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Abstract: A girth is one of the parameters that can
determine the performance of low-density parity-check
(LDPC) codes. Because a full Tanner graph of a parity-
check matrix, H , can be generated from a small graph,
we propose a novel algorithm for constructing irreg-
ular column-weight-two LDPC codes with a predeter-
mined large girth. The proposed algorithm carefully add
edges and vertices in the graph until it fully expands
to represent the required H matrix. Simulation results
show that the proposed algorithm can provide the H

matrix with a very high girth if compared to a well-
known progressive-edge growth (PEG) algorithm, and
also yields a good bit-error rate performance.

1. Introduction

Low-density parity-check (LDPC) codes were origi-
nally proposed by Gallager in 1962 [1], and rediscovered
by Mackay and Neal in 1996 [2]. Since then, various dif-
ferent code construction methods have been proposed,
such as finite geometry [3] and progressive-edge growth
(PEG) [4] algorithms, with some good codes approach-
ing the Shannon limit [2]. This paper focuses on the con-
struction of column-weight-two LDPC codes. Although
this class of codes is known to have the minimum dis-
tance increased logarithmically with code length, these
codes offer other advantages, e.g., less computational
complexity when compared to the codes with higher
column weights, and good potential in partial response
channels [5]. Moreover, it is used to design very sparse
non-binary LDPC codes with small to moderate code
length in high Galois field orders, which can provide high
performance [6].

In literature, Malema and Liebelt [7] proposed to use
known distance graphs or cages to construct column-
weight-two or (j, k) LDPC codes, where j = 2 is a column
weight and k is a row weight. By representing the ver-
tices and edges of the cages as rows and columns of the
parity-check matrix, H , the column-weight-two LDPC
code with girth twice that of the shortest cycles of cages
can be derived. Venkiah et al. [8] presented a random-
ized PEG algorithm to design cages, given a target girth.
Additionally, Tao et al. [9] introduced (k, k) quasi-cyclic
LDPC codes instead of cages, that can achieve a large
girth of 36 for (2, 3) LDPC sample codes.

check nodes

bit nodes

1
p

1 0 0 0 0 1 0 0 1 0

1 0 1 1 0 0 1 1 0 0

0 1 0 1 0 1 0 0 0 1

0 1 0 0 1 0 1 0 1 0

0 0 1 0 1 0 0 1 0 1

=

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

H

(a) (b)

2
p

3
p

4
p

5
p

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b

10
b

Figure 1. The H matrix of size 5 × 10 and its corre-
sponding Tanner graph.

In this paper, we propose a novel method to design
irregular column-weight-two LDPC codes with a given
large girth. Our proposed method starts from a ring
structure, where its vertices and edges correspond to
rows and columns of the H matrix, respectively. Then,
an edge or a series of alternating edges and vertices are
recursively added to the initial ring until the code length
is satisfied. At each round of adding process, a certain
constraint is imposed to ensure that the girth of the H

matrix will provide at least the target girth. Finally,
the resulting H matrix satisfying the target girth, code
length, and column-weight-two, using less parity-check
bits, will be compared with the H matrix obtained from
the PEG algorithm.

2. Definitions and Notations

Consider the H matrix of size M × N , where M is
the number of check nodes (or parity bits) and N is
the number of bit nodes (or a code length). In gen-
eral, the H matrix can be represented by a Tanner
graph [10], which consists of two sets, namely, a set
of check nodes {p1, p2, . . . , pM} and a set of bit nodes
{b1, b2, . . . , bN}. Let dpi

be the degree of the i-th check
node that corresponds to the number of non-zero ele-
ments in the i-th row of the H matrix, and dbj be the
degree of the j-th bit node that corresponds to the num-
ber of non-zero elements in the j-th column of the H

matrix. Fig. 1 illustrates an example of the H matrix of
size 5 × 10 and its corresponding Tanner graph, where
dp1

= 3, dp2
= 5, dp3

= dp4
= dp5

= 4. and dbj = 2 for
j ∈ {1, 2, . . . , 10}.
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Figure 2. (a) The H matrix and its Tanner graph with
g = 8, (b) its corresponding ring with 4 vertices
and 4 edges, and (c) the 3 layers (l1, l2, l3) in the
ring.

Here, we map a check node pi and a bit node bj of the
Tanner graph as a vertex and edge into a graph based
on a ring structure denoted as G, respectively. Consider
the H matrix with girth g = 8 and its corresponding
Tanner graph in Fig. 2(a), in which it can be mapped
into graph G with 4 vertices and 4 edges, as illustrated
in Fig. 2(b). Note that each vertex is represented by a
rectangular box ✷, where the number i inside ✷ is the
i-th check node, whereas each edge is represented by a
line, where the number j labeled close to the line is the
j-th bit node. For example, the vertex 1 has two lines
(labeled as 1 and 4) connected to it, which means the
first row in the H matrix will have an element ‘1’ on the
1-st and 4-th columns as shown in Fig. 2(a).

If we pick any vertex (e.g., vertex 1) in this graph G,
and pull it up such that the remaining vertices are drawn
closer. Hence, we can define the number of layers as the
number of groups of the vertices that are of different
heights. For instance, there are 3 layers denoted as li for
i ∈ {1, 2, 3}, where the vertex 1 is in l1, and the vertex
4 is in the last layer denoted as lmax = l3, as depicted in
Fig. 2(c). With this ring structure, the girth of the H

matrix is double of the number of vertices in ring. For
example, the H matrix in Fig. 2(a) has g = 8, whereas
the ring in Fig. 2(b) has 4 vertices and 4 edges.

3. Proposed algorithm

To construct a column-weight-two LDPC code with
length N and target girth gt, where gt is an even number,
we first create an initial ring of graph G with the number
of vertices and edges equal to gt/2. Hence, we obtain the
layer

lmax =

{

gt/4 + 0.5, if gt/2 is odd
gt/4 + 1, if gt/2 is even

. (1)

Notice that the initial ring of graph G will represent the
parity-check matrix of size gt/2× gt/2, which means we
need to add N − gt/2 bit nodes (or edges) in this graph
to satisfy the code length of N .

The proposed algorithm recursively adds edge or a
series of alternating edges and vertices in G until N edges

(bit nodes) are obtained, while keeping every local girth
equal to gt, which can be explained as follows.

1) Choose any vertex with the lowest degree in G, which
will be referred to as pi.
2) Compute lmax, where pi is considered as in l1. Then,
– If gt ≤ 2lmax, we add one edge in G, connected be-

tween pi and the vertex with the lowest degree in lmax,
where a new local girth will be equal to 2lmax.
– If gt > 2lmax, we add gt/2− lmax vertices and gt/2−

lmax +1 edges on a single line connected between pi and
the vertex with the lowest degree in lmax. It should be
pointed out that if the number of additional edges in this
step causes the total number of edges in G to exceed N ,
we will ignore this Step and go to Step 4. This will result
in the actual code length less than N .
3) Go back to Step 1 until the number of edges is equal
to N .
4) Transform the resulting G into the H matrix.

When completing this procedure, we obtain the H ma-
trix with a girth of gt and a code length approximately
equal to N .

Example 1 : Suppose we want to design the H matrix
with gt = 8 and N = 9. We first generate a ring with
gt = 8 as displayed in Fig. 2(b). At first, all vertices have
dpi

= 2 for i ∈ {1, 2, 3, 4}. Then, if we choose the vertex
2, we get lmax = 3. Because gt > 2lmax, we add one
vertex (i.e., vertex 5) and two edges (labeled as 5 and 6)
between the vertex 2 (in l1) and the vertex 3 (in lmax),
as shown in Fig. 3(a) together with its corresponding
matrix form. Then, the vertices 1 and 4 now have the
lowest degree. If we expand the graph from the vertex 1,
which will be considered as in l1, we get lmax = 3. Again,
because gt > 2lmax, we add one vertex (i.e., vertex 6) and
two edges (labeled as 7 and 8) between the vertex 1 (in
l1) and the vertex 4 (in lmax) as displayed in Fig. 3(b).
Since the vertices 5 and 6 have the lowest degree, if we
expand a graph from the vertex 6, we get lmax = 4.
Because gt = 2lmax in this case, we add only one edge
(labeled as 9) between the vertex 6 (in l1) and the vertex
5 (in lmax) as depicted in Fig. 3(c). Therefore, because
the total number of edges in the graph is now equal to
N = 9, we stop the algorithm and obtain the H matrix
as given in Fig. 3(c).

4. Simulation Results

In this section, we first demonstrate that the proposed
code construction algorithm can produce column-weight-
two LDPC codes of various lengths with arbitrarily pre-
defined target girths. Fig. 4 depicts several constructed
sample codes of small to moderate block lengths (i.e., N
= 256, 512, 1024, 2048, and 4096), and each of which
has different target girths varying from 8 to 24. Note
that each number inside the parenthesis in Fig. 4 denotes
the number of check bits (M) used to generate each re-
sult. As can be seen, for each code length, a wide range
of girths can be achieved where codes with higher girth
are accomplished with the expense of reduced achievable
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Figure 3. How the proposed algorithm expand an initial
ring to obtain the H matrix with g = 8 and N = 9,
and the corresponding matrix form for each case.
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Figure 4. The code rate (R) versus the girth (g) for
different N ’s and M ’s, where a solid line represents
the estimated R from (2).

code rates (R = 1−M/N), i.e., more check bits required.
For the same target girth, codes with larger block lengths
can be constructed at higher code rates than those with
smaller block lengths.

From Fig. 4, it appears that there is a clear relation
between the achievable code rates and the target girths
for each code length. Hence, we derive a mathematical
formulae to estimate R for given gt and N by using a
curve fitting technique with numerous constructed codes
to obtain

R = 0.00103g2t −0.0647gt+1.3532+0.8

(

x− 10

x+ 10

)

, (2)

where x = log
2
(N). As shown in Fig. 4, the estimated

code rate from (2) closely matches the actual one for N
ranged from 256 to 4096, especially when gt is large.

Next, we compare the minimum girth of codes ob-
tained from the proposed algorithm with the PEG algo-
rithm. Fig. 5 shows that, for different values of M and

200 400 600 800 1000 1200 1400 1600
6

8

10

12

14

16

18

20

Number of parity bits (M)

M
im

im
un

 g
irt

h

 

 

PEG (N = 256)
PEG (N = 1024)
PEG (N = 4096)
Proposed (N = 256)
Proposed (N = 1024)
Proposed (N = 4096)

Figure 5. The number of girths as a function of M ’s for
different N ’s.

N , the proposed codes can in most cases offer a mini-
mum girth higher than that of PEG codes by two. For
the same fixed target girth, the proposed codes require
fewer check bits than the PEG codes, i.e., higher code
rate. For example, when gt = 10 and N = 4096, the
proposed code provides a code rate of 0.8687, while the
PEG code gives a code rate of 0.8069. In some other
cases (not shown here), the proposed codes can provide
higher girths than the PEG codes by four or even six.

Finally, to evaluate the bit-error rate (BER) perfor-
mance of the proposed algorithm, we consider an additive
white Gaussian noise (AWGN) channel model, where a
binary input sequencemk ∈ {0, 1} of lengthN−M bits is
encoded by an LDPC encoder and is mapped to an N -bit
coded sequence ck ∈ {±1}. Then, the received sequence
is given by yk = ck + wk, where wk is AWGN with zero
mean and variance σ2. At the receiver, the received se-
quence yk is decoded by an LDPC decoder implemented
based on a message passing algorithm [1] with 30 itera-
tions. In simulation, the signal-to-noise ratio is defined
as

SNR = 10 log10

(

1

Rσ2

)

, (3)

in decibel (dB). Moreover, each BER point is computed
based on a minimum number of 50000 data packets and
1000 error bits.

Fig. 6 illustrates the BER performance of three dif-
ferent schemes, including the code from a random H

matrix, where the parenthesis (M,N) denotes the num-
ber of parity bits (M) and coded bits (N), and each code
has approximately the same code rate of 0.5. Apparently,
the proposed algorithm performs better than other algo-
rithms. It should also note that codes with larger block
lengths have higher girths and also perform better than
codes with smaller lengths.
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Figure 6. BER performance with different codes.

5. Conclusion

This paper proposes a novel approach to construct
column-weight-two irregular LDPC codes with arbitrary
high girth, whose key idea is to construct a Tanner graph
from the a small graph based on a ring structure. Given
this graph with high girth gt and code length N , the pro-
posed algorithm carefully adds the vertices represented
by check nodes and the edges represented by bit nodes in-
side the graph, while maintaining every local girth equal
to gt, until it contains N edges. Simulation results indi-
cate that the proposed algorithm can yield a higher girth
and a lower BER than the PEG algorithm for all code
rates and lengths.
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