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Abstract—Progressive Edge-Growth (PEG) algorithm is one of
the promising methods to construct a parity-check ratrix (or H
matrix) with a large girth for low-density parity-c heck (LDPC)
codes. However, generating a large H matrix basedn a PEG
algorithm usually requires a lot of computations beause of its
complexity. This paper proposes an alternative mabd based on
a topology matrix to construct the H matrix, which has lower
complexity than the PEG algorithm. We refer to theproposed
method as a “PEG-like” algorithm. Results indicatethat the
proposed method can provide the same H matrix as ¢hPEG
algorithm does but with lower complexity

Index Low-density parity-check (LDPC), non-binary topology
matrix, parity-check matrix, progressive edge-growh (PEG)

|. INTRODUCTION

Low-density parity-check (LDPC) codes have recentl

become an important class of codes used in mangtigah
applications. Newly emerging wireless networkingnsiards

such as wireless LANs (IEEE 802.11n), WiMax (IEEE

802.16e), and digital video broadcasting (DVB-TZjojt
LDPC codes to combat against channel errors.

It is commonly known that LDPC codes can achiev

performance close to the Shannon’s limit [1] witlodarate
complexity using suboptimal iterative decoding. LDRodes
were originally invented by Gallager in 1962 [2]nda
rediscovered in 1996 by Mackay and Neal [3] and ekgif4].
Since then, there has been extensive researcheaetbgment
of LDPC codes. Various new classes of LPDC codes baen
found such as [5], [6], [7], [8]. Different methodfor
constructing a parity check matrixd have also been
introduced. Among them, a progressive edge-growQ)
algorithm [5] is perceived promising, as it yielddarge girth
and can be applied to generate linear-time encdelddbPC
codes. Subsequent researches [8-10] seek to imgevieEG
performance from different aspects. For examplayuzd al.
[8] proposed an extended PEG algorithm for constrgche
H matrix to achieve high code rate (i.e., 0.93), lavhi
maintaining the same girtiPrompakdeet al. [9] presented a
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However,constructing a largél matrix based on the PEG
algorithm normally requires a relatively long cortgtional
time, especially when the sizeldfmatrix is very large and the
required bit node degree is high. The increaseimptexity of
PEG is mainly due to the time spent on the prooéssbgraph
spreading. Therefore, this paper aims to reducedhglexity
of subgraph spreading by introducing a new method f
constructing theHd matrix based on topology matrix. The new
algorithm will be shown to create the sarHe matrix as
generated by the PEG algorithm but with lower camity.
This is why we refer to the proposed algorithm &2E&5-like
algorithm.

The rest of this paper is organized as follows.tiSecll
explains the definitions and notations of LDPC dé&hen,
Section Il briefly explains the PEG algorithm, aBdction IV
presents the proposed method. Simulation resutgi@en in
Section V. Finally, Section VI concludes this pape

y

[I. DEFINITIONS AND NOTATIONS
An M-by-N parity-checkH matrix (M rows andN columns)
of an LDPC code can be represented by a Tannehdip
where M is the number of parity-check equatioms,is the
enumber of coded bits, andk = N — M is the number of
message bits. The Tanner graph is a bipartitehgrapich
composes of the setV,E), where V=V, UV, V. =

{cy Cy-...Cy 4} is the set of check node¥, ={s,, S,...,Sy 1}
is the set of bit nodes, aritlis the set of edgeqg,,s;) € E

corresponding to a nonzero element atittierow and thg-th
column in the H matrix, where 0<i<M -1, and
0<j<N-1.

Additionally, let the degrees of check and bit rodee
define asD, ={d_,d,....d, } and D,={d, d,,....d, }
respectively, where E:i denote the edges org with
0<k< dSl —1. Fig. 1 shows the Tanner graph = {2, 2, 2,

2,2, 2,2, 2,2} andD. = {4, 4, 4, 4, 4}, where the bit
represents the check nodeand the o represents the bit node

method to generate th¢ matrix based on Quasi Cyclic (QC) 3

method for the PEG algorithm with maximized girttogerty.
In [10], a modified PEG algorithm was introducedintgprove
the PEG performance in the waterfall region.



of V, that is not in depth , denoted asN; , which has the

lowest degree randomly; and
b) If the cardinality of setN'SJ is equal toM, we will

choose the check node with the lowest degree ahdep

O O 0O O Repeat this step until theth equal todSj
S S S % 3. Go back to Step 2 for adding edges to the nextdule until
: , j=N-1,where0< j<N-1.
Fig. 1. A Tanner graph witbs = {2, 2, 2, 2, 2, 2, 2, 2, 2} arld, =

{4, 4,4, 4, 4). Thus, the set ofN; and N must satisfyN, UN, =V,

whereV, \N; =N and V,\N; =N, . Finally, if we choose
any check node at depthit can be shown that the number of

depth 0 girths from the bit nodg will be equal to2(l + 2).
Below is a pseudo-code for the PEG algorithm.

For j=0ton-1
Fork=0tod, -1
If k=0

cee Eg « Choose the check node with the degree
depth | randomly
Else

E; <« Use the above Step 2(a) if the number of

depth 1

Fig. 2. A sub-graph spreading from bit ncgle

N! is less tham
Il LPEG ALGORITHM '

. — .
This section briefly explains how the PEG algorittvorks Use the Step 2(b) if the numbx‘eNSJ 1S

[6], whose process is to connect an edge betweteek node equal td

and a bit node by using the spreading of the sapfgras End

depicted in Fig. 2. For a given bit node we define its End

neighbourhood within depth N'SJ , as the set consisting of all End

qheck nodes reached by sub-graph sp_reading. Syadlgifithe IV. PROPOSEDALGORITHM

first edge that wants to connect to a bit ngdean be chosen )
randomly from a check node with the lowest degrEer the Here, we propose a new method to constructthmatrix,
next edge, we must first spread the sub-graph fand then whose girths of every bit noqle are close or idaitio that
select the check node from the lowest depth(atd@mif this ~ 9enerated by the PEG algorithm. The aim of theppsed
graph that has the lowest degree. Howefiéne sub-graph &lgorithm is to reduce the complexity in terms obqessing
does not cover all check nodes, we must choosechieek  time for generating a largd matrix. By definition, any two
node with the lowest degree that is not within theb- bit nodes in a Tanner graph are never directly eotedl. Both

L ; : it nodes can reach each other only through at &eescheck
graph(NSJ). The PEG algorithm can be summarized aér)mde. In the PEG algorithm, an important processat th

follows. consumes large processing time is the sub-grapadpg,

1. Assign the degree of a bit nogee.g.,d, =2, and the set where the search starting from an initial bit nadeall other
o o o 1 nodes across the current graph is required.

of edges incident to this bit node Bs ={E, E, } . If the H matrix maps in to a topology matrix, we do not

2. Add an edge to this bit node First, if the edge that wants N€ed to concern about the bit nodes anymore; heveean

to be added to this bit node is E; , we can choose the save computation time. In PEG, if the sub-grapisissad
g from the bit nodes, we must search in rows and columns of

set of v, with the lowest degree randomly. If the edge iso 4 matrix.  This process requiregcolumnweight-lz(l +1)
0 ' i=1 i
not ESJ , we must expand the sub-graph up to depth  eq for spreading the sub-graph to reach thehdepin other

Then, the two event a) and b) can happened: words, if the bit node is ignored, the process tpaad the

a) Given the set o¥/, within depthl denoted asN. , if ~ sub-graph will be reduced, and it can be expresséefms of

: a topology matrix. In addition, the process ofrekiag in the
column weight -
i=1

the number ofN'SJ is less tharM, we must choose the set

topology matrix usually requirei ](I, +1) times.



This is an efficient concept to reduce the timedarating the
sameH matrix as the one obtained from the PEG algorithm.

0[1]6]9(3
110(4(7]8
6[4[0]2]10
9(7]12]0
3(8(10]5

Fig. 3. An example of the topology matriXyxy) for the 5x5H
matrix with a column weight of 2.

A. Algorithm Description

For sub-graph spreading, if the bit nodes are iggheve can
reduce thed matrix of sizeM x N to aTyxw matrix where each
row and each column ifiyxy represents each check nodeHin
Fig. 3 displays an example G (i.e., M = 5), wherety,
denotes an element at theh row and theg-th column, 0< p,
andgs M — 1. If tyy # 0, it means that thp-th and theg-th
check nodes are connected via thgth bit node. The
proposed algorithm using thig.. matrix can be described as
follows. For a given bit nods,

i) If it is the first time connecting a check nottethe bit
nodes;, select the-th row of Ty with the most number of
0' and assign an edge to connect this selected atuk to

This algorithm can create th¢ matrix withM rows andN

M
columns, whereN S( 2] for avoiding a girth of 4. From this

equation, our algorithm can create tHematrix with highest

code rate aRR,,, =1- Fig. 3 shows an example of

(M-1)
the topology matrix with a column weight of 2. Timember of
each column represents the number of bit nodescthvatect
thep-th row and they-th row together.

V. RESULTAND DISCUSSION

Consider the N, K) H matrix, whereN is the length of
coded bitsK is the number of message bits, &md N —K is
the number of parity bits. To evaluate the perfmoe of the
proposed algorithm, we simulate the system basedaron
additive white Gaussian noise (AWGN) channel modklere
a K-bit binary input sequenca, € {0, 1} is encoded by an
LDPC decoder and is mapped toNubit coded sequend®
{#1}. Then, the received sequence is givenyy= b, + ny,
wheren, is AWGN with zero mean and varianeé. At the
receiver, the received sequengeis decoded by an LDPC
decoder implemented based on a message passinghaigo

the bit nodes; . This check node is also used as a startingyith x internal iterations. Note that each bit-erroeréBER)

point for the sub-graph spreading in the next exdggignment.
i) If it is not the first time connecting a cheakde to the

point is obtained by using as many data packefsasible to
obtain at least 1000 erroneous bits. In simulattba signal-

bit nodes, sub-graph spreading must be carried out first byo-noise ratio is defined as SNR = 10l@/s”) in decibel
using matrix Ty« as follows: search through each row of (dB).
matrix Ty« only where the starting check node (or nodes) is Fig. 4 compares the BER performance between the PEG

for nonzero elements, determine all adjacent checdes from
the columns where those nonzero elements are. hislbet
adjacent check nodes are then used as the netihgtpoint

for sub-graph spreading. This sub-graph spreadingeglure
repeated in the same manner until no further neaelcimodes
can be reached or all check nodes are reachedh&dormer,
select a check node to connect to the bit ngdeom those
unreached check nodes with the lowest degree.Heolatter,
select a check node to connect to the bit ngdieom the
farthest group of reachable check nodes whose eagrthe
lowest. Next, update the matrikuw by addings to all

elements that connect all corresponding check ntatpsther

via the bit nodes. Last, all connected check nodes through bit

nodes are used as the starting point for sub-graph dprga
of the next edge assignment.
The proposed algorithm can be shown in a pseude:co

For j=1ton-1
Fork=1tod;-1do
Ifk=1
case i)
Else
case ii)
End

End
End

and the proposed algorithms based on (504, 25@%, (E008),
and (1016, 2032H matrices for a column weight of 2.
Clearly, the PEG-like algorithm performs similar ttee PEG
algorithm as expected. Next, we compare the coxiiple
between the PEG and the proposed algorithms for(1tb&6,
2032)H matrix with a column weight of 2, as depicted ig. B,

-1

PEG(504,252)

3
WM 107 froee *
aa] O  PEG-like(504,252)
o PEG(1008,504)
| 0.4 \Y4 PEG-like(1008,504)
* PEG(2032.1016) :
O PEG-ike(2032,1016) s ]
]0-5 L L L L L
1 1.5 2 2.5 3 3.5 4
SNR (dB)

Fig. 4. BER performance comparison for the (504,) 2604, 1008),
(1016, 2032H matrices with a code rate of 1/2.
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Fig. 5. Complexity comparison for the (1016, 20BR)matrix with a
bit-node degree of 2.
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Fig. 6. Complexity comparison for the (1016, 20BR)matrix with a
bit-node degree of 3.

where the x-axis represents thtéh bit node, and the y-axis
denotes the searching time required to completdothie at the

i-th bit node. Clearly, the PEG and PEG-like alfpons do not

spread a sub-graph at the beginning of the processiting in

less and comparable complexity. Nonetheless, #iteredges
begin to connect among another, the complexity eases

rapidly because the sub-graph spreading from thediie 5

will have the increase number of check nods rﬁi}.

Afterwards, if the sub-graph spreading from therloitles can
cover all check nodes up to depththe candidate choice for
check nodes decreases; this leads to less conypésxishown
in Fig. 5. Eventually, the searching time for dheodes will
be reduced.

In addition, to confirm that the PEG-like aijam has less
complexity than the regular PEG algorithm, we asmnpare
their complexity for the (1016, 2033 matric with a column
weight of 3. Again, the sub-graph does not spraadhe
beginning of the process (up to 400 bits) as shimwfig. 6,
leading to similar complexity as for the case abumn weight
of 2. After that the complexity in terms of seanchtime of the
check nodes will increase significantly becausaroincreased

depthl. Subsequently, when the sub-graph spreads frbih a
nodes that covers many check nodes, a candidate chmi¢be
check nodes decreases. Thus, this causes the edynfdetor
to reduce gradually in terms of searching times.

VI. CONCLUSION

To reduce the complexity of the PEG algorithm, we

proposed the PEG-like algorithm based on the tapofoatrix

to create a parity-check matrix for LDPC codes. olr
algorithm procedure, thopology matrix employs less time
for expanding the sub-graph because we doseatch the bit
nodes. Thus, the PEG-like algorithm can reducetithe in
sub-graphing procedure, while resulting in the saadty-
check matrix as the PEG algorithm generates.
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