0(z) = 1 + 3z−1

3 + z−1 ,  and   A1(z) = z−1.

(b)

–1
z−2

  z–1

1/2

1/3
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(c) 
  
H(z) = 1

2
A0(z2 )− z−1A1(z2 )( ) = 1

2
1+ 3z−2

3 + z−2 − z−1
 

 
  

 

 
  = 1

2
1 − 3z−1 + 3z−2 − z−3

3 + z−2

 

 
  

 

 
  = (1 − z−1)3

6 + 2z−2 .

(d)

10.38 Now the magnitude square function of an N-th order analog lowpass Butterworth transfer 

function Ha(s) is given by Ha( jΩ)
2

= 1
1 + (Ω /Ωc)2N ,  where Ωc  is the 3-dB cutoff frequency.

For Ωc  = 1, then Ha( jΩ)
2

= 1
1 + Ω2N .   The corresponding transfer function of an N-th order 

analog highpass transfer function is simply Ha
1

s( ),  whose magnitude square function is given 

by Ha
1
jΩ

 
  

 
  

2

= Ω2N

1+ Ω2N .   As a result, Ha( jΩ)
2

+ Ha
1
jΩ

 
  

 
  

2

= 1
1 + Ω2N + Ω2N

1+ Ω2N = 1.

Now the bilinear transformation maps the analog frequency Ω  to the digital frequency  ω  

through the relation e jω = 1− jΩ
1+ jΩ

.   As, – e jω =
1 − 1

jΩ

1 + 1

jΩ

,  the analog frequency 1/Ω  is mapped to 

the digital frequency  π + ω .   Hence the relation Ha( jΩ)
2

+ Ha
1
jΩ

 
  

 
  

2

=1,  becomes

H0(e jω)
2

+ H0( e j(π+ω))
2

= H0 (e jω )
2

+ H0 (– e jω )
2

= H0 (e jω )
2

+ H1(e
jω)

2
= 1,  where 

H0(e jω)  is the frequency response of the digital lowpass filter H0(z) obtained by applying a 

bilinear transformation to Ha(s) and H1(e jω )  is the frequency response of the digital highpass 
filter H1(z) obtained by applying a bilinear transformation to  Ha(1/s).  Note that a transfer 

function H0(z) satisfying the condition H0(e jω)
2

+ H0(– e jω)
2

=1,  is called power-
symmetric.

Moreover, from the relation Ω = tan(ω / 2)  it follows that the analog 3-dB cutoff frequency Ωc
= 1 is mapped into the digital 3-dB cutoff frequency ωc = π / 2.   Hence, H(z) is a digital half-
band filter.
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Let  H0(z) =
P0(z)

D0 (z)
,  where P0(z) and D0(z) are polynomials in z–1.  Hence, 

H0(e jω) =
P0(e jω)

D0 (e jω )
.   Now, 

P0 (−e jω)P0
*(−e jω )

D0(−e jω)D0
* (−e jω )

=
D0(e jω )D0

* (e jω )− P0(e jω)P0
*(e jω)

D0(e jω)D0
* (e jω )

.

Note that there are no common factors between  P0(e jω)  and D0(e jω) , and between  P0
*(e jω )  

and D0(e jω) .  As a result there are no common factors between P0(−e jω )P0
*(−e jω)  and 

D0(−e jω)D0
* (−e jω ) .  This implies then D0(e jω)D0

* (e jω ) = D0(−e jω)D0
* (−e jω )   As a result,

D0(e jω)= D0 (−e jω ),  or D0(e jω)= d0(e j2ω ).  Hence, D0(z) = d0(z2).

Since  H0(z) =
P0(z)

D0 (z)
=

P0(z)

d0 (z2)
,  it follows then 

 
H1(z) =

P0(−z)

d0 (z2)
.   We have shown earlier that 

H0(z) and H1(z) are power-complementary.  Also P0(z) is a symmetric polynomial of odd 
order and P0(–z) is an anti-symmetric polynomial of odd order.  As a result we can express

H0(z) = 1
2

A0(z)+ A1(z)( ),  and  H1(z) = 1
2

A0 (z) − A1(z)( ) .  But H1(z) = H0(–z).  Hence  

H0(z) = 1
2

A0(−z) − A1(−z)( ) .  It therefore follows that   A0(z) = A0 (−z) = A0(z2 ),  and 

  A1(z) = – A1(−z) = z−1A1(z2 ).  Thus, 
  
H0(z) = 1

2
A0(z2 )+ z−1A1(z2 )( ).

10.39   Ga(s) = 1
(s +1)(s2 + s +1)

.  The corresponding digital transfer function H0(z)  obtained by a

bilinear transformation is given by

H0(z) = Ga(s)
s= z−1

z+1

 = (z +1)3

(z −1+ z +1) (z −1)2 + (z2 −1)+ (z +1)2( )  = (z +1)3

2 z(3z2 +1)
= (1 + z−1)3

6 + 2 z−2

= 1 + 3z−1 + 3z−2 + z−3

6 + 2 z−2  
  
= 1

2
1 + 3 z−2

3 + z−2 + z−1
 

 
 
 

 

 
 
 

= 1
2

A0 (z2 )+ z−1A1(2)[ ]  where 
  
A0 (z) = 1 + 3z−1

3 + z−1

and   A1(z) =1 .

The corresponding power-complementary transfer function is given by

H1(z) = 1
2

1+ 3 z−2

3 + z−2 − z−1
 

 
 
 

 

 
 
 

= (1 − z−1)3

6 + 2 z−2 .

A realization of the QMF bank is as shown below:
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2

2

z
–1

z
–1

z
–1

–1

–1

1/ 3

10.40   Ga(s) = 1

s5 + 3.2361s4 + 5.2361s3 + 5.2361s2 + 3.2361s +1
.   The corresponding digital transfer 

function obtained by a bilinear transformation is given by

H0(z) = Ga(s)
s= z−1

z+1

= (1 + z−1)5

18.9443 +12z−2 +1.0557z−4 = 0.0528(1+ z−1)5

1+ 0.6334z−2 + 0.0557z−4

= 0.0528 + 0.2639z−1 + 0.5279z−2 + 0.5279z−3 + 0.2639z−4 + 0.0528z−5

1 + 0.6334z−2 + 0.0557z−4

= 0.0528 + 0.5279z−2 + 0.2639z−4

1 + 0.6334z−2 + 0.0557z−4 + 0.2639z−1 + 0.5279z−3 + 0.0528z−5

1+ 0.6334z−2 + 0.0557z−4

= 0.0528(1+ 9.4704z−2 )
1+ 0.1056z−2 + z−1 0.2639(1 +1.8948z−2 )

1 + 0.5278z−2

= 1
2

0.1056 + z−2

1 + 0.1056z−2 + z−1 0.5278+ z−2

1+ 0.5278z−2

 
 
 

  

 
 
 

  
 
  
= 1

2
A0 (z2 )+ z−1A1(z2){ },  where  

  
A0(z) = 0.1056 + z−1

1+ 0.1056z−1 ,  and  
  
A1(z) = 0.5278 + z−1

1 + 0.5278z−1 .

The corresponding power-complementary transfer function is given by 

  
H1(z) = 1

2
A0(z2 ) − z−1A1(z2){ } = 1

2
0.1056 + z−2

1 + 0.1056z−2 − z−1 0.5278+ z−2

1+ 0.5278z−2

 
 
 

  

 
 
 

  
.

In the realization of a magnitude-preserving QMF bank as shown in Figure 10.47, the 
realization of the allpass filters    A0(z)  and   A1(z)  require 1 multiplier each, and hence the 
realization of the analysis (and the synthesis) filter bank requires a total of 2 multipliers.

10.41  (a)  Total number of multipliers required is 4(2N–1).  Hence, total number of multiplications
per second is equal to 4(2N–1)FT = 4(2N–1)/T where FT = 1/T is the sampling frequency in 
Hz.

(b)  In Figure 10.47,  
  
H0(z) = 1

2
A0(z2 ) + z−1A1(z

2 ){ },  and 
  
H1(z) = 1

2
A0 (z2 )− z−1A1(z2 ){ }.

If order of   A0 (z)  is K and the order of   A1(z)  is L, then the order of H0(z) is 2K + 2L +1 = N.

Hence K+L = (N–1)/2.  The total number of multpliers needed to implement   A0 (z)  is K while 

the total number of multpliers needed to implement   A1(z)  is L.  Hence the total number of 
multipliers required to implement the structure of Figure 10.47 is 2(K+L) = N–1.  However, the
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multipliers here are operating at half of the sampling rate of the input x[n].  As a result, the 
total number of multiplications per second in this case (N–1)FT/2 = (N–1)/2T.

10.42  H1(z) = z−NH0(z−1).

H0(z)

H1(z)

2

2

x[n] y 0[n]

y1[n ]

x[n]

y 0[n]

y1[n ]

2

2

h[N] h[N− 1] h[N− 2] h[1] h[0 ]

z−1

z−1

z−1

z−1

z−1

z−1

10.43    E(z) = 

1 2 3 2
2 13 9 7
3 9 11 10
2 7 10 15

 

 

 
 
 

 

 

 
 
 
.   For y[n] = 3 x[n − 3],  we require R(z)E(z) = 3I or

R(z) = 3E-1(z) = 3

1 2 3 2
2 13 9 7
3 9 11 10
2 7 10 15

 

 

 
 
 

 

 

 
 
 

−1

=
−3.8333 −1.5 4.8333 −2.333
−1.5833 0.25 0.5833 −0.333

4.5 0.5 −2.5 1.0
−1.75 −0.25 0.75 0

 

 

 
 
 

 

 

 
 
 
.

10.44   E(z) = 
1 1 2
2 3 1
1 2 1

 

 
 
 

 

 
 
 .   For perfect reconstruction,

R(z) = E-1(z) = 
1 1 2
2 3 1
1 2 1

 

 
 
 

 

 
 
 

−1

=
0.5 1.5 −2.5

−0.5 −0.5 1.5
0.5 −0.5 0.5

 

 
 
 

 

 
 
 .   A computationally efficient realization of 

the filter bank is shown below:

z−1

z−1

z−1

z−1

3

3

3

3

3

3

(z)RE(z)

10.45   For perfect reconstruction we require
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R(z) = E-1(z) = 

1 2 3 4
3 2 1 5
2 1 4 3
4 2 3 1

 

 

 
 
 

 

 

 
 
 

−1

=
−0.4 0.2 0.16 0.12

0.7333 0.2 −0.76 0.3467
0.0667 0.2 0.24 0.0133
0.0667 0.2 0.16 −0.2133

 

 

 
 
 

 

 

 
 
 
.   A computationally 

efficient realization of the filter bank is shown below:

(z)RE (z)z−1

z−1

z−1

z−1

z−1

z−1

4

4

4

4

4

4

4

4

10.46   For perfect reconstruction we require

R(z) = E-1(z) = 
4 2 3
5 4 1
2 1 3

 

 
 
 

 

 
 
 

−1

=
1.2222 −0.3333 −1.1111

−1.4444 0.6667 1.2222
−0.3333 0 0.6667

 

 
 
 

 

 
 
 .   A computationally

efficient realization of the filter bank is shown below:

z−1

z−1

z−1

z−1

3

3

3

3

3

3

(z)RE(z)

10.47  

  

ˆ X (z) = G0 (z) G1(z) L GL −1(z)[ ]
H0 (z) H0 (zW) L H0 (zWL−1)

H1(z) H1(zW) L H1(zWL−1)
M M O M

HL−1(z) HL−1(zW) L HL−1(zWL−1)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

X(z)
X(zW)

M
X(zWL −1)

 

 

 
 
 
 

 

 

 
 
 
 

.

To show the system of Figure 10.63 is, in general, periodic with a period L, we need to show 

that if ˆ X 1(z)  is the output for an input X1(z), and ˆ X 2(z)  is the output for an input X2(z), then if

X2(z) = z−LX1(z), i.e. x2[n] = x1[n – L], then the corresponding output satisfies 

ˆ X 2(z) = z−L ˆ X 1(z), i.e. ˆ x 2[n] = ˆ x 1[n – L].  Now,
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ˆ X 2(z) = G0 (z) G1(z) L GL −1(z)[ ]
H0 (z) H0 (zW) L H0 (zWL−1)

H1(z) H1(zW) L H1(zWL−1)
M M O M

HL−1(z) HL−1(zW) L HL−1(zWL−1)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

X2(z)
X2 (zW)

M
X2 (zWL −1)

 

 

 
 
 
 

 

 

 
 
 
 

  

= G0(z) G1(z) L GL−1(z)[ ]
H0 (z) H0(zW) L H0(zWL−1)

H1(z) H1(zW) L H1(zWL−1)
M M O M

HL −1(z) HL −1(zW) L HL−1(zWL−1)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

z−L X1(z)

z−LW−LX1(zW)
M

z−LW−L(L−1)X1(zWL −1)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

  

= z−L G0 (z) G1(z) L GL −1(z)[ ]
H0 (z) H0 (zW) L H0 (zWL−1)

H1(z) H1(zW) L H1(zWL−1)
M M O M

HL−1(z) HL−1(zW) L HL −1(zWL−1)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

X1(z)
X1(zW)

M
X1(zWL−1)

 

 

 
 
 
 

 

 

 
 
 
 

= z−L ˆ X 1(z).   As a result, the structure of Figure 10.50 is a time-varying system with a period L.

10.48

x[n] y[n]L

L

L

L

L

L

H0 (z)

H1(z)

H L−1(z) GL−1(z)

G1(z )

G0 (z)

If the filter bank is alias-free, then

  

H0(z) H1(z) L HL −1(z)
H0(zW) H1(zW) L HL−1(zW)

M M O M
H0 (zW L−1) H1(zWL−1) L HL−1(zWL −1)

 

 

 
 
 
 

 

 

 
 
 
 

G0(z)
G1(z)

M
GL−1(z)

 

 

 
 
 
 

 

 

 
 
 
 

=
T(z)

0
0
0

 

 

 
 
 

 

 

 
 
 

.

The above L equations are

(1):    H0(z)G0(z) + H1(z)G1(z)+K + HL −1(z)GL−1(z) = T(z) ,

(2):    H0(zWr )G0(z)+ H1(zWr)G1(z)+ K+ HL−1(zWr )GL−1(z) = 0,  1 ≤ r ≤ L −1.

Replacing z by z WL− r  in the above equation we get

  H0(zWL )G0(z WL− r) + H1(zWL )G1(zWL −r )+K + HL −1(zWL )GL−1(zWL− r) = 0,
or equivalently.
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(3):    H0(z)G0(z WL− r) + H1(z)G1(zW L− r) +K+ HL−1(z)GL−1(zWL −r ) = 0,  1 ≤ r ≤ L −1.

Rewriting Eqs. (1) and (3) in matrix form we get

  

G0(z) G1(z) L GL−1(z)
G0 (zW) G1(zW) L GL−1(zW)

M M O M
G0 (zWL −1) G1(zWL−1) L GL−1(zWL −1)

 

 

 
 
 
 

 

 

 
 
 
 

H0(z)
H1(z)

M
HL−1(z)

 

 

 
 
 
 

 

 

 
 
 
 

=
T(z)

0
0
0

 

 

 
 
 

 

 

 
 
 

.

Thus, if an L-channel filter bank is alias-free with a given set of analysis and synthesis filters, 
then the filter bank is still alias-free if the analysis and synthesis filters are interchanged.

10.49

x[n]

y[n]

z–1

z–1

z–1

L

L

L

z–1

z–1

z–1

L

L

L

P(z)
•
•
•

•
•
•

cL −1[n] bL −1[n]

b1[n]

b0[n]c0[n]

c1[n]

From the above figure it follows that we can express the z-transforms of {ci[n]} as

  

Cl (z) = 1

L
(z1/ LW k

k=0

L−1

∑ )−l X(z1/ LWk ), 0 ≤ l ≤ L −1,   where  W = e− j2π / L .

Likewise, the z-transforms of {bi[n]} can be expressed as

  

Bs (z) = Ps,l (z)
l =0

L −1

∑ Cl (z), 0 ≤ s ≤ L −1,  where 
  
Ps,l (z)  denotes the   (s, l ) -th element of P(z).  

Finally, the z-transform of the output y[n] is given by

  

Y(z) = z−(L−1−s)

s=0

L−1

∑ Bs (zL ) = z−(L −1−s)

s=0

L−1

∑ Ps,l (zL )Cl (zL )
l =0

L−1

∑

  

= 1

L
z−(L −1−s)

s=0

L−1

∑ Ps,l (zL ) (zWk )−l X(zWk )
k=0

L−1

∑
l =0

L−1

∑

  

= 1

L
X(zWk )

k=0

L−1

∑ W −kl z−l z−(L−1−s)

s=0

L−1

∑ Ps,l (zL )
l =0

L −1

∑ .

In the above expression, terms of the form X(zWk), k ≠ 0,  represent the contribution coming 
from aliasing.  Hence, the expression for Y(z) is free from these aliasing terms for any arbitrary
input x[n] if and only if

  

W−kl z−l z−(L−1−s)

s=0

L−1

∑ Ps,l (zL )
l =0

L −1

∑ ≠ 0, k ≠ 0.
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The above expression can be written in a matrix form as  

  

D†

V0(z)
V1(z)

M
VL −1(z)

 

 

 
 
 
 

 

 

 
 
 
 

=
T(z)

0
M
0

 

 

 
 
 

 

 

 
 
 
,  where D is the 

L × L DFT matrix, T(z) is the transfer function of the alias-free system, and 

  

Vl (z) = z−l z−(L−1− s)

s=0

L−1

∑ Ps,l (z
L).   Since D D† = L I,  the above matrix equation can be 

alternately written as  

  

V0 (z)
V1(z)

M
VL−1(z)

 

 

 
 
 
 

 

 

 
 
 
 

= D

T(z)
0
M
0

 

 

 
 
 

 

 

 
 
 
.   This implies that   Vl (z) = V(z), 0 ≤ l ≤ L −1, as the 

first column of D has all elements equal to 1.  As a result, the L-channel QMF bank is alias-free
if and only if   Vl (z)  is the same for all   l .

The two figures below show the polyphase realizations of V0(z) and V1(z).

z–1

z
–1

z–1

P0,0(zL)

P1,0(zL )

PL −1,0(zL )

•
•
•

z–1

z–1

z–1

z –1

P1,1(zL )

PL−1,1 ( zL )

P0,1(zL )

•
•
•

(a)  V0(z)                                                  (b)  V1(z)

The realization of V1(z) can be redrawn as indicated below.

z–1

z–1

z
–1

z−LP0,1(zL)

P1,1(zL )

P2,1(z L)

•
•
•

(c)  V1(z)

Because of the constraint V0(z) = V1(z), the polyphase components in Figures (a) and (c) 
should be the same.  From these two figures it follows that the first column of P(z) is an 
upwards-shifted version of the second column, with the topmost element appearing with a z–1 
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attached.  this type of relation holds for the k-th column and the (k+1)-th column of P(z).  As a
result, P(z) is a pseudo-circulant matrix of the form of Eq. (10.214).

10.50  b0 y[3n]+ b1y[3n −1] + b2y[3n − 2]+ b3y[3n −3]= a0x[3n]+ a1x[3n −1]+ a2x[3n − 2]+ a3x[3n −3],

b0 y[3n +1]+ b1y[3n] + b2y[3n − 1]+ b3y[3n − 2] = a0x[3n +1]+ a1x[3n]+ a2x[3n −1]+ a3x[3n − 2],

b0 y[3n + 2]+ b1y[3n + 1]+ b2y[3n]+ b3y[3n −1] = a0x[3n + 2]+ a1x[3n + 1]+ a2x[3n]+ a3x[3n −1].

In matrix form, the above set of equations can be written as
(1): B0Yk + B1Yk−1 = A0Xk + A1Xk−1,                                

where B0 =
b0 0 0
b1 b0 0
b2 b1 b0

 

 

 
 
 

 

 

 
 
 

,  B1 =
b3 b2 b1
0 b3 b2
0 0 b3

 

 

 
 
 

 

 

 
 
 
,  Y k =

y[3k]
y[3k +1]
y[3k + 2]

 

 
 
 

 

 
 
 , Y k−1 =

y[3k −3]
y[3k − 2]
y[3k −1]

 

 
 
 

 

 
 
 

A0 =
a0 0 0
a1 a0 0
a2 a1 a0

 

 

 
 
 

 

 

 
 
 

, A1 =
a3 a2 a1
0 a3 a2
0 0 a3

 

 

 
 
 

 

 

 
 
 

, X k =
x[3k]

x[3k +1]
x[3k + 2]

 

 
 
 

 

 
 
 ,  X k−1=

x[3n − 3]
x[3n − 2]
x[3n −1]

 

 
 
 

 

 
 
 .

A multirate implementation of the block difference equation is shown below:

From Eq. (1) we have B0 + z−1 B1( )Yk = A0 + z−1A1( )Xk,  or 

Yk = B0 + z−1 B1( )−1
A0 + z−1A1( )Xk . Hence, H(z) = B0 + z−1 B1( )−1

A0 + z−1A1( )Xk .

10.51

3

3

3

3

3

3

H(z)

H(z)

H(z)

X(z) Y(z)
X 0(z)

X1(z)

X2(z) V2(z)

V1(z)

V0(z) U0(z)

U1(z)

U2 (z)

Y1(z)

Y2(z)

Y0(z)

z

z

z−1

z−1

Analysis of the 3-path filter yields

Vi (z) =
1

3
X i (z

1/3W3
0 ) + Xi (z

1/3W3
−1) + X i(z

1/3W3
−2 )[ ],  U i (z) = H(z)Vi(z), and 

Yi (z) = U i(z
3 ), for i = 0,1,2.    Thus, Yi (z) =

1

3
H(z3 ) Xi (zW3

0 ) + Xi (zW3
−1) + Xi (zW3

−2 )[ ].
But X i(z) = z− iX(z).  Hence, 

Yi (z) =
1

3
H(z3 ) (zW3

0 )− i Xi (zW3
0 ) + (zW3

−1)− i Xi (zW3
−1) + (zW3

−2 )− i Xi (zW3
−2 )[ ].   Therefore, 

Y(z) = Y0(z)+ zY1(z)+ z2Y2(z)  =
1

3
H(z3) W3

0X(zW3
0 ) + W3

0X(zW3
−1) + W3

0 X(zW3
−2)[ ]

+
1

3
H(z3) z z−1W3

0 X(zW3
0) + z−1W3

1X(zW3
−1) + z−1W3

2 X(zW3
−2)[ ]  

+
1

3
H(z3) z2 z−2W3

0X(zW3
0 ) + z−2W3

2 X(zW3
−1) + z−2W3

4X(zW3
−2 )[ ] 
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=
1

3
H(z3) 3X(z) + W3

0 + W3
1 + W3

2( )X(zW3
−1) + W3

0 + W3
2 + W3

3( )X(zW3
−2 )[ ]  = H(z3 )X(z)  since 

by Eq. (3.28), W3
0 + W3

1 + W3
2( )= W3

0 + W3
2 + W3

3( ) = 0 .

It follows from the above that in the general N-path case, Y(z) = H(zN )X(z)

10.52   From the results of Problem 10.51 we observe that the transfer function of an N-path filter is 

H(zN ) .   Hence the transfer function of the cascade of a 3-path filter and a 4-path filter is given

by H(z3)H(z4 ) .  For the magnitude response of H(z) shown in Figure P10.9, thus, the 
magnitude response of the transfer function of a 3-path filter is as indicated below

H(z3 )

0 π
12

7 π
12

9π
12

15π
12

17π
12

23π
12 2π

↑
ω

and the magnitude response of the transfer function of a 4-path filter is as indicated below

ω

H(z4 )

0 2π↑ ↑ ↑ ↑ ↑
π
16

7π
16

9π
16 15π

16

17π
16 23π

16

25π
16 31π

16 .

Hence, the magnitude response of their cascade is of the form shown below:

ω
0↑

π
16

2π↑
31π
16

H(z3)H(z4)

10.53   (a)

X(z) Y(z)

z–1

1+ z–1

H
0

(z)

H
1
(z)

H0 ( z) + H1(z)

z–2 – z–1

z–1

1– z–12

2

2

2

2

2
W2(z)

W1(z)

W0(z)V0(z)

V1(z)

V2 ( z) U2(z)

U1(z)

U0(z) R 0(z)

R1(z)

R2(z)

V(z) =
V0 (z)
V1(z)
V2(z)

 

 

 
 
 

 

 

 
 
 

=
z−1

1 + z−1

1

 

 

 
 
 

 

 

 
 
 

X(z). W(z) =
W0(z)
W1(z)
W2(z)

 

 

 
 
 

 

 

 
 
 

=
z−1/ 2

1+ z−1/ 2

1

 

 

 
 
 

 

 

 
 
 

X(z1/ 2 )+
− z−1/ 2

1− z−1/ 2

1

 

 

 
 
 
 

 

 

 
 
 
 

X(– z1/ 2 ).
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U(z) =
U0(z)
U1(z)
U2(z)

 

 

 
 
 

 

 

 
 
 

=

z−1 /2 H0(z)

(1 + z−1/ 2 ) H0 (z)+ H1(z){ }
H1(z)

 

 

 
 
 
 

 

 

 
 
 
 

X(z1/ 2) +

– z−1/ 2H0(z)

(1 – z−1/ 2 ) H0 (z) + H1(z){ }
H1(z)

 

 

 
 
 
 

 

 

 
 
 
 

X(– z1/ 2).

R(z) =
R0(z)
R1(z)
R2(z)

 

 

 
 
 

 

 

 
 
 

=

z−1H0(z2 )

(1 + z−1) H0(z2 ) + H1(z
2 ){ }

H1(z2 )

 

 

 
 
 
 
 

 

 

 
 
 
 
 

X(z) +

– z−1H0 (z2)

(1 – z−1) H0(z2 )+ H1(z2 ){ }
H1(z2)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

X(– z).

Y(z) = (1 – z−1)R0(z)+ z−1R1(z) + (z−2 – z−1)R2 (z)

= (1 – z−1)z−1H0 (z2 )+ (1 + z−1)z−1 H0(z2) + H1(z
2 ){ } + (z−2 – z−1)H1(z2 )[ ]X(z)

+ – (1 – z−1)z−1H0 (z2) + (1 − z−1)z−1 H0(z2 )+ H1(z2 ){ } +(z−2 – z−1)H1(z2)[ ]X(– z)

= 2 z−1H0 (z2) + 2 z−2 H1(z2 )[ ]X(z) = 2 z−1 H0(z2 ) +z−1H1(z
2)[ ]X(z) .  Hence,

T(z) = 2 z−1 H0 (z2 )+ z−1H1(z2 )[ ].

(b)  T(z) = 2 z−1 1
2

H(z)+ 1
2

H(– z)+ 1
2

H(z)− 1
2

H(– z)
 
  

 
  = 2 z−1H(z).

(c)  Length of H0(z) = K and  length of H1(z) = K.

(d)  The number of multplications in the above structure is given by 3K
FT

2
 per second where 

FT is the sampling frquency in Hz.  On the other hand for a direct implementation of H(z) 
requires 2KFT multiplications per second.

10.54 (a)  An equivalent representation of the structure of Figure P10.7 is as indicated below:

0 1 0

z−1 0 1

 
  

 
  

1 0

0 1

z−1 0

 

 

 
 
 

 

 

 
 
 

X(z)

Y(z)

z–1z–1 P( z)

2

2 2

2

whose simplified equivalent representation is as shown below:

X(z)

z–1

2

2 Y(z)

z–1

2

2

Q(z)

where  Q(z) = 0 1 0
z−1 0 1

 
  

 
  P(z)

1 0
0 1

z−1 0

 

 

 
 
 

 

 

 
 
 

.  It thus follows from Problem 10.39 that the structure

of Figure P10.7 is time-invariant (i.e. alias-free) if and only if Q(z) is pseudo-circulant.
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(b)  A realization of the structure of Figure P10.7 based on critical down-sampling and critical
up-sampling is shown above in Part (a).

10.55

z–1 z
–1

2

2

2

2

R(z)
X1(z)

X2 (z) Y2(z)

Y1(z)

R(z) = z−1X1(z
2) + X2 (z2 ). 

Y1(z) = R(z1/ 2) + R(– z1/ 2 ) = z−1/ 2X1(z) + X2(z)[ ]+ −z−1/ 2X1(z) + X2 (z)[ ] = 2 X2(z).

Y2 (z) = z–1/ 2 R(z1/ 2 )− z–1/ 2R(– z1/ 2 )

= z−1X1(z) + z–1/ 2X2(z)[ ]+ z−1X1(z)– z–1/ 2X2(z)[ ]= 2z−1 X1(z).

Thus, the output y1[n] is a scaled replica of the input x2[n] while the output y2[n] is a scaled 
replica of the delayed input x1[n–1] .

10.56

H(z2 )2

2

2

2

x1[n]

x2[n] y2[n]

y1[n]

z−1
z −1

w[n] v[n]

W(z) = X1(z
2 ) + z−1 X2(z2)( ),

V(z) = H(z2)X1(z
2 )+ z−1H(z2 )X2(z2 ),

Y1(z) = 1
2

V(z1/ 2 ) + V(−z1 / 2)( ) = H(z)X1(z),

Y2 (z) = 1
2

z−1/ 2V(z1/ 2 )− z−1/ 2V(−z1/ 2 )( ) = z−1H(z)X2 (z).

Therefore, 
Y1(z)

X1(z)
= H(z),  and 

Y2 (z)

X2(z)
= z−1H(z).   Hence, the system is time-invariant.

10.57

H(z2)2

2

2

2

x1[n ]

x 2[n] y 2[n]

y1[n]

z−1 z−1
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As in Problem 10.56, 
Y1(z)

X1(z)
= H(z),  and 

Y2 (z)

X2(z)
= z−1H(z).    Here now, X2(z) = Y1(z) , and 

hence, Y2 (z) = z−1H(z)X2(z) = z−1H(z)Y1(z) = z−1H2 (z)X1(z).   Thus, 
Y2 (z)

X1(z)
= z−1H2 (z).  Hence,

the system is time-invariant.

10.58

x1[n]

x2[n] y2[n]

y1[n]

z−1

z−1

z−1

z−1

y[n]

y3[n]

3

3

3

3

3

3

z− (C+1)

−2

3

H(z3)
w[n] v[n]

x3[n]

W(z) = X1(z3) + z−1X2 (z3)+ z−2X3(z3 ),

V(z) = H(z3 )X1(z3) + z−1H(z3 )X2(z3) + z−2H(z3 )X3(z3),

Y1(z) = 1
3

V(z1/ 3 )+ V(z1 /3e− j2π / 3)+ V(z1/ 3e− j4π /3 )[ ]  

         = 1
3

H(z)X1(z)+ H(z e− j2π)X1(ze− j2π) + H(z e− j4π)X1(ze− j4π )[ ]
     + 1

3
z−1/ 3H(z)X2 (z) + z−1 /3e− j2π / 3H(z e− j2π)X2(ze− j2π) + z−1/ 3e− j4π / 3H(z e− j4π)X2(ze− j4π)[ ]

     + 1
3

z−2 /3H(z)X3(z)+ z−2/ 3e− j4π / 3H(z e− j4π )X3(ze− j4π) + z−2 / 3e− j8π / 3H(z e− j8π)X3(ze− j8π)[ ]
          = 1

3
H(z)X1(z)+ H(z )X1(z) + H(z)X1(z)[ ]  

             + 1
3

z−1/ 3H(z)X2 (z) + z−1 /3e− j2π / 3H(z)X2 (z) + z−1/ 3e− j4π / 3H(z)X2(z)[ ]
          + 1

3
z−2 /3H(z)X3(z)+ z−2/ 3e− j4π / 3H(z)X3(z) + z−2 / 3e− j8π / 3H(z)X3(z)[ ]  = H(z)X1(z),

     Y2 (z) = 1
3

z−1/ 3V(z1/ 3)+ z−1/ 3e j2π / 3V(z1/ 3e− j2π / 3) + z−1 /3e j4π /3V(z1/ 3e− j 4π / 3)[ ]  = z−1H(z)X3 (z),

     Y3(z) = 1
3

z−1 /3V(z1/ 3) + z−1/3e j 4π / 3V(z1 /3e− j2π / 3)+ z−1/ 3e j8π /3V(z1/ 3e− j 4π / 3)[ ]  = z−2H(z)X2 (z).

Now, X3(z) = Y3(z)  and X2(z) = Y1(z) .  Hence,

Y2 (z) = z−1H(z)X3(z) = z−1H(z)Y3(z) = z−1H(z) z−1H(z)X2(z)[ ] = z−2H2(z)Y1(z) = z−2H3(z)X1(z).

Therefore, Y(z) = −2 Y2(z) +3 z−(C+1)Y3(z) = −2 z−2H3(z)X1(z)+ 3 z−(C+1)z−1H2 (z)X1(z)  

= z−2 3 H2(z) + 3H2(z)[ ]X1(z),  for C = 0.
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10.59  (a)  H0(z) = 1

2
− z−1 + 21

2
z−2 − 27

2
z−3 − 5 z−4 − 5

2
z−5.

          H0(z−1) = 1

2
− z + 21

2
z2 − 27

2
z3 − 5z4 − 5

2
z5.

H0(z)H0 (z−1) =1.25z5 − 28z3 − 72.75z + 325 − 72.75z−1 − 28z−3 −1.25z−5.   Thus, 

H0(z)H0 (z−1)+ H0(−z)H0(−z−1) = 650.   Hence, H0(z)  is a power-symmetric function.  The 
highpass analysis filter is given by 

H1(z) = z−5H0(−z−1) = 5

2
− 5 z−1 + 27

2
z−2 + 21

2
z−3 + z−4 + 1

2
z−5.

The two synthesis filters are time-reversed versions of the analysis filter as per Eq. (10.146) and
are given by

F0(z) = 2 z−5H0 (z−1) = −5 −10z−1 − 27z−2 + 21z−3 − 2 z−4 + z−5,  and 

F1(z) = 2 z−5H1(z−1) =1 + 2 z−1 + 21z−2 + 27z−3 −10 z−4 + 5 z−5.

(b)  H0(z) = 1+ 3 z−1 +14 z−2 + 27z−3 −12 z−4 + 4 z−5.

       H0(z−1) = 1 + 3z +14 z2 + 27z3 −12z4 + 4 z5.

H0(z)H0 (z−1) = 4 z5 + 42 z3 + 41z + 850 + 41z−1 + 42 z−3 + 4 z−5.   Thus, 

H0(z)H0 (z−1)+ H0(−z)H0(−z−1) =1700.   Hence, H0(z)  is a power-symmetric function.  The 
highpass analysis filter is given by

H1(z) = z−5H0(−z−1) = −4 −12 z−1 − 22 z−2 +14z−3 − 3z−4 + z−5.

The two synthesis filters are time-reversed versions of the analysis filter as per Eq. (10.146) and
are given by

F0(z) = 2 z−5H0 (z−1) = 8 − 24 z−1 + 44z−2 + 28z−3 + 6 z−4 + 2 z−5,

F1(z) = 2 z−5H1(z−1) = 2 − 3z−1 +14z−2 − 22z−3 −12z−4 − 4 z−5.

10.60  H0(z) = 1+ a z−1 + z−2  and H1(z) = 1 + az−1 + b z−2 + a z−3 + z−4.   The corresponding synthesis

filters are given by G0(z) = H1(−z) = 1 − az−1 + b z−2 − a z−3 + z−4,  and 

G1(z) = −H0 (−z) = −1+ a z−1 − z−2 .

To show that the filter bank is alias-free and satisfies the perfect reconstruction property we 

need to show that 
H0(z) H1(z)

H0 (−z) H1(−z)
 
  

 
  

G0(z)
G1(z)

 
  

 
  = c z−K

0
 
  

 
  ,  where c ≠ 0.   Now, 

H0(z)G0(z) + H1(z)G1(z)  

= 1+ a z−1 + z−2( ) 1 − a z−1 + b z−2 − a z−3 + z−4( )+ −1 + az−1 − z−2( ) 1+ a z−1 + b z−2 + az−3 + z−4( )  

= 2 a(b − 2)z−3,  and H0(−z)G0(z)+ H1(z)G1(−z) = H0(−z)H1(−z)− H0(−z)H1(−z) = 0 .  Thus, if 

a ≠ 0  and b ≠ 2,  the above filter bank is alias-free and also satisfies the perfect reconstruction 
property.

10.61  If  H0(z)  is required to have 2 zeros at z = –1, then it is of the form H0(z) = (1 + z−1)2 C(z),  
where C(z) is a first-order polynomial.
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Now P(z) = H0 (z)H0(z−1) = (1+ z−1)2(1 + z)2 R(z),  where R(z) is a zero-phase polynomial of the

form R(z) = a z + b + a z−1.   For perfect reconstruction we require, P(z) + P(−z) = 2,  i.e.,

(1 + z−1)2(1 + z)2 az + b + a z−1( ) +(1 − z−1)2 (1− z)2 −az + b − a z−1( ) = 2 .

Since the above equation must hold for all values of z, we observe that at z = 1, we get 

2 a + b = 1

8
.  Likewise, at z = j, we get b = 1

4
.    Hence, a = − 1

16
.  Therefore, 

P(z) = (1 + z−1)2(1+ z)2 − 1

16
z + 4

16
− 1

16
z−1( ).

The analysis filter H0(z)  is obtained by a spectral factorization of P(z).  Two choices of spectral
factorization are given in Examples 10.17 and 10.20.  The choice given in Example 10.20 
results in linear-phase analysis filters with two zeros at z = –1.

10.62

The polyphase matrices are E(z) = 1 0
P(z) 1

 
  

 
   and R(z) = 1 0

−P(z) 1
 
  

 
  .  Therefore

R(z)E(z) = 1 0
−P(z) 1

 
  

 
  

1 0
P(z) 1

 
  

 
  = 1 0

0 1
 
  

 
  .   Hence, the above structure is a perfect 

reconstruction filter bank.

10.63

The polyphase matrices are E(z) = 1 Q(z)
0 1

 
  

 
  

1 0
P(z) 1

 
  

 
   and  R(z) = 1 0

−P(z) 1
 
  

 
  

1 −Q(z)
0 1

 
  

 
  .  

Therefore, R(z)E(z) = 1 0
−P(z) 1

 
  

 
  

1 −Q(z)
0 1

 
  

 
  

1 Q(z)
0 1

 
  

 
  

1 0
P(z) 1

 
  

 
   

= 1 0
−P(z) 1

 
  

 
  

1 0
0 1

 
  

 
  

1 0
P(z) 1

 
  

 
   = 1 0

0 1
 
  

 
  .  Hence, the above structure is a perfect 

reconstruction filter bank.

10.64  If the 2-channel QMF banks in the middle of the structure of Figure 10.71 are of perfect 
reconstruction type, then each of these two filter banks have a distortion transfer function of the

form α z−M ,  where M is a positive integer:

2

2

2

2H
11

(z )

H
10

(z) G
10

(z)

G
11

(z )
α z– M

Likewise, the 2-channel analysis filter bank on the left with the 2-channel synthesis filter bank 

on the right form a perfect reconstruction QMF bank with a distortion tranfer function βz−L ,  

where L is a positive integer:

2

2

2

2

HL (z)

HH (z)

GL (z)

GH (z)
βz–L
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Hence an equivalent representation of Figure 10.71 is as indicated below

α z–M

αz –M

2

2

2

2

HL (z)

HH (z)

GL(z)

GH (z)

which reduces to

β z–L

2

2

2

2

HL (z)

HH (z )

GL(z)

GH (z)

αz– 2M αz– 2M

Thus, the overall structure is also of perfect reconstruction type with a distortion transfer 

function given by αβz−(2M+L) .

10.65 We analyze the 3-channel filter bank of Figure 10.74(b).  If the 2-channel QMF bank of 

Figure 10.74(a) is of perfect reconstruction type with a distortion transfer function βz−L ,  the 
structure of Figure 10.74(b) should be implemented as indicated below to ensure perfect 
reconstruction:

2

2 GH (z)

GL (z)
2

2 GH (z)

GL (z)
HL(z)

HH(z)

2

2
HL(z)

HH(z)

2

2 βz– L

An equivalent representation of the above structure is as shown below:

HL(z)

HH(z)

2

2

βz– L

βz– L

2

2 GH (z)

GL (z)

which reduces to

2

2 GH (z)

GL (z)HL(z)

HH(z)

2

2βz– 2L

verifying the perfect reconstruction property of Figure 10.74(b).

In a similar manner the perfect reconstruction property of Figure 10.74(c) can be proved.

M10.1   (a)  For Part (i) use the MATLAB statement

x = sin(2*pi*0.2*n) + sin(2*pi*0.35*n);

in Program 10_1 with L = 4 and N = 50, and remove the statement
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wo = input('Input signal frequency = ');

The plots generated by the modified program are shown below:

0 10 20 30 40 50
-2

-1

0

1

2

Time index  n

Input sequence

  
0 10 20 30 40 50

-2

-1

0

1

2

Time index  n

Output sequence upsampled by4

For Part (ii) use the MATLAB statement  x = n; in Program 10_1 with L = 4 and N = 50, 
and remove the statement

wo = input('Input signal frequency = ');

The plots generated by the modified program are shown below:
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For Part (iii) use x = square(N, duty); where duty can be chosen as 10, 20, 30, ...

(b)  Use L = 5 in the modified program as described above.

M10.2 (a)  For Part (i) use the MATLAB statement

x = sin(2*pi*0.2*m) + sin(2*pi*0.35*m);

in Program 10_2 with L = 4 and N = 50, and remove the statement

wo = input('Input signal frequency = ');

The plots generated by the modified program are shown below:
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For Part (ii) use the MATLAB statement  x = m; in Program 10_1 with L = 4 and N = 50, 
and remove the statement

wo = input('Input signal frequency = ');
The plots generated by the modified program are shown below:
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For Part (iii) use x = square(N, duty); where duty can be chosen as 10, 20, 30, ...

(b)  Use L = 5 in the modified program as described above.

M10.3  (a) Plots generated are shown below:
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Since L = 5, the output spectrum consists of the input spectrum shrunk by a factor of 5 and 
there are L–1 = 4 aliased spectra.
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(b) Plots generated are shown below:
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Since L = 6, the output spectrum consists of the input spectrum shrunk by a factor of 6 and 
there are L–1 = 5 aliased spectra.

M10.4 (a) Plots generated are shown below:
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(b) Plots generated are shown below:
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M10.5 (a) Plots generated are shown below:
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Since M = 4 and the input is bandlimited to π/4, the output spectrum is a stretched version of 
the input spectrum stretched by a factor of 4 and there is no aliasing.  Moreover, the output 
spectrum is scaled by a factor 1/4 as expected.

(b) Plots generated are shown below:
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Since M = 5 and the input is bandlimited to π/4, the output spectrum is a stretched version of 
the input spectrum stretched by a factor of 5 and there is some visible aliasing.  Moreover, 
the output spectrum is scaled by a factor 1/5 as expected.

M10.6  (a) Plots generated are shown below:
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(b) Plots generated are shown below:
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M10.7  (a)  Plots generated are shown below:
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(b)  Plots generated are shown below:
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M10.8  (a)  Plots generated are as shown below:
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(b)  Plots generated are as shown below:
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M10.10   As shown in Problem 10.39, a digital lowpass Butterworth half-band filter can be designed 
by applying a bilinear transformation to an analog lowpass Butterworth transfer function with a
3-dB cutoff frequency at 1 rad/sec.  The 3-dB cutoff frequency of the digital lowpass 

Butterworth half-band filter is therefore at ωc = 2 tan−1(1) / π = 0.5.  Thus to design a 5th-order 
digital lowpass Butterworth half-band filter  we use the MATLAB statement 

[num,den]= butter(5,0.5); which yields H(z) = 0.052786(1+ z−1)5

1+ 0.63344 z−2 + 0.055728z−4 .   As 

can be seen from the pole plot obtained using zplane, all poles are on the imaginary axis.
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Using the pole interlacing property we can express H(z) as  
  
H(z) = 1

2
A0(z2 )+ z−1A1(z2 )( ),  

where 
  
A0(z) = 0.52786 + z−1

1 + 0.52786 z−1  and 
  
A1(z) = 0.10557 + z−1

1 + 0.10557z−1 .    Hence, H(z) can be realized 

using only 2 multipliers.

M10.11  To design a 7th-order digital lowpass Butterworth half-band filter  we use the MATLAB 
statement  [num,den]= butter(5,0.5); which yields

H(z) = 0.016565(1 + z−1)7

1+ 0.91997z−2 + 0.1927z−4 + 0.0076835z−4 .

As can be seen from the pole plot obtained using zplane, all poles are on the imaginary axis.
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  Using the pole interlacing property we can express H(z) as  
  
H(z) = 1

2
A0(z2 )+ z−1A1(z2 )( ),  

where 
  
A0(z) = 0.033131+ 0.68806 z−1 + z−2

1 + 0.68806 z−1 + 0.033131z−2  and  
  
A1(z) = 0.23191 + z−1

1 + 0.23191z−1 .   Hence, H(z) can be

realized using only 3 multipliers.

M10.12   The specifications given are Ws = 0.55π and δs = 0.01.   Hence, Wp = 0.45π and

δp = 1 − 1 − δs
2 = 0.0000005.   Therefore, Rp = −20log10(1 − δp ) = 4.3429 × 10−6  dB and 

Rs = −20 log10 (δs ) = 60  dB.  Using the commands
[N,Wn] = ellipord(wp, ws, Rp, Rs) and
[b,a] = ellip(7, Rp, Rs, Wn) we then determine the transfer function of an N-th 
order elliptic filter and plot its pole locations using zplane(b).  The poles of the transfer 
function generated are not on the imaginary axis.  We next adjust the value of δs  and found 

that for δs  = 0.01 the poles of the transfer function H0(z)generated are on the imaginary axis.

Using the pole interlacing property we can express H0(z)  as  
  
H0(z) =

1

2
A0(z2 ) + z−1A1(z2 )( ),  
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where
  
A0(z) =

0.1657 +1.0544z−1 + z−2

1 + 1.0544 z−1 + 0.1657 z−2  and 
  
A1(z) =

0.5559 + z−1

1 + 0.5559z−1 .  Thus, the half-band 

lowpass elliptic filter is given by  H0(z) =
1

2

0.1657 + 1.0544z−2 + z−4

1 +1.0544z−2 + 0.1657 z−4 + z−1 0.5559 + z−1

1 + 0.5559z−1

 

 
 

 

 
 ,   

Its power-complementary highpass transfer function is then 

H1(z) =
1

2

0.1657 + 1.0544 z−2 + z−4

1 + 1.0544z−2 + 0.1657z−4 − z−1 0.5559 +z−1

1 + 0.5559z−1

 

 
 

 

 
 ,   The gain responses of H0(z)  and 

H1(z)  are shown below:
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M10.13  Replace win = hamming(N) with win = hanning(N) in Program 10_8.  The 
gain response of the 6th-band filter of length 43 is shown below:
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M10.14   The specifications of the corresponding zero-phase half-band filter are as  follows: 
stopband edge ωs = 0.65π  and a minimum stopband attenuation of  αs = 56  dB.  The  desired 
stopband ripple is therefore δs = 0.0016.   The passband edge of the filter  is at 
ω p = π − 0.65π = 0.35π.Using the function remezord we then estimate  the order of F(z) and
using the function remez we next design Q(z). To this end  the code fragments used are

[N,fpts,mag,wt] = remezord([0.35 0.65],[1 0],[0.0016 0.0016]);
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The order of F(z) is found to be 19. The next number which is of the form  4K+2 is N = 22, 
therefore we use N = 22 to determine H0(z)  which will be  of order 11 . The filter Q(z) is 
designed using the statement

[q, err] = remez(22,fpts, mag, wt);

To determine the coefficients of the filter F(z) we add err to the  central coefficient q[12]. Next,
using the function roots, we determine the  roots of F(z) which should theoretically exhibit a
mirror image symmetry with  respect to the unit circle with double roots on the unit circle. 
Choosing the  roots inside the unit circle along with the roots on the unit circle we get the  
minimum-phase spectral factor H0(z) ). The coefficients of  H0(z)  are as follows:

The coefficients of are
Columns 1 through 6

   0.19902   0.47583   0.42992   0.040154  -0.18235  -0.036342

  Columns 7 through 12
   0.095385  0.015368  -0.050690  -0.0011198  0.025506 -0.010676

The highpass analysis filter H1(z)  can be obtained using the following MATLAB  
statements

k = 0:11;
h1 = ((-1).^k).*h0;

The synthesis filters can be obtained from the analysis filters using the  commands

g0 = fliplr(h0);
g1 = fliplr(h1);

The gain responses of the two analysis filters are shown  below:
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M10.15   The following MATLAB programs can be used to design the analysis filters corresponding
to a two-channel QMF paraunitary lattice filter bank. (The program uses the function fminu 
from the MATLAB Optimization Toolbox, which in turn uses the functions cubici2, 
cubici3, optint, searchq, and updhess.)

% Program for the design of a two-channel QMF
% lattice filter bank.
Len = input('The length of  the filter = ');
if (mod(Len,2) ~= 0)
  sprintf('Length has to  be an even number')

463



  Len = Len+1;
end
ord = Len/2-1;
ws = 0.55*pi;
kinit = [1;zeros([ord,1])];
% set the parameters for the optimization routine
options = foptions;
options(1) = 1;
options(14) = 2500; %  maximum number of iterations for the
optimization routine
kfin = fminu('filtopt',kinit,options,[],Len,ws);
e00old = 1;
e01old = kfin(1);
e10old = -kfin(1);
e11old = 1;
for k = 2:length(kfin)
  e00new = [e00old 0]-kfin(k)*[0 e01old];
  e01new = kfin(k)*[e00old 0]+[0 e01old];
  e10new = [e10old 0]-kfin(k)*[0 e11old];
  e11new = kfin(k)*[e10old 0]+[0 e11old];
  e00old = e00new;
  e01old = e01new;
  e10old = e10new;
  e11old = e11new;
end
E1 = [e00old;e01old];
h0 = E1(:);
scale_factor = abs(sum(h0));
h0 = h0/scale_factor;
E2 = [e10old;e11old];
h1 = E2(:);
h1 = h1/scale_factor;
[H0,W] = freqz(h0,1,1024);
[H1,W] = freqz(h1,1,1024);
plot(W/pi,20*log10(abs(H0)), W/pi, 20*log10(abs(H1)));
grid on
title('Gain  response of the analysis filters');
xlabel('\omega/\pi'); ylabel('Gain, dB');

function val = filtopt(kval,Len,ws)
e00old = 1;
e01old = kval(1);
e10old = -kval(1);
e11old = 1;
for k = 2:length(kval)
  e00new = [e00old 0]-kval(k)*[0 e01old];
  e01new = kval(k)*[e00old 0]+[0 e01old];
  e10new = [e10old 0]-kval(k)*[0 e11old];
  e11new = kval(k)*[e10old 0]+[0 e11old];
  e00old = e00new;
  e01old = e01new;
  e10old = e10new;
  e11old = e11new;
end
E1 = [e00old;e01old];
h0 = E1(:);
[H0,W] = freqz(h0,1,1024);
val = 0;
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for k = 1:length(W)
  if (W(k) > ws)
  val = val+abs(H0(k))^2;
  end
end

Due to the non-linear nature of the function to be optimized, different  values of kinit 
should be used to optimize the analysis filter's gain  response. The gain responses of the two 
analysis filters is as shown below.  From the gain response, the minimum stopband attenuation 
of the analysis  filters is observed to be about 24 dB.
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M10.16   The MATLAB program used to generate the prototype lowpass filter and the analysis filters
of  the 4-channel uniform DFT filter bank is given below:

L = 21; f = [0 0.2 0.3 1]; m = [1 1 0 0]; w = [10 1];
N = 4; WN = exp(-2*pi*j/N);
plottag = ['- ';'--';'-.';': '];
h = zeros(N,L);
n = 0:L-1;
h(1,:) = remez(L-1, f, m, w);
for i = 1:N-1
  h(i+1,:) = h(1,:).*(WN.^(-i*n));
end;
clf;
for i = 1:N
  [H,w] = freqz(h(i,:), 1, 256, 'whole');
  plot(w/pi, abs(H), plottag(i,:));
  hold on;
end;
grid on;
hold off;
xlabel('Normalized frequency');ylabel('Magnitude');
title('Magnitude responses of uniform DFT analysis filter
bank');

The plots generated by the above program is given below:
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M10.17  The first 8 impulse response coefficients of Johnston's 16A lowpass filter HL(z) are given by

0.001050167, –0.005054526, –0.002589756, 0.0276414, –0.009666376, –0.09039223, 
0.09779817, 0.4810284

The remaining 8 coefficients are given by flipping the coefficients left to right,  From Eq. 
(10.157), the highpass filter in the tree-structured 3-channel filter bank is given by H2(z) =

z–15HL(z–1).  The two remaining filters are given by H0(z) = HL(z)HL(z2) and H1(z) = 

HL(z)HH(z2).  The MATLAB program used to generate the gain plots of the 3 analysis filters is
given by:

G1 = [0.10501670e-2 -0.50545260e-2 -0.25897560e-2
0.27641400e-1 -0.96663760e-2 -0.90392230e-1 0.97798170e-1
0.48102840];
G = [G1 fliplr(G1)];
n = 0:15;
H0 = (-1).^n.*G;
Hsqar = zeros(1,31); Gsqar = zeros(1,31);
Hsqar(1:2:31) = H0; Gsqar(1:2:31) = G;
H1 = conv(Hsqar,G); H2 = conv(Gsqar,G);
[h0,w0] = freqz(H0,[1]); [h1,w1] = freqz(H1,[1]); [h2,w2] =
freqz(H2,[1]);
plot(w0/pi,20*log10(abs(h0)),'b-',w1/pi,20*log10(abs(h1)),'r-
',w2/pi,20*log10(abs(h2)),'g-.');
axis([0 1 -120 20]);
grid on;
xlabel('Normalized Frequency');ylabel('Gain in dB');

The plots generated are given below:
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Chapter 11 (2e)

11.1 If R = 1250, then the frequency resolution = 7500
1250

= 6  Hz.

If frequency resolution = 4.5  Hz, then R = 7500
4.5

=1667  points.

11.2  (a)  resolution = 
8000
256

 = 31.25 Hz.

(b)  We need to take a  
8000
16

= 500 -point DFT.

(c)  resolution = 
8000

N
.   Hence desired length N of the DFT is given by N = 8000

128
= 62.5.   

ince N must be an integer we choose N = 63 as the DFT size.

11.3 (a)  F200 =
k FT

R
= 200 ×104

1000
= 2000  Hz,  F350 =

k FT

R
= 350 ×104

1000
= 3500 Hz,  

F824 =
k FT

R
= 824 ×104

1000
= 8240 .

(b)  F195 =
k FT

R
= 195×14 ×103

1010
= 2702.97 Hz,  F339 =

k FT

R
= 339 ×14 ×103

1010
= 4699  Hz, 

F917 =
k FT

R
= 917 ×14 ×103

1010
= 12710.89 .

(c)  F97 =
k FT

R
= 97×104

517
= 1876.2 ,   F187 =

k FT

R
= 187× 104

517
= 3617.02 , 

F301 =
k FT

R
= 301 ×104

517
= 5822.05.

11.4  Let the samples sequence be represented as g[n]= cos(ωo n + φ).  Then, its DTFT is given by 

  

G(e jω) = π e jφδ(ω − ω o + 2πl )+ e− jφδ(ω + ωo + 2πl )( )
l =−∞

∞

∑ .

The windowed sequence is given by γ [n] = g[n]⋅w[n]  where w[n] = 1, 0 ≤ n ≤ N −1,
0, otherwise.{   The 

DTFT of the windowed sequence is then given by 

Γ(e jω) = 1
2

e jφΨR(e j(ω−ωo )) + 1
2

e− jφΨR(e j(ω+ωo ))  where ΨR(e jω)  is the DTFT of w[n] and is 

given by ΨR(e jω) = e− jω(N −1) /2 sin(ωN / 2)
sin(ω / 2)

.

The DFT Γ[k] is a sampled version of Γ(e jω)  sampled at ω k = 2πk
N

.   To prevent leakage 

phenomenon we require that 
  
ωo = 2πl

N
 for some integer   l .  Now ωo = Ω

FT
 where Ω  is the 



angular frequency of the analog signal.  If 
  
Ω =

2πl FT

N
,  then the CTFT Ga(jΩ)  of the analog 

signal can be determined from Γ[ko] .

11.5  ga(t) = cos(200πt).  If we require Γ[k]= 0  for all values of k except k = 64 and k = 448, we 

require Ωo = 200π  to be of the form 
  
Ωo =

2πl FT

N
 for   l = 64.   Therefore 

200π =
2π × 64 × FT

512
 or FT = 800  Hz.

11.6  (a)  Fm = 6  kHz.  Let FT = 12.  The resolution = FT / R.   Hence, R = 12000
2.6

= 4616 .

(b)  R = 12000
3

= 4000.   The closest power-of-2 to 4000 is R = 4096.  Hence, a 4096-point FFT

should be used.

11.7  x[n] = A cos(2πf1n / 64)+ B cos(2πf2 n / 64).   Since X[k] = 0  for all values of k except k = 15, 

27, 37 and 49, it follows then that either 
2π f1
64

= 2π × 15
64

 or 
2π f1
64

= 2π × 27
64

.  Therefore, 

f1 =15  or 27.

Case (i):  f1 =15 , A = 64,  and f2 = 27,  B = 32.  Therefore, 

x[n] = 64 cos(30πn /64)+ 32cos(54πn / 64).

Case (ii):  f1 = 27,  A = 32, and f2 = 15,  B = 64. Therefore, 

x[n] = 32cos(54πn / 64)+ 64 cos(30πn / 64).

Thus, there are two possible solutions as indicated above.

11.8  (a)  A direct DFT evaluation (no FFT) requires N2 = 250,000  complex multiplications and 
N(N − 1) = 249,500  complex additions.

(b)  Digital resolution = R = 1
500

= 0.002 .

(c)  Analog frequency resolution = = 100
500

= 0.2  Hz.

(d)  The stopband edge of the filter should be at 
FT

2
= 50 Hz.

(e)  Digital frequency corresponding to the DFT sample X[31] = 31
500

= 0.062  and that 

corresponding to the DFT sample X[390] = 390
500

= 0.78.

Analog frequency corresponding to the DFT sample X[31]  = 2π × 31
500

×100 =12.4π  rad/s and

that corresponding to the DFT sample X[390] = 2π × 390
500

×100 =156π  rad/s.



(f)  length of FFT = 512, and therefore 12 zer-valued samples should be appended.

(g)  The FFT sample index that is closest to the old DFT sample X[31] is k = 31 × 512
500

= 32  and

the FFT sample index that is closest to the old DFT sample X[390]  is k = 390 × 512
500

≅ 399 .36 

and hence k = 399 is the closest.

11.9  In oder to distinguish two closely spaced sinusoids we require that the separation between the 
two frequencies be atleast half of the main-lobe width of the window being used.  From Table 
7.3, the main-lobe widths of the 4 windows are given by:

(a) Rectangular window:  ∆ω = 4π
N

= 4π
60

.  Therefore, f2 > f1 + 2
60

= 0.283.

(b)  Hamming window:  ∆ω = 8π
N

= 8π
60

.   Therefore, f2 > f1 + 4
60

= 0.316.

(c)  Hann window:  ∆ω = 8π
N

= 8π
60

.   Therefore, f2 > f1 + 4
60

= 0.316.

(d)  Blackman window:  ∆ω = 12π
N

= 12π
60

.   Therefore, f2 > f1 + 6
60

= 0.35.

11.10  (a)  f2 > f1 + 2
110

= 0.268.   (b)  f2 > f1 + 4
110

= 0.286.   (c)  f2 > f1 + 4
110

= 0.286.

(d)  f2 > f1 + 6
110

= 0.304.

11.11  (a)  FT ≥ 2Fm.   Hence, the minimum sampling frequency is FT,min = 2Fm .

(b)  R =
FT

N
≤ ∆F.   Therefore FT ≤ N(∆F).   Hence the maximum sampling frequency is 

FT,max = N(∆F).

(c)  If  Fm = 4  kHz, then FT,min = 8  kHz.

If  ∆F = 10 Hz and   N = 2l ,  then 
  
FT,max = 2

l
(10).

11.12  (a)  XSTFT(e jω , n) = x[n – m]w[m]e− jωm

m=–∞

∞

∑ .

GSTFT(e jω , n) = g[n – m]w[m]e− jωm

m=–∞

∞

∑ = α x[n – m]+ βy[n – m]( )w[m]e− jωm

m=–∞

∞

∑

= α x[n – m]w[m]e− jωm

m=–∞

∞

∑ + β y[n – m]w[m]e− jωm

m=–∞

∞

∑ = α XSTFT(e jω , n) + βYSTFT(e jω , n).



(b) y[n] = x[n – no].  Hence, YSTFT(e jω , n) = y[n – m]w[m]e− jωm

m=–∞

∞

∑

= x[n – no − m]w[m]e− jωm

m=–∞

∞

∑  = XSTFT(e jω , n – no ).

(c)  y[n] = e jωo x[n].   Hence, YSTFT(e jω , n) = y[n – m]w[m]e− jωm

m=–∞

∞

∑

= x[n − m]w[m]e− j(ω−ωo )m

m=–∞

∞

∑  = XSTFT(e j(ω−ωo ) , n).

11.13 XSTFT(e jω , n) = x[n – m]w[m]e− jωm

m=–∞

∞

∑ .   Replacing m in this expression with n – m we 

arrive at XSTFT(e jω , n) = x[m]w[n – m]e− jωn e− jωm

m=–∞

∞

∑ = e− jωn x[m]w[n – m] e− jωm

m=–∞

∞

∑
e− jωn X STFT(e− jω , n).   Hence, X STFT(e jω , n) = e− jωn XSTFT(e− jω , n).   Thus, in computing 

XSTFT(e jω , n)  the input x[n] is shifted through the window w[n], whereas, in computing 

X STFT(e jω , n)  the window w[n] is shifted through the input x[n].

11.14 X STFT(e jω , n) = x[m]w[n – m]e− jωm

m=–∞

∞

∑ .   Hence, by inverse DTFT we obtain

x[m]w[n − m] = 1
2π

X STFT(e jω , n)

0

2π

∫ e jωm dω.   Therefore, 

x[m]w[n − m]
n =–∞

∞

∑ = 1
2π

X STFT(e jω , n)
n=–∞

∞

∑
0

2π

∫ e jωm dω,  which is equivalent to

          x[m] w[n − m]
n =–∞

∞

∑ = x[m]W[0]= 1
2π

X STFT(e jω , n)
n =–∞

∞

∑
0

2π

∫ e jωm dω,  where  

W[0]= w[n – m]
n=–∞

∞

∑ = w[n]
n =–∞

∞

∑   or  x[m]= 1
2π W[0]

X STFT(e jω , n)
n=–∞

∞

∑
0

2π

∫ e jωm dω.

11.15  From the alternate definition of the STFT given i Problem 11.13 we have 

  

X STFT(e jω , l ) = x[m]w[l − m]e− jωm

m=−∞

∞

∑ .   Therefore, 



  

X STFT(e jω , l) e jωn

l =−∞

∞

∑ = x[m]w[l − m]e− jω(m−n)

m=−∞

∞

∑
l =−∞

∞

∑ .  Hence, 

  

X STFT(e jω , l ) e jωn

l =−∞

∞

∑ dω
0

2π

∫ = x[m]w[l − m] e− jω(m−n)

0

2π

∫
m=−∞

∞

∑
l =−∞

∞

∑ dω .

Now, e jωkdω
0

2π

∫ = 2π, if k = 0,
0, if k ≠ 0.{   Thus,, 

  

x[m]w[l − m]⋅2π δ[m − n] =
m=−∞

∞

∑
l =−∞

∞

∑ X STFT(e jω , l ) e jωn

l =−∞

∞

∑ dω
0

2π

∫ ,   or 

  

2π w[l − n]
l =−∞

∞

∑ ⋅x[n]= X STFT(e jω , l ) e jωn

l =−∞

∞

∑ dω
0

2π

∫ .

Let W[0]= w[n].
n=−∞

∞∑   Then 

  

x[n] = 1
2π W[0]

X STFT(e jω , l ) e jωn

l =−∞

∞

∑ dω
0

2π

∫ .

11.16  XSTFT(e jω , n) = x[n – m]w[m]e− jωm

m=–∞

∞

∑ .   Hence,

XSTFT[k,n]= x[n – m]w[m]e− j2πkm / N

m=–∞

∞

∑ = x[n] * w[n]e− j2πkn / N .  Or in other words, 

XSTFT[k,n] can be obtained by filtering x[n] by an LTI dystem with an impulse response 

hk[n] = w[n]e− j2πkn / N  as indicated in Figure P11.1.

11.17 XSTFT(e jω , n) = x[n – m]w[m]e− jωm

m=–∞

∞

∑ .   Hence,

XSTFT(e jω , n)
2

= x[n – m]x[n – s]w[m]w[s]e− jωme− jωs

m=–∞

∞

∑
s=–∞

∞

∑ .   Thus,

r[k,n] = 1
2π

XSTFT(e jω , n)
2

e jωkdω
0

2π

∫ = x[n – m]x[n – s]w[m]w[s]δ[s + k − m]
m=–∞

∞

∑
s=–∞

∞

∑

= x[n – m]x[n – m + k]w[m]w[m − k]
m=–∞

∞

∑ .

11.18  (a)  Length of the window N = FT τ



(b)  The number of complex multiplications is C = N
2

log2 N =
FTτ

2
log2(FTτ).   An FFT is 

performed after every K amples, i.e after every K / FT  seconds.  Thus, the number of complex 

multiplications per second is 
C

K / FT
=

FT
2τ

2 K
log2(FT τ).

11.19 ϕST[k,n]= x[m]w[n − m]x[m + k] w[n − k − m].
m=–∞

∞

∑

(a)  ϕST[− k,n] = x[m]w[n − m]x[m − k]w[n + k − m].
m=–∞

∞

∑
Substitute in the above expression m – k = s, i.e. m = k +s.  This yields

ϕST[−k,n] = x[s + k]w[n − k − s]x[s]w[n − s]= ϕST[k,n].
s=–∞

∞

∑

(b)  Let m + k = s.  Then, ϕST[k,n]= x[s − k]x[s]w[n −s + k] w[n − s]
s=–∞

∞

∑ .  It follows from 

this expression that ϕST[k,n] can be computed by a convolution of hk[n] = w[n]w[n+k] with
x[n]x[n – s] as indicated in Figure P11.2.

11.20

S(z)
  z

–1

α

1 – α2

– α
X(z) Y(z)

Analysis yields  S(z) = αz–1 S(z)+ X(z),  and Y(z) = – α X(z) + (1− α2) z−1 S(z).   Solving the 

first equation we get S(z) = X(z)

1 − αz−1 ,  which when substituted in the second equation yields 

after some algebra  
Y(z)
X(z)

= −α + z−1

1 − αz−1 .   The transfer function is thus seen to be a Type 1 

allpass of the form of Eq. (6.58) and can thus be realized using any one of the single-
multiplier structures of Figure 6.36.

11.21 Analysis of the structure of Figure P11.4 yields 
Y(z)
X(z)

= −α + z−1A(z)

1 − αz−1A(z)
,  where A(z) denotes the

transfer function of the "allpass reverberator".  Note that this expression is similar in form to 
that of Eq. (6.58) with "d" replaced by "− α " and "z–1" replaced by "z–1A(z)".  Hence an 
efficient realization of the structure of Figure P11.4 also is obtained readily from any one of 
the structures of Figure 6.36.  One such realization is indicated below:



X(z)

Y(z)

  z–1
–1

− α

A(z)

11.22  G2(z) =
K1

2
1 − A2(z){ } +

K2

2
1+ A2 (z){ }  = K2

1
2

K1

K2
1− A2 (z){ } + 1

2
1+ A2 (z){ }

 

 
 
 

 

 
 
 .

Hence in this case, the ratio K1/K2 determines the amount of boost or cut at low frequencies, 
K2 determines the amount of dc gain or attenuation at all frequencies, α  determines the 

3-dB bandwidth ∆ω3−dB = cos−1 2α
1 + α2

 
  

 
  , and the center frequency ωo  is related to β  

through β = cosωo .

alpha = 0.8;
beta = 0.4;
K1 = [0.9];
K2 = [0.5 2];
nbp = ((1-alpha)/2)*[1 0 -1];
dbp = [1 -beta*(1+alpha) alpha];
nbs = ((1+alpha)/2)*[1 -2*beta 1];
dbs = dbp;
[Hlp,w] = freqz(nbp,dbp,512);
[Hhp,w] = freqz(nbs,dbs,512);
hold on
for k = 1:length(K1)
    for m = 1:length(K2)

H = K1(k)*Hlp+K2(m)*Hhp;
        semilogx(w/pi,20*log10(abs(H)));

xlabel('Gain, dB');
        ylabel('\omega/\pi');

clear H;
        hold on;
    end
end
grid on
axis([.01 1 -8 8]);

11.23 The transpose of the decimator structure of Figure 11.63 yields



3

3

3

3

3

3

z–1

z–1

z–1

z–1

z –1

z–1

2

2

E00(z)

E01(z)

E02(z)

E12(z)

E11(z)

E10(z)

x[n]

y[n]

11.24

H(z)3 4

3 4

3

3

z− 1

z−1

R0(z)

R1( z)

R2(z)
       

3 4

3

3

R0(z)

R1( z)

R2(z)

z−4

z− 4

z
3

z
6

(a)     (b)
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4

4

z

z
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z−1

34

3

3

R0 (z)

R1(z)

R2 (z)

4

4

z −1

z −1

(c)     (d)
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z −1

34

3
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4

4z −1
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z−1
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z−1

z−1

z−1

z
−1

z−1

z−1
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4

4

4

4

4

4

4

4

4
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E12 (z)

E13(z)

E00 (z)

E01 (z)

E02 (z)

E03 (z)

(e)

M11.1  Figures below illustrate the application of Program 11_1 in detecting the touch-tone digits A
and 3:

       
    Touch-Tone Symbol = A    Touch-Tone Symbol = 3

M11.2 For R = 16, the two strong peaks occur at k = 3 and 5.  The associated frequencies are 

ω1 = 2π×3

16
,  or f1 = 3

16
= 0.1875,  and f2 = 5

16
= 0.3125.   For R = 32, the two strong peaks occur at

k =5 and 10.  The associated frequencies are  f1 = 5

32
= 0.15625,  and f2 = 10

32
= 0.3125.



        

For R = 64, the two strong peaks occur at k = 11 and 22.  The associated frequencies are 
f1 =11/ 64 = 0.1718,  and f2 = 20/ 64 = 0.3125.   For R = 128, the two strong peaks occur at k = 

21 and 39.  The associated frequencies are f1 = 21/128 = 0.1641,  and f2 = 39 /128 = 0.3047.   
Moreover, the last two plots show a number of minor peaks and it is not clear by examining 
these plots whether or not there are other sinusoids of lesser strengths present in the sequence 
being analyzed.

        
An increase in the size of the DFT increases the resolution of the spectral analysis by reducing

 the separation between adjacent DFT samples.  Also the estimated values of the frequencies of
 the sinusoid get closer to the actual values of 0.167 and 0.3076 as the size of the DFT increases.

M11.3 As the separation between the two frequencies decreases, the distance between the two 
maximas in the DFT of the sequence decreases, and when f2 = 0.21, the second sinusoid 
cannot be determined from the DFT plot.  This is due to the use of a length-16 rectangular 
window to truncate the original infinite-length sequence.  For a length-16 rectangular 
window, two adjacent sinusoids can be distinguished if their angular frequencies are apart by 

half the mainlobe width of  4π
N

 radians or equivalently, if their frequencies are apart by 

2
N

= 0.0625.   Note that the DFT length R = 128 is all plots.



        

        
M11.4 f2 = 0.21, f1 = 0.18.  Hence, ∆f  = 0.03.  For a Hamming window the mainlobe width 

∆ ML = 8π
N

.   The DFT length R = 128 in all plots.

       

(i)  N = 16.  Here it is not possible to distinguish the two sinusoids.  This also can be seen 

from the value of ∆ ML = 8
16

= 0.5,  and hence, half of the mainlobe width is greater than ∆f .

(ii)  Increasing N to 32, makes the separation between the two peaks visible.  However, it is 
difficult to identify the peaks accurately.



       

(iii)  Increasing N to 64, makes the separation between the two peaks more visible.  However, 
it is still difficult to identify the peaks accurately.

(iv)  For N = 128, the separation between the two peaks clearly visible.

Note also the suppression of the minor peaks due to the use of a tapered window.

M11.5  Results are similar to that in Problem M11.4.

       

       

M11.6  f2 = 0.21, f1 = 0.18.  Hence, ∆f  = 0.03.   The DFT length R = 128 in all plots.



       

(i)  For N = 16, it is difficult to identify the two sinusoids.

(ii)  For N = 32, there are two peaks clearly visible at k = 36 and 43, respectively.

       

(iii)  For N = 64, it is difficult to identify the two sinusoids.

(iv)  For N = 128, there are two peaks clearly visible at k = 37 and 41, respectively.

M11.7

      



The SNR computed by the program is –7.4147 dB.  There is a peak at the frequency index 29 
whose normalized frequency equivalent is equal to 29/256 = 0.1133.  Hence the DFT approach
has correctly identified the frequency of the sinusoid corrupted by the noise.

M11.8

      

The SNR computed by the program is –7.7938 dB.  There is a peak at the frequency index 42 
whose normalized frequency equivalent is equal to 42/256 = 0.1641.  Hence the DFT approach
has correctly identified the frequency of the sinusoid corrupted by the noise.

M11.9 The following program can be used to plot the power spectrum  estimates of the noise 
corrupted signal windowed by a rectangular window.

% Power Spectrum Estimation %
nfft = input('Type in  the fft size = ');
n = 0:1000;
g = sin(0.1*pi*n) + sin(0.2*pi*n) + randn(size(n));
window = boxcar(nfft);
[Pxx, f] = psd(g,nfft,2,window);
plot(f/2,10*log10(Pxx));grid
xlabel('\omega/\pi');ylabel('Power Spectrum, dB');
titletext=sprintf('Power  Spectrum With Window Size =
%d',nfft);
title(titletext);



The power spectrum estimate with window size = 64 and 256 are shown  below
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Power  Spectrum With Window Size = 256

M11.10 Program_11_4 can be used to evaluate the Bartlett and Welch  estimate by changing

g = 2*sin(0.12*pi*n) + sin(0.28*pi*n) + randn(size(n));
to  g = sin(0.1*pi*n) + sin(0.2*pi*n) + randn(size(n));

and the line window = hamming(256)  with window =  boxcar(1024) for the 
Bartlett estimate, and with window = hanning(1024) for the  Welch estimate. Also set 
nfft=1024.

The plot of the Bartlett estimate of the power spectrum estimate for the  noise corrupted signal 
is shown below
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Bartlett Estimate (Overalp = 0 samples)

The Welch estimates of the power spectrum with an overlapping Hann window for  overlaps of 
64 and 128 samples are shown below
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M11.11 Use the statement b = remez(11,[0 0.3 0.5 1],[1 1 0 0],[1 1]); to 
design  the FIR filter. Then use the statement [d,p0] = lpc(b,order); and run it for 
order =  4,5 and 6 to determine  an equivalent all-pole model. The magnitude response of the 
orignial FIR filter (solid  line) and the all-pole equivalent (dotted line) are shown below for 
different  values of order.
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