
Efficiency Improvement of Data Duplicating
Method Based on Pipeline Processing

A. Kongsakul#1, C. Tantibundhit#2, and P. Kovintavewat*3

Electrical and Computer Engineering Department, Faculty of Engineering, Thammasat University, Thailand
* Data Storage Technology Research Unit, Faculty of Science and Technology,

Nakhon Pathom Rajabhat University, Thailand
Email: 1apichait_chut@hotmail.com, 2tchartur@engr.tu.ac.th, 3piya@npru.ac.th

Abstract—The data duplicating method is widely used in the

application of digital forensics. Practically, it utilizes the Linux
operating system and the DD (Disk Dump) program for data
duplicating because it can maintain data integrity, and users
can be confident that the duplicated data is same as the original
data. However, this method is based on single processing,
which imposes the limitations in increasing the speed of data
processing. This paper proposes a new approach to improve
the efficiency of the DD program based on two techniques. The
first technique is to use pipeline processing both to read the
original data and to write the duplicated data, while the second
technique is to separate the two channels connected to the device
that stores the original data and the device that stores the
duplicated data. Results indicate that combining these two
techniques will help the DD program significantly increase the
speed of data duplicating.

I. INTRODUCTION

Data duplicating can be employed with several purposes,
for example, i) duplicating data for storing important content
for future use when the original data is damaged (sometimes
known as “backup data”); ii) duplicating data for installation
work in a computer system that utilizes same devices and
drivers; and iii) duplicating data for uses in digital forensics.

Digital forensic is the process of acquiring, verifying,
analyzing, and storing the evident in digital form that resides
in a device, such as a personal computer, a notebook, or a
personal digital assistant (PDA). This digital data can be
used to identify an offender (or a wrongdoer), or it can be
considered as an evident in court. This digital evident is
extremely sensitive because it can be damaged or destroyed
if precautions are not carefully taken. Unlike a “hard”
evident such as fingerprint, the digital evident is easy to be
hidden and to be altered. Therefore, the key of digital
forensic is to duplicate the original data as completely as
possible. Then, only duplicated data will be utilized for
further analysis instead of using the original data. In other
words, it is required for digital forensics that the evident be
maintained in an original form (no modification or
alternation) because if we directly do something upon the
evident, this evident might be altered. Thus, it is crucial to
make a copy of the data that we want to analyze, and this
copied data must retain data integrity.

In practice, the Linux operating system and the DD
program are generally accepted to be utilized for data
copying in digital forensics. This is because this method can
retain data integrity and it can guarantee that the duplicated

data is same as the original data [1]. This method will
duplicate data in a sector-by-sector manner. Also, it can
verify data integrity by using a hash function [2] to compute
the massage digests of the original data and the duplicated
data. If these two massage digests are equal, it implies that
the duplicated data is same as the original data [2]. Because
the DD program works in a command line mode and
duplicates data in a sector-by-sector fashion, it takes a long
time to duplicate data.

Additionally, there are many methods for data duplicating,
such as using an EDBA algorithm [3], which can duplicate
data well but this algorithm can only be used with the file
system “Ext 2.” Moreover, this EDBA algorithm is still not
accepted in digital forensics. Another method to speed up
the DD program is to specify the block size of the data that is
read from a device called “Source” and that is written into a
device called “Target.” This is because the block size is set
to 512 bytes by default [2], thus taking a long time to read
and write data many times for duplicating the whole data.
Thus, if we could set the block size corresponding to the
buffer in a storage device (e.g., hard disk drives have a
buffer of 8 MB), the time for data duplicating would be
reduced.

Since the DD program is operated in a single processing
mode, it limits data processing speed. We propose a new
method to improve the efficiency of the DD program. The
proposed method employs two techniques. The first technique
is to use pipeline processing to read the original data and to
write the duplicated data. This technique will divide the
CPU processing into many steps and exploit them in “wait
state” [4]; thus improving the processing time. The second
technique separates the two channels that are connected to
the device that store the original data (referred to as
“Source”) and the device storing the duplicated data (referred
to as “Target”). By combining these two techniques, we can
improve the efficiency of the DD program to expedite the
processing time of data duplicating.

This paper is organized as follows. After briefly describing
the existing method for data duplicating in Section II, Section
III explains the details of the proposed method. Simulation
results are given in Section IV. Finally, conclusion is
provided in Section V.

II. EXISTING METHOD

The existing method uses the Linux operating system and
the DD program to perform data duplicating for digital

forensics. However, this method is based on single processing,
which imposes the limitations in increasing the speed of data
processing.

III. PROPOSED METHOD

The proposed method utilizes the two techniques so as to
improve the efficiency of the DD program to expedite the
processing time of data duplicating. These two techniques
can be explained as follows.

A. First Technique
 In general, CPU operates in a sequential processing manner
[5]. For instance, after “Fetch” operation is performed, it
sends to “Decode” operation. The total time for processing,
Ts, is given by

 sT kn= , (1)

where k denotes the time required to processing in each
cycle, and n denotes the number of commands needed to be
processed.

 In practice, the above-mentioned operation cannot increase
the efficiency of process because when subsequently
submitting work, CPU will be in an idle state until a new
work arrives. In fact, each work can be performed
simultaneously.

Pipeline processing [5] is the technique that can execute
several overlapped commands at the same time, which in
turn improves the CPU efficiency, as shown in Fig. 1.
Specifically, the pipeline processing can be divided into 5
steps, namely,
1) “Instruction Fetch” (or a command receiving part) will

receive new commands from main memory or from
Instruction Cache before sending them to other parts.

2) “Instruction Decode” (or a command translation part)
will classify received commands.

3) “Get Operands” (or a data receiving part) will receive
and store data used to processing.

4) “Execute” (or a processing part) is the step to processing
according to commands and operands obtained from 2)
and 3)

5) “Write Result” (or a replied data writing part) is
performed when finishes data processing. The result will
then be stored in register or in data cache.

By utilizing the pipeline processing technique [5], the total
processing time, Tp, can be reduced to

 ()1p nT k −= + . (2)

It is clear from Fig. 1 that when “Get Operands” receives
a command, it will subsequently send that command to
“Instruction Decode” and wait to receive a new command.
Similarly, when “Instruction Decode” receives a command,
it will translate and classify that command before sending a
result to “Get Operands.” This means that this technique can
execute many commands at the same time. Nonetheless, some

Fig.1. Pipeline processing technique in ideal mode and practical mode.

Fig. 2. A structure of Intel D945GCLF

some time slot might take longer than the others, especially
during data processing. This results in “Wait State” in CPU,
which slows down the processing speed.

It should be noted that the command that can help the
pipeline technique perform effectively is a command that
works independently from other commands, and it will not
wait for a previous command to be the input of an executing
command.

B. Second Technique

This second technique aims at managing communication
channel. Normally, a computer system has many
communication channels from I/O to CPU, as illustrated in
Fig. 2. In this paper, we focus only on the I/O channel
whose controller chip is ICH7. This ICH7 chip will control
communication to the I/O devices, which can be divided into
8 channels, namely, USB, IDE, Audio, SATA, LAN,
SMBUS, PCIBUS, and Legacy I/O controller [6].

In practice, if only one channel is used to connect
“Source” and “Target,” for data duplicating, it will cause a
bottleneck in the channel. Therefore, if we could separate the
channels (one for “Source” and the other for “Target”), this
bottleneck problem might be solved.

Fig. 4. The operation of the DD program that uses single processing

Fig. 3. The operation of the DD program that uses pipeline processing.

IV. SIMULATION RESULT

To demonstrate the proposed method, which performs the
DD program based on pipeline processing, we first use the
DD program to read data from the “Source.” Then, the read
data is sent to the second DD program via pipe. This second
DD program will write the received data into the “Target.”

Fig. 3 depicts the operation of the DD program that uses
pipeline processing. It is apparent that there are 2 data
blocks that are needed to be duplicated. The process
involves two steps.

The first step is to read data from the “Source” (RBi) and
the second step is to write the read data into the “Target”
(WBi). Therefore, the total processing time for pipeline
processing to duplicate these two data block is 10 clocks,
whereas that for single processing to duplicate these two data
block is 20 clocks, as shown in Fig. 4. This means that the
proposed method can help reduce the processing time to
duplicate data.

Fig. 5 displays the diagram on how the DD program works
based on pipeline processing, which will be used to compare
the performance of sequential processing and pipeline
processing. In general, sequential processing is performed
by a command line:

#DD if=/dev/source of=/dev/target

This means that the read procedure (if=/dev/source) and
the write procedure (of=/dev/target) are in the same
process, thus requiring the switching between the read
procedure and the write procedure. However, Fig. 5 separates

Fig. 5. How the DD program works based on pipeline processing.

these two procedures into 2 processes, and utilizes a pipe
command to connect these two processes. Specifically, a
pipe command will take the output from the first process to
be the input of the second process.

Performance comparison between sequential and pipeline
processing is given in Fig. 6. It is obvious that the DD
program with pipeline processing has a transfer rate higher
than that with sequential processing.

Next, we set up another experiment (using Intel D945GCLF
CPU Intel Atom 1.6 GHz with RAM 2GB) to test the
transfer rate between USB and USB, which can be divided
into 4 cases, i.e.,
1) USB to USB (already come within a board)
2) USB (PCI) to USB (use a card to transform the standard

port PCI to USB)
3) USB to USB (PCI) (use a card to transform the standard

port PCI to USB)
4) USB (PCI) to USB (PCI) (use a card to transform the

standard port PCI to USB)

Fig. 6. Performance comparison between sequential and pipeline processing.

TABLE I

TRANSFER RATE COMPARISON

Method Single
Processing (MB/s)

Pipeline
Processing (MB/s)

1. USB to USB 10.7 15.7
2. USB (PCI) to USB 14.4 21.2
3. USB to USB (PCI) 13.0 19.0
4. USB (PCI) to USB (PCI) 11.7 17.2

Table 1 shows the transfer rate of different cases. Because
case 2 and case 3 employ different communication channels
for “Source” and “Target,” they have a higher transfer rate
than case 1 and case 2, which use the same channel to
connect between “Source” and “Target.” This result can be
confirmed by plotting the transfer rate as a function of data
block size, as illustrated in Fig. 7. It is apparent that using
different communication channels for “Source” and “Target”
can increase the transfer rate.

V. CONCLUSION

From the experiment, we found that of pipeline processing
performs better than sequential processing, and can increase
efficiency so as to provide good performance.

ACKNOWLEDGMENT

This work was supported by a research grant DSTAR-
R&D 02-01-52 from I/UCRC in Data Storage Technology
and Application Research Center (D*STAR), King Mongkut’s
Institute of Technology Ladkrabang, and National Electronics
and Computer Technology Center (NECTEC), Thailand.

REFERENCES

[1] National Institute of Justice, “Test Results for Disk Imaging Tools: DD
GNU fileutils 4.0.36, Provided with Red Hat Linux 7.1,” 2002.

[2] T. Rude, DD and Computer Forensics – Deuce. Retrieved July 14,
2010, from http://www.crazytrain.com/dd2.html.

[3] W. Zhaohui, W. Xingang, and L. Pingping, “Application Research of
EDBA Algorithm for Completing Hard Disk Copy,” in Proc. of
Control and Decision Conference, pp. 5834 – 5836, June 2009.

Fig. 7. Performance comparison with different connections.

[4] K. Shibata and M. Yokoi, “Optimum Scheduling in Pipeline

Processing,” in Proc. of ICCS/ISITA’92, vol. 3, pp. 1078 – 1083,
November 1992.

[5] William Stalling, Computer Organization & Architecture. 6th-edition,
Pearson Education Indochina, 2003.

[6] Intel Cooperation, Intel® Desktop Board D945GCLF Technical
Product Specification Manual. Retrieved on July 14 2010, from
http://www.intel.com/support/motherboards/desktop/d945gclf/sb/CS-
029163.htm

