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Abstract: In this paper, we constructed column weight two 

parity-check matrix by imposing pre-defined target girth 

and code length. Then the constructed binary parity-check 

matrix is transformed into non-binary matrix by using a 

randomly generated elements in Galios field GF(q), where 

q=2p. We investigate The bit-error rate performance (BER) 

for higher orders of Galios field GF(q) as compare to its 

binary counterpart. We found that the column weight two 

LDPC codes with higher orders of GF(q) substantially 

improve BER performance and convergence speed than low 

values of GF(q). 

 

1. Introduction 

Since Claude Shannon proposed the theory of mathematical 

constraints for channel capacity, enormous potential 

research has been carried out on channel coding in digital 

communication system. After more than one decade, LDPC 

codes were first introduced by Gallagar [1] in 1962. Since 

the analytical tools weren't available at that time, these 

codes were ignored almost three decades..  Later these 

codes were rediscovered by Mackay and Neal in 1996 [2]. 

They show that the performance of LDPC codes 

approaches the Shannon's limit. Afterward researchers 

focused on this potential forward error correction (FEC) 

codes in multiple domains of LDPC codes.  Various 

standards such as IEEE 802.11e, IEEE 802.11n, WiMAX, 

and DVB-S2/T2 have adopted LDPC codes [3].  Today, 

LDPC codes are considered as the most eligible channel 

codes for future generation high data rate communication 

and various practical applications.  Development of LDPC 

codes have been also studied widely in current decade.  
     This paper focuses on non-binary LDPC codes, which 

are derivative of LDPC over Galois field GF(q), where q 

=2^p, p is integer number. Non-binary LDPC codes were 

first investigated by Davey and MacKay in 1998 [4], whose 

performance is much better than its binary counterpart. A 

most widely used sum-product algorithm (SPA), which is 

used in binary LDPC codes, causes the high computation of 

LDPC decoding, almost infeasible for higher order of q. It 

is shown that complexity can be deduced to  2logq q  if 

we transferred a SPA algorithm for GF(q) into a frequency 

domain computation [5]. Although many researchers are 

working on the topic of non-binary LDPC codes, there is 

still a lot of works needed to be done for non-binary LDPC 

codes.  

A girth is one of the important constraints for designing a 

good LDPC code because a large girth facilitates an 

iterative decoding and imposes a respectable minimum 

distance which can improve the decoding performance at 

high signal-to-noise ratio (SNR) scenario [7]. Therefore, 

this work aims the constructing good column weight two 

non- binary LDPC codes by imposing upon a target girth as 

a major constraint.  

This paper is organized as follows.  Section II 

summarizes non-binary LDPC code including encoding and 

decoding procedure.  Section III explains our proposed 

method and Section IV gives simulation details and results.  

Finally, Section V concludes this paper. 

 

2. Non-Binary LDPC Codes 

LDPC codes are a class of linear block codes, which can be 

defined by a sparse parity-check matrix H of size M N , 

where M is the number of rows and N is the number of 

columns.  In general, the H matrix can also be represented 

by a Tanner graph [8] 

 

2.1 Construction of Non-Binary LDPC Codes 

A non-binary LDPC consists of a sparse parity-check 

matrix over finite field GF (q).  David and Mackay 

presented an idea of LDPC over finite fields (where q > 2) 

[4]. Meaningfully, it shows better performance than its 

binary counterpart.   

If the array H viewed as a matrix has a constant column 

weight γ and a constant row weight ρ, the code given by the 

null space of H is said to be (γ, ρ)-regular, otherwise it is 

said to be irregular [9].  Row-Column (RC) constraint 

ensures that the Tanner graph of the LDPC code given by 

the null space of H has a girth of at least 6 and that the 

minimum distance of the code, if (γ, ρ)-regular, is at least 

γ+1 [9--11].  The distance bound is tight for regular LDPC 

codes whose parity-check matrices have large column 

weights and row redundancies, such as the algebraic LDPC 

codes constructed using finite fields, finite geometries, and 
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combinatorial designs. Figure 1. shows the Tanner graph 

for non-binary LDPC codes. 

 

2.2 Decoding of Non-Binary LDPC 

There are number of decoding algorithms discussed in 

literature [4] for binary and non-binary LDPC codes as we 

can summarize following steps. 

a) Initialization: By using the received vector r, variable 

nodes are initially assigned with the likelihoods of channel 

reliability. 

b) Check node update: This step also called as horizontal 

step.  Each check nodes updated using the likelihoods 

message from adjacent variable nodes except considering 

updated check nodes. Q matrix construction. 

c) Variable node update: This step is known as vertical 

update, in this step, variable nodes receive message from 

adjacent check nodes. R matrix construction. 

d) Iterative decoding: Most likelihood value of code word 

ˆnc is computed with the step a) and variable nodes 

messages. Decoded code word is valid only if it 

satisfies . 0Tc H .  In case of no valid code word produced, 

decoding process stopped after certain number of iterations. 

 

2.3 FFT Based SPA decoding for GF (q) 

For decode non-binary LDPC codes, SPA algorithm for 

binary LDPC can be extended with the cost of increased in 

decoding complexity as value of q increases. Q matrix in 

case of GF (q) becomes more complex to evaluate.  In 

horizontal step, as more possible non-binary sequences 

needs to satisfy parity- check constraints, similarly R 

vertical matrix from Q matrix becomes much more 

complicated. Permutation and depermutation required in 

case of non-binary LDPC.  Cyclic shift of the likelihoods in 

downwards called permutation and upwards likelihoods 

cyclic shift is called depermutations. FFT used in [10] to 

perform the computation of the check nodes update in the 

frequency domain for simple product form transforms from 

convolution in mathematical implications. By this method 

the complexity in horizontal step for check node update 

meaningfully reduced [10--11]. In general, parity check 

equations are of the form satisfies (1). 
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Where parity check matrix ijh and jc GF (q), 

1,2,...,i M  and 1,2,...,j N , Algorithm can be 

summarized in Fig. 2 known as factor graph of non-binary 

LDPC. Coded symbol likelihoods jc are the column weight 

of codes.  Likelihoods of each coded symbols fj are column 

vectors containing q likelihoods of coded symbol. Block 

labeled ∏ connects non-binary element in each row to 

parity check matrix. 

 

3. Proposed method for the construction of H 

matrix with predetermined girth 

To construct parity check matrix with target girth gt  and 

desired number of bits nodes Nt  , we start with an initial 

column weight two H matrix of size gt / 2xgt / 2  . To 

expand this matrix into Nt  columns, we recursively find an 

appropriate condition that how to add bit nodes and check 

nodes into this matrix. Note that, adding more bit nodes 

may lead the current girth smaller than gt  . Hence, new 

check nodes should be also added to balance the target 

girth. We continue the process until the desire Nt  is 

obtained. The steps are summarized in algorithm 1 and 

algorithm 2 as follows. 

Algorithm 1:
 

1: Define a target girth
tg   

2: Define a target number of columns tN  

3: Construct an initial column weight two H  matrix of size 

/ 2 / 2t tg g  

4: N = number of columns of H  

5: while tN N  do 

6: Choose the check node with the lowest row-weight  

    and let it be initc in level 1.    

7:
maxmax init( , ) findLmax( , )LL c c H  \\Algorithm 2 

8: if 
  
L

max
³ g

t
/ 2  then  
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Figure 1. A Tanner graph of non-binary LDPC codes. 
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Figure 2. Generalized factor graph of a non-binary 

LDPC code using FFTs operations 
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Figure 3. BER perfomance of different H matrics 

9: Add one bit node into H  to connect 
maxLc and  initc .  

10: else  

11: Add 
  
g

t
/ 2 - L

max
+1 bit nodes into H  and also  

      add max/ 2tg L check nodes to keep target girth tg . 

12: end if 

13: Update N = number of columns of H  

14: end while 

15: return H  

 

Algorithm 2:  

function : 
maxmax init( , ) findLmax( , )LL c c H   

1: 1;L   \\ Set initial current level = 1 

2: initL cc  \\ Set initial check node in current level 

3: while forever do  

4: [ ]u c  \\ Initial all check nodes for current level 

5: [ ]u b  \\ Initial all bit nodes for current level 

6: for  all n Lc c  do 

7: find( ( ,:))n ncb H  \\ Find all bit nodes which 

                                             are connected with  

                                             the current check node 

8: [  ]u u nb b b  \\ Update without redundancy 

9: ( , ) 0n nc H b  \\ Eliminate current check   

                                   node and its bit nodes 

10: end for all 

11:  for all n ub b  do 

12: find( (:, ))n nbc H  

13: [  ]u u nc c c   

14: ( , ) 0n nb H c    

15: end for all 

16:  if uc is an empty set then \\ Check for lowest level  

17: return maxL L  

 
Figure 4. Average number of iterations required for 

decoding different LDPC codes over GF(q) 

18: return 
max

(1)L Lc  c
 
 

19:  break 

20: else  

21: 1L L   \\ Go to next level 

22: L uc c  \\ Update Lc  

23: end if 

24: end while 

 

Algorithm 2 is used to find maxL which is the highest level 

when the check node with lowest row-weight is assigned to 

be lowest level. With the binary parity check matrix 

H with desired tN  and target girth tg , we apply a non-

binary LDPC algorithm following Mackay’s algorithm. 

Nonzero elements of H matrix is replaced by randomly 

generated GF(q) elements. In the next section, we will show 

by simulation that a non-binary technique outperforms its 

corresponding binary LDPC, especially in high-order of 

Galois filed. 

 

4. Simulation results and discussions 

Consider an MN, H matrix, where N is the length of a 

code word, and M is the number of parity bits.  To evaluate 

the performance of the proposed algorithm, we simulate the 

system based on an additive white Gaussian noise (AWGN) 

channel model, where a binary input sequence ak  {0, 1} 

of length N – M bits is encoded by an LDPC encoder and is 

mapped to an N-bit coded sequence bk  {±1}.  Then, the 

received sequence is given by yk = bk + nk, where nk is 

AWGN with zero mean and variance 2.  At the receiver, 

the received sequence yk is decoded by an LDPC decoder 

implemented based on a message passing algorithm [1].  

Examined H matrix of size (324,648). Each BER point is 

computed based on a minimum number of 5000 data 

packets and all LDPC codes use the H matrix of size 

324648.  We use the LDPC decoder with 5 iterations and 

plot the BER performance as shown in Figure 2.  In 

simulation, the signal-to-noise ratio is defined as  

177



10 2

1
SNR 10log



 
  

 
,                       (2) 

in decibel (dB). 

We also compare the performance of different schemes by 

plotting the average number of iterations needed to decode 

all codeword of finite GF (q) LDPC codes as a function of 

Eb/N0 as shown in Fig. 4 based on our example.  It is 

obvious that the LDPC codes iteration can help to increase 

the performance of the system. 

As expected, a non-binary LDPC code with large q 

performs better than that with small q. 

 

5. Conclusions 

In this paper, we explained importance of non-binary LDPC 

codes and its discerption from associated open literature. In 

addition, we describes decoding procedure of non-binary 

LDPC codes in Section 2.  We have presented construction 

steps for generating H matrix with column weight two by 

using fixed target girth gt and code length N. Section 3 

showed performance comparisons of our tested simulation 

for constructed H matrix.  We take account of higher orders 

of GF(q), as well. As depicted higher orders of GF(q) 

outperforms binary LDPC codes and having substantially 

improved performance. In addition, we also compares BER 

as a function of number of iterations for a fixed SNR=4.5 

dB. 
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