
 

PEG-Like Algorithm for LDPC Codes 
 
 

Gan Srirutchataboon, Ambar Bajpai, Lunchakorn 
Wuttisittikulkij 

Department of electrical Engineering  
Chulalongkorn University 

Bangkok Thailand 

Piya kovintavewat 
Faculty of Science and Technology 
Nakhon Pathom Rajabhat University 

Nakhon Pathom Thailand

 
 

Abstract—Progressive Edge-Growth (PEG) algorithm is one of 
the promising methods to construct a parity-check matrix (or H 
matrix) with a large girth for low-density parity-c heck (LDPC) 
codes.  However, generating a large H matrix based on a PEG 
algorithm usually requires a lot of computations because of its 
complexity.  This paper proposes an alternative method based on 
a topology matrix to construct the H matrix, which has lower 
complexity than the PEG algorithm.  We refer to the proposed 
method as a “PEG-like” algorithm.  Results indicate that the 
proposed method can provide the same H matrix as the PEG 
algorithm does but with lower complexity 

Index Low-density parity-check (LDPC), non-binary topology 
matrix, parity-check matrix, progressive edge-growth (PEG) 

 

I. INTRODUCTION  

Low-density parity-check (LDPC) codes have recently 
become an important class of codes used in many practical 
applications. Newly emerging wireless networking standards 
such as wireless LANs (IEEE 802.11n), WiMax (IEEE 
802.16e), and digital video broadcasting (DVB-T2) adopt 
LDPC codes to combat against channel errors.  

It is commonly known that LDPC codes can achieve 
performance close to the Shannon’s limit [1] with moderate 
complexity using suboptimal iterative decoding. LDPC codes 
were originally invented by Gallager in 1962 [2], and 
rediscovered in 1996 by Mackay and Neal [3] and Wiberg [4]. 
Since then, there has been extensive research and development 
of LDPC codes. Various new classes of LPDC codes have been 
found such as [5], [6], [7], [8]. Different methods for 
constructing a parity check matrix (H) have also been 
introduced. Among them, a progressive edge-growth (PEG) 
algorithm [5] is perceived promising, as it yields a large girth 
and can be applied to generate linear-time encodeable LDPC 
codes. Subsequent researches [8-10] seek to improve the PEG 
performance from different aspects. For example, Zhou et al. 
[8] proposed an extended PEG algorithm for constructing the 
H matrix to achieve high code rate (i.e., 0.93), while 
maintaining the same girth.  Prompakdee et al. [9] presented a 
method to generate the H matrix based on Quasi Cyclic (QC) 
method for the PEG algorithm with maximized girth property. 
In [10], a modified PEG algorithm was introduced to improve 
the PEG performance in the waterfall region.  

However, constructing a large H matrix based on the PEG 
algorithm normally requires a relatively long computational 
time, especially when the size of H matrix is very large and the 
required bit node degree is high. The increase in complexity of 
PEG is mainly due to the time spent on the process of subgraph 
spreading. Therefore, this paper aims to reduce the complexity 
of subgraph spreading by introducing a new method for 
constructing the H matrix based on topology matrix. The new 
algorithm will be shown to create the same H matrix as 
generated by the PEG algorithm but with lower complexity.  
This is why we refer to the proposed algorithm as a PEG-like 
algorithm. 

The rest of this paper is organized as follows. Section II 
explains the definitions and notations of LDPC codes.  Then, 
Section III briefly explains the PEG algorithm, and Section IV 
presents the proposed method. Simulation results are given in 
Section V.  Finally, Section VI concludes this paper.  

II.  DEFINITIONS AND NOTATIONS 

An M-by-N parity-check H matrix (M rows and N columns) 
of an LDPC code can be represented by a Tanner graph [7], 
where M is the number of parity-check equations, N is the 
number of coded bits, and K = N – M is the number of 
message bits.  The Tanner graph is a bipartite graph, which 
composes of the set ( , ),V E  where ,c sV V V= ∪  cV =  

0 1 1{ , ,..., }Mc c c −  is the set of check nodes, 0 1 1{ , ,..., }s NV s s s −=  

is the set of bit nodes, and E is the set of edges, ( , )i jc s E∈  

corresponding to a nonzero element at the i-th row and the j-th 
column in the H matrix, where 0 1i M≤ ≤ − , and 
0 1j N≤ ≤ − .   

Additionally, let the degrees of check and bit nodes be 
define as 

0 1 1
{ , ,..., }

Mc c c cD d d d
−

=  and 
0 1 1

{ , ,..., },
Ns s s sD d d d
−

=  

respectively, where 
j

k
sE  denote the edges on sj with 

0 1
jsk d≤ ≤ − .  Fig. 1 shows the Tanner graph for Ds = {2, 2, 2, 

2, 2, 2, 2, 2, 2} and Dc = {4, 4, 4, 4, 4}, where the bit  
represents the check node ci, and the   ο represents the bit node 
sj. 



 

1f 2f 3f 4f0f

0s 1s 2s 3s 4s 5s 6s 7s 8s 9s
 

Fig. 1. A Tanner graph with Ds = {2, 2, 2, 2, 2, 2, 2, 2, 2} and Dc = 
{4, 4, 4, 4, 4}. 

l

js

 

Fig. 2. A sub-graph spreading from bit node sj.  

III .PEG ALGORITHM 

This section briefly explains how the PEG algorithm works 
[6], whose process is to connect an edge between a check node 
and a bit node by using the spreading of the sub-graph as 
depicted in Fig. 2.  For a given bit node sj, we define its 
neighbourhood within depth l, 

j

l
sN , as the set consisting of all 

check nodes reached by sub-graph spreading. Specifically, the 
first edge that wants to connect to a bit node sj can be chosen 
randomly from a check node with the lowest degree.  For the 
next edge, we must first spread the sub-graph from sj and then 
select the check node from the lowest depth(at depth l) of this 
graph that has the lowest degree.  However, if the sub-graph 
does not cover all check nodes, we must choose the check 
node with the lowest degree that is not within the sub-
graph(

j

l
sN ). The PEG algorithm can be summarized as 

follows.  

1. Assign the degree of a bit node sj, e.g., 
0

2,sd =  and the set 

of edges incident to this bit node as 0 1{ , }
j j j

s s sE E E= . 

2. Add an edge to this bit node sj.  First, if the edge that wants 
to be added to this bit node js  is 0

jsE , we can choose the 

set of cV  with the lowest degree randomly.  If the edge is 

not 0

jsE , we must expand the sub-graph up to depth l .  

Then, the two event a) and b) can happened: 
a) Given the set of cV  within depth l  denoted as 

j

l
sN , if 

the number of 
j

l
sN  is less than M, we must choose the set 

of cV  that is not in depth l , denoted as 
j

l
sN , which has the 

lowest degree randomly; and  
b) If the cardinality of set 

j

l
sN  is equal to M, we will 

choose the check node with the lowest degree at depth l .  
Repeat this step until the k-th equal to 

jsd  

3. Go back to Step 2 for adding edges to the next bit node until 
1j N= − , where0 1j N≤ ≤ − . 

Thus, the set of 
j

l
sN and 

j

l
sN  must satisfy 

j j

l l
s sN N∪  cV= , 

where \
j j

l l
c s sV N N= and  \

j j

l l
c s sV N N= .  Finally, if we choose 

any check node at depth l, it can be shown that the number of 
girths from the bit node sj will be equal to 2( 2)l + .  

Below is a pseudo-code for the PEG algorithm. 
 
For 0j =  to 1n −  

For 0k =  to 1
jsd −  

If 0k =  

    0

jsE ← Choose the check node with the degree  

               randomly 
 Else 

   
j

k
sE ← Use the above Step 2(a) if the number of 

                         
j

l
sN  is less than M 

                    Use the Step 2(b) if the number of 
j

l
sN  is 

                         equal to M 
    End 
  End 

End 

IV.   PROPOSED ALGORITHM 

 Here, we propose a new method to construct the H matrix, 
whose girths of every bit node are close or identical to that 
generated by the PEG algorithm.  The aim of the proposed 
algorithm is to reduce the complexity in terms of processing 
time for generating a large H matrix. By definition, any two 
bit nodes in a Tanner graph are never directly connected. Both 
bit nodes can reach each other only through at least one check 
node. In the PEG algorithm, an important process that 
consumes large processing time is the sub-graph spreading, 
where the search starting from an initial bit node to all other 
nodes across the current graph is required.  

If the H matrix maps in to a topology matrix, we do not 
need to concern about the bit nodes anymore; hence, we can 
save computation time.  In PEG, if the sub-graph is spread 
from the bit node sj, we must search in rows and columns of 

the H matrix.  This process requires ( )column weight - 1

1
2 1ii

l
=

+∑  

times for spreading the sub-graph to reach the depth l.  In other 
words, if the bit node is ignored, the process to expand the 
sub-graph will be reduced, and it can be expressed in terms of 
a topology matrix.  In addition, the process of searching in the 

topology matrix usually requires ( )column weight - 1

1
1ii

l
=

+∑  times.  



 

This is an efficient concept to reduce the time for creating the 
same H matrix as the one obtained from the PEG algorithm.  

0 1 6 9 3

1 0 4 7 8

6 4 0 2 10
9 7 2 0 5

3 8 10 5 0  
Fig. 3. An example of the topology matrix (TM×M) for the 5×5 H 

matrix with a column weight of 2. 

A. Algorithm Description 

For sub-graph spreading, if the bit nodes are ignored we can 
reduce the H matrix of size M N×  to a TM×M matrix where each 
row and each column in TM×M represents each check node in H.  
Fig. 3 displays an example of TM×M (i.e., M = 5), where tpq 
denotes an element at the p-th row and the q-th column, 0 ≤ p, 
and q≤ M – 1.  If  tpq ≠ 0, it means that the p-th and the q-th 
check nodes are connected via the tpq-th bit node. The 
proposed algorithm using the TM×M matrix can be described as 
follows.  For a given bit node sj, 

i) If it is the first time connecting a check node to the bit 
node sj, select the p-th row of TM×M  with the most number of 
0 ' and assign an edge to connect this selected check node to 
the bit node js . This check node is also used as a starting 

point for the sub-graph spreading in the next edge assignment.  
ii) If it is not the first time connecting a check node to the 

bit node sj, sub-graph spreading must be carried out first by 
using matrix TM×M  as follows: search through each row of 
matrix TM×M  only where the starting check node (or nodes) is 
for nonzero elements, determine all adjacent check nodes from 
the columns where those nonzero elements are. All these 
adjacent check nodes are then used as the next starting point 
for sub-graph spreading. This sub-graph spreading procedure 
repeated in the same manner until no further new check nodes 
can be reached or all check nodes are reached. For the former, 
select a check node to connect to the bit node sj from those 
unreached check nodes with the lowest degree. For the latter, 
select a check node to connect to the bit node sj from the 
farthest group of reachable check nodes whose degree is the 
lowest. Next, update the matrix TM×M  by adding sj to all 
elements that connect all corresponding check nodes together 
via the bit node sj. Last, all connected check nodes through bit 
node sj are used as the starting point for sub-graph spreading 
of the next edge assignment. 

 The proposed algorithm can be shown in a pseudo-code: 

For 1j =  to 1n −  

     For 1k =  to 1sjd −  do 

If k = 1 
        case i) 

Else 
    case ii) 

           End 
End 

End 
 

This algorithm can create the H matrix with M rows and N 

columns, where 
2

M
N

 
≤  
 

 for avoiding a girth of 4. From this 

equation, our algorithm can create the H matrix with highest 

code rate as 
2

1
( 1)MAXR
M

= −
−

.  Fig. 3 shows an example of 

the topology matrix with a column weight of 2. The number of 
each column represents the number of bit nodes that connect 
the p-th row and the q-th row together. 

 

V. RESULT AND DISCUSSION 

Consider the (N, K) H matrix, where N is the length of 
coded bits, K is the number of message bits, and M = N – K is 
the number of parity bits.  To evaluate the performance of the 
proposed algorithm, we simulate the system based on an 
additive white Gaussian noise (AWGN) channel model, where 
a K-bit binary input sequence ak ∈ {0, 1} is encoded by an 
LDPC decoder and is mapped to an N-bit coded sequence bk ∈ 
{±1}.  Then, the received sequence is given by yk = bk + nk, 
where nk is AWGN with zero mean and variance σ2.  At the 
receiver, the received sequence yk is decoded by an LDPC 
decoder implemented based on a message passing algorithm 
with x internal iterations.  Note that each bit-error rate (BER) 
point is obtained by using as many data packets as possible to 
obtain at least 1000 erroneous bits.  In simulation, the signal-
to-noise ratio is defined as SNR = 10log10(1/σ2) in decibel 
(dB). 

Fig. 4 compares the BER performance between the PEG 
and the proposed algorithms based on (504, 252), (504, 1008), 
and (1016, 2032) H matrices for a column weight of 2.  
Clearly, the PEG-like algorithm performs similar to the PEG 
algorithm as expected.  Next, we compare the complexity 
between the PEG and the proposed algorithms for the (1016, 
2032) H matrix with a column weight of 2, as depicted in Fig. 4,  

B
E
R

 
Fig. 4. BER performance comparison for the (504, 252), (504, 1008), 
(1016, 2032) H matrices with a code rate of 1/2. 

 



 

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

 

 

complexity PEG

complexity PEG-like

ti
m
e
s

 
Fig. 5. Complexity comparison for the (1016, 2032) H matrix with a 
bit-node degree of 2.  

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

 

 
complexity PEG

complexity PEG-like

ti
m
e
s

 
Fig. 6. Complexity comparison for the (1016, 2032) H matrix with a 
bit-node degree of 3.  

 
where the x-axis represents the i-th bit node, and the y-axis 
denotes the searching time required to complete the loop at the 
i-th bit node.  Clearly, the PEG and PEG-like algorithms do not 
spread a sub-graph at the beginning of the process, resulting in 
less and comparable complexity.  Nonetheless, after the edges 
begin to connect among another, the complexity increases 
rapidly because the sub-graph spreading from the bit node sj 
will have the increase number of check nods in 

j

l
sN .  

Afterwards, if the sub-graph spreading from the bit node sj can 
cover all check nodes up to depth l, the candidate choice for 
check nodes decreases; this leads to less complexity as shown 
in Fig. 5.  Eventually, the searching time for check nodes will 
be reduced.   
     In addition, to confirm that the PEG-like algorithm has less 
complexity than the regular PEG algorithm, we also compare 
their complexity for the (1016, 2032) H matric with a column 
weight of 3.  Again, the sub-graph does not spread at the 
beginning of the process (up to 400 bits) as shown in Fig. 6, 
leading to similar complexity as for the case of a column weight 
of 2.  After that the complexity in terms of searching time of the 
check nodes will increase significantly because of an increased 

depth l.  Subsequently, when the sub-graph spreads from a bit 
node sj that covers many check nodes, a candidate choice for the 
check nodes decreases. Thus, this causes the complexity factor 
to reduce gradually in terms of searching times.  

VI.  CONCLUSION 

 To reduce the complexity of the PEG algorithm, we 
proposed the PEG-like algorithm based on the topology matrix 
to create a parity-check matrix for LDPC codes.  In our 
algorithm procedure, the topology matrix employs less time 
for expanding the sub-graph because we do not search the bit 
nodes.  Thus, the PEG-like algorithm can reduce the time in 
sub-graphing procedure, while resulting in the same parity-
check matrix as the PEG algorithm generates. 

REFERENCES 

[1] C. E. Shannon, “A mathematical theory of communication,” The 
Bell System Technical Journal, vol. 27, 1948. 

[2] R. Gallager, “Low-density parity-check codes,” IRE 
Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, 
Jan. 1962. 

[3] D. J. C. MacKay and R. M. Neal, “Near Shannon limit 
performance of low density parity check codes,” Electron. Lett., 
vol. 32, pp. 1645–1646, Aug. 1996. 

[4] N. Wiberg, “Codes and decoding on general graphs,” 
Dissertation no.440 

[5] [1] Yu Kou; Shu Lin; Fossorier, M.P.C., "Low-density parity-
check codes based on finite geometries: a rediscovery and new 
results," Information Theory, IEEE Transactions on, vol.47, 
no.7, pp.2711,2736, Nov 2001. 

[6] Xiao-Yu Hu; Eleftheriou, E.; Arnold, D.-M., "Regular and 
irregular progressive edge-growth tanner graphs," Information 
Theory, IEEE Transactions on , vol.51, no.1, pp.386,398, Jan. 
2005. 

[7] Zhiheng Zhou; Xiangxue Li; Dong Zheng; Kefei Chen; Jianhua 
Li, "Extended PEG Algorithm for High Rate LDPC Codes," 
Parallel and Distributed Processingwith Applications, 2009 
IEEE International Symposium on , vol., no., pp.494,498, 10-12 
Aug. 2009 

[8] Prompakdee, P.; Phakphisut, W.; Supnithi, P., "Quasi Cyclic-
LDPC codes based on PEG algorithm with maximized girth 
property," Intelligent Signal Processingand Communications 
Systems (ISPACS), 2011 International Symposium on , vol., 
no., pp.1,4, 7-9 Dec. 2011 

[9] [6] Richter, G., "An Improvement of the PEG Algorithm for 
LDPC Codes in the Waterfall Region," Computer as a Tool, 
2005. EUROCON 2005.The International Conference on , vol.2, 
no., pp.1044,1047, 21-24 Nov. 2005 

[10] R. M. Tanner,  "A recursive approach to low complexity codes",  
IEEE Trans. Inf. Theory,  vol. IT-27,  no. 6,  pp.533 -547  

 

 


