A Simple Skew Angle Detection and Alleviation based on Readback Signal in Bit-Patterned Magnetic Recording

Santi Koonkarnkhai ${ }^{1}$, Chanon Warisarn ${ }^{2}$, and Piya Kovintavewat ${ }^{1}$

${ }^{\text {}}$ Advanced Signal Processing for Disruptive Innovation Research Center, NPRU, NakhonPathom-73000, Thailand. ${ }^{2}$ College of Advanced Manufacturing Innovation, KMITL, Bangkok-10520, Thailand.

MMM2020
Virtual Conference

MOTIVATION

※ Bit-patterned magnetic recording (BPMR) can increase an areal density (AD) up to $4 \mathrm{~Tb} / \mathrm{in}^{2}$.
※ Skew angle (SA) can change the relative placement of read/write elements on the slider, leading to a design issue in servo and write synchronization.
※ In conventional systems, the SA can increase up to 35° (degrees) for inner and outer diameters [1].
※ Without a SA detection and alleviation method, the system performance will dramatically degrade, particularly at high ADs.
※ Fig. 1(a) displays a BPMR magnetic medium and an MR read head with SA effect, whereas Fig. 1(b) shows the impulse responses of upper, center, and lower tracks at 0° (degree) and $30^{\circ} \mathrm{SA}$ at AD of $3 \mathrm{~Tb} / \mathrm{in}^{2}$. Clearly, the impulse responses rely on the SA.

Fig. 1. (a) A BPMR medium and an MR head with SA effect and (b) the impulse responses of different tracks at $A D=3 \mathrm{~Tb} / \mathrm{in}^{2}$.

Fig. 2. A BPMR channel model with the SA effect.
※ BPMR channel model with the SA effect

	Coefficients of 2D channel response
- Readback Signal	$y_{k}=\sum_{u} \sum_{v} h_{u, v} a_{j-u, k-v}+n_{k}$

-2D Gaussian pulse response
where $x_{r}=x \cos (\theta)-z \sin (\theta), z_{r}=x \sin (\theta)+z \cos (\theta)$, and θ is the skew angle in degree.

[^0]
Acknowledgments

This work was supported by the Research and Development Institute, NPRU, Thailand.

PROPOSED METHOD

※ The SA detection

- Fig. 3 shows the SA profiles of the channel coefficient $h_{-1,0}$ and the target coefficient $g_{-1,0}$ at $3,3.5$, and $4 \mathrm{~Tb} / \mathrm{in}^{2}$ for different SAs.
- We found that there is a relationship between $h_{-1,0}$ and $g_{-1,0}$.
- A simple SA detection method will utilize $g_{-1,0}$ to approximate the SA experienced in the system (i.e., $g_{-1,0} \approx h_{-1,0}$) by using the target and equalizer design based on an MMSE approach.
※ The 2D BPMR channel matrix

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{-1,-1} & h_{-1,0} & h_{-1,1} \\
h_{0,-1} & h_{0,0} & h_{0,1} \\
h_{1,-1} & h_{1,0} & h_{1,1}
\end{array}\right]
$$

※ The 2D target (G)

$$
\mathbf{G}=\left[\begin{array}{lll}
g_{-1,-1} & g_{-1,0} & g_{-1,1} \\
g_{0,-1} & g_{0,0} & g_{0,1} \\
g_{1,-1} & g_{1,0} & g_{1,1}
\end{array}\right]
$$

※ The SA alleviation

Fig. 3. The SA profile with respect to different channel and target coefficients.

After the SA is detected, a pair of flipped-cross-track symmetric 2D target and 1D equalizer associated with the estimated SA is employed to alleviate the SA in data detection process.
※ Target and Equalizer Design:
The target and its corresponding equalizer are designed by minimizing the mean-squared error between the equalizer output z_{k} and the target output d_{k} according to

$$
E\left[e_{k}^{2}\right]=E\left[\left(z_{k}-d_{k}\right)^{2}\right]=E\left[\left(\mathbf{f}^{\mathrm{T}} \mathbf{y}_{k}-\mathbf{g}^{\mathrm{T}} \mathbf{a}_{k}\right)\left(\mathbf{f}^{\mathrm{T}} \mathbf{y}_{k}-\mathbf{g}^{\mathrm{T}} \mathbf{a}_{k}\right)^{\mathrm{T}}\right]
$$

※ Design of a flipped-cross-track symmetric 2D target
Define: $g_{-1,-1}=g_{1,1}, g_{-1,0}=g_{1,0}, g_{1,-1}=g_{-1,1}, \mathbf{g}=\left[g_{-1-1} g_{0,-1} g_{1,-1} g_{-1,0} g_{0,0} g_{1,-1}\right]^{\mathrm{T}}$ is the column vector of the target, $\mathbf{f}=\left[f_{-K} \ldots f_{0} \ldots f_{K}\right]^{\mathrm{T}}$ is the column vector of $g_{-1,0}$ the equalizer, $M=2 K+1$ is the number of equalizer coefficients, L is the number of target coefficients, $\mathrm{R}=\mathrm{E}\left[\mathbf{y}_{\mathrm{k}} \mathbf{y}_{\mathrm{k}}^{\mathrm{T}}\right]$ is an M-by- M auto-correlation matrix of $\mathbf{y}_{\mathrm{k}}, \mathbf{A}=$ $E\left[\mathbf{a}_{\mathrm{k}} \mathbf{a}_{\mathrm{k}}{ }^{\mathrm{T}}\right]$ is an L-by- L auto-correlation matrix of \mathbf{a}_{k}, and $\mathbf{T}=E\left[\mathbf{y}_{\mathrm{k}} \mathbf{a}_{\mathrm{k}}{ }^{\mathrm{T}}\right]$ is an M-by- L cross-correlation matrix of \mathbf{y}_{k} and \mathbf{a}_{k}, where $\mathbf{a}_{\mathrm{k}}=\left[\begin{array}{llll}a_{-1, k} & a_{0, k} & a_{1, k} & a_{-1, k-1}\end{array} a_{0, k-1} a_{0, k-2}\right]^{\mathrm{T}}$ and $\mathbf{y}_{\mathrm{k}}=\left[\begin{array}{llll}y_{k+K} & \ldots & y_{k} & \ldots\end{array} y_{k-K}\right]^{\mathrm{T}}$

MMSE: $E\left[\left\{e_{k}\right\}^{2}\right]=\mathbf{f}^{\mathrm{T}} \mathbf{R f}+\mathbf{g}^{\mathrm{T}} \mathbf{A g}-2 \mathbf{f}^{\mathrm{T}} \mathbf{T g}-2\left(\lambda \mathbf{I}^{\mathrm{T}} \mathbf{g}-1\right)$, where $\mathbf{I}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]^{\mathrm{T}}$. Minimization process give:
$\lambda=\frac{1}{\mathbf{I}^{\mathrm{T}}\left(\mathbf{A}-\mathbf{T}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{T}\right) \mathbf{I}} \quad \mathbf{g}=\lambda\left(\mathbf{A}-\mathbf{T}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{T}\right)^{-1} \mathbf{I} \quad \mathbf{f}=\mathbf{R}^{-1} \mathbf{T g}$

SIMULATION RESULTS

※ Parameter Setting

SNR $=10 \log _{10}\left(1 / \sigma^{2}\right)$ in dB , Equalizer : 7-tap 1D equalizer, and AD: at $3.0 \mathrm{~Tb} / \mathrm{in}^{2}$, $T_{x}=T_{z}=14.5 \mathrm{~nm}$. and $3.5 \mathrm{~Tb} / \mathrm{in}^{2}, T_{x}=T_{z}=13.5 \mathrm{~nm}$.

※ Define

- "Conv." is the system without SA detection and correction. - "Prop." is the proposed system with flipped-cross-track symmetric 2D target.
- "Asym. 2D" is the proposed system with asymmetric 2D target [2].
※ Conclusion
- The proposed method outperforms the conventional system as shown in Fig. 4.

Fig. 4. Performance comparison
at 3 and $3.5 \mathrm{~Tb} / \mathrm{in}^{2}$.

- The Viterbi detector used for the flipped-cross-track symmetric 2D
target has lower complexity than an asymmetric 2D target.
Although high SA provides better performance than low SA due to less ITI effect (not shown here), a large SA definitely causes mechanical problems during read/write processes.

[^0]: [1] Z. He, et al., MATEC Web of Conferences, 42 (2016).
 [2] S. Koonkarnkhai, et al., ECTI Trans. on Comp. and Info. Tech., 6 (2012) 175-182.

