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Abstract— This article presents a simple, less 
computational complexity method for constructing 
exponent matrix ( )3, K  having girth at least 8 of quasi-

cyclic low-density parity-check (QC-LDPC) codes based 
on subtraction method. The construction of code deals 
with the generation of exponent matrix by three formulas. 
This method is flexible for any block-column length K . 
The simulations are shown in comparison with some 
existing appreciable work. The codes with girth 8 are 
constructed with circulant permutation matrix (CPM) size 

{ }2, 2, 2,, , . 1.r r kP  max  aa a   ≥ … +  

Keywords— Channel Coding; Circulant Permutation Matrix 
(CPM); Girth; Low-Density Parity-Check (LDPC) Codes; Quasi-
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I.  INTRODUCTION  

The introduction of LDPC codes was brought into 
existence in early 1962 [1] by Robert Gallager. Primarily 
LDPC codes were ignored for almost three decades because of 
its high computational complexity for hardware 
implementation at that time. In 1992, Berrou developed the 
Turbo code whose performance was very close to Shannon 
limit or channel capacity. Its success led to rediscovery of 
LDPC codes by Mackay and Neal [2]. The rediscovery of 
LDPC codes leads to its performance competent to turbo codes 
over an AWGN (additive white Gaussian noise) channel. 
Furthermore LDPC codes can also be represented in bipartite 
graph usually known as Tanner Graph [3]. By bipartite graph, 
we means set of nodes further categorized into two subsets 
such that each subset is independent and is connected to each 
other. The two subsets are known as variable nodes 
representing columns and check nodes representing rows of a 
parity-check matrix (PCM). 

Since LDPC codes has high complexity in terms of 
hardware implementation and hence requires huge memory, so 
a new class of LDPC codes were introduced known as quasi-

cyclic LDPC (QC-LDPC) codes. A ( ),J K  QC-LDPC codes 

are a special class of LDPC codes defined as null space of 
PCM, which can be represented as J K×  array of circular 
permutation matrices (CPMs) having same size P P× . QC-
LDPC codes are known for high throughput, better hardware 
compatibility and good decoding performance that leads to 
standardized as channel codes in various practical 
implementation for wireless communication [4]. 

Recently, QC-LDPC codes have been attracted by many 
researchers since its QC structure of PCM allows for linear 
time encoding. These codes were also based on geometry and 
algebraic theories. In addition, QC-LDPC codes are a class of 
LDPC codes in which there are cyclic connections between 
rows or columns of a sub matrix [5]. By using shift registers 
QC-LDPC codes can be encoded efficiently by a simple 
mechanism of address generation, so as to have less memory 
requirement and localized memory access [6]-[8]. QC-LDPC 
code structure depends on the arrangement of sub matrices and 
the value’s by which they are shifted, random shifting of a sub 
matrices may result in poor performance of the QC-LDPC 
codes. 

In this paper, we present an effectively reduced complexity 
algorithm which not only reduces memory size of hardware 
employment but also takes the least time for its computation 
of parity-check matrix H. We construct H matrix by using a 
subtraction method which is based on firstly constructing a 
base matrix of size (3, )K and further finding the remaining 
exponent indices by proposed mathematical formulas. 
Recently, in the field of QC-LDPC codes, the construction of 
H matrix by explicit method for ( )3,K of girth 8 is given in 

[9] is fairly appreciable. They showed three construction 
methods for generating exponent matrix. Moreover, array 
codes are a class of QC-LDPC codes based on CPMs of size 
P P×  has been proven good decoding performance [10]. We 
compared our simulation results which are comparable to the 
work in [9] as well as shortened array codes as in [10]. 
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The rest of this paper is organized as follows. 
Preliminaries of QC-LDPC are described in Section II. Section 
III describes a proposed method based on subtraction and 
process to generate H matrix, so as to construct QC-LDPC 
codes and related proofs. In Section IV, we examine the 
performance by presenting the simulation details and results of 
constructed codes and finally, Section V concludes the paper. 

II. PRELIMINARIES 

A. QC-LDPC Codes 

Consider a regular QC-LDPC code whose parity-check 
matrix H of column weight J and row weight K is said to be 
uniform, if H matrix has constant row and column weight. The 
structure of QC-LDPC codes are generalize as J K×  array of 
P P× circulant permutation matrix (CPM) as 

11 12 1

21 22 2

1 2

,

K

K

J J JK

a a a

a a a

a a a

 
 
 =  
 
  

I I I

I I I
H

I I I





  


                    (1) 

where { }0,1 , 1,JKa P… −∈ ∞  and 
JKaI  is basically a CPM 

of size P P× obtained by cyclic shifting of rows of an identity 
matrix I by JKa times. In case of JKa = ∞ , we will be having a 

zero matrix of size P P× . 
The shortest cycle in H matrix is called girth. The girth of 

a QC-LDPC codes will always be less than or equal to 12 for 
3J ≥ [5]. Finally H matrix is having a combination of 

m J P= ×  rows and n K P= ×  columns. Moreover, the 
shifting or exponent matrix of H is defined as 
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and H matrix can be evaluated from ( )E H  by replacing each entry 

of JKa  with 
JKaI . The presence of short cycles decreases the 

decoding performance of LDPC codes, so in order to avoid 
short cycles of length 2z  a necessary condition as given in [4] 
is  

1, ,
1

( ) 0 mod
q q q q

z

J K J K
q

a a P
+

=

− ≡             (3) 

where 1, 1q q q qJ J K K+ +≠ ≠ and 1z zJ J+ = . 

III. SUBTRACTION METHOD FOR GIRTH 8 QC-LDPC CODES 

This section deals with the construction of exponent or 
shifting matrix of QC-LDPC codes by subtraction based 
method. By using this method we are able to reduce time 
complexity for generating H matrix by a good amount. 

A. Essential conditions: 

There are three easy rules for the generation of base matrix 
as follow: 

1) The first row and the first column of an exponent 
matrix both are fixed to be a zero vector. 

2) It is mandatory that the 2nd row will always be in the 
ascending order. 

3) Repetitions of indices are not allowed, i.e. at different 
indices we will have different values. 

For simplicity, we demonstrate 3 K×  exponent matrix of 
non-negative integers is expressed as  
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To obtain high girth, we should take care of indices in (4) in 
order to avoid presence of small cycle. Before exploring more 
towards proposed construction, we start with following 
lemma. 

Lemma 1: For any ( )1 1l l K≤ ≤ −  and ( )0 1k k l≤ ≤ −  

2, 2, 1, 1,l k l kaa a a− ≥ −
.
 

 Proof: Since  

2, 2, 1 1, 1 1, 1   ll l Ka a aa − − −− > −              (5)  

and also  

1, 1 1, 1 1, 1, 1   K l l la a a a− −−− ≥ −             (6)  

Therefore from (5) and (6) we have 

2, 2, 1, 1,  l k l ka a a a− ≥ −
. 

B. Formula for constructing matrix of girth 8 

Since we have fixed our first row and first column to be a 
zero vector as in (4), so we have to work basically for only the 
2nd row and 3rd row indices. To obtain the 2nd row of our 
exponent matrix, we replace 1,  la l= , which means 1, 1 1a = , 

2, 2 2a = and so on. For attaining the 3rd row, we have to 

apply the below three formulas so as to get the desired row

 { }( )
{ }( )

2,1

2,

2,0 1,1 1,1 1,2 1, 1 1,0

2, 2 1, 1 1,1 1,2 1, ,11 1 1

, ..., –

, ...,

,

, –

K

K K KK

 a  a  max  a a   a

 a  a  max  a a  

a a

aa a−

−

− − −

= + +

= + +
(7) 

The above two formulas will generate the first non-zero 
element and the last non-zero element of the 3rd row. In 
between, the indices can be calculated by the formula as 
follows for (2 – 2)t t K≤ ≤  

{ }( )2, 2, 1 1, 1,1 1,2 1, 1 1,a  a   a , a ......  – at t t K ta max a− −= + + (8) 

By using the subtraction method we are able to reduce the 
computational complexity by a very good amount, since we 
have already fixed our 1st row and 1st column, so the other 
entries in 2nd row are sequence wise indices from 1 onwards. 
In the 3rd row the elements can be generated by a simple 
mathematical formulas as in (7) and (8), which takes less than 
a second to execute, hence our computational complexity is 
reduced by a very good amount. 
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Theorem 1: Let ( )E H  be a base matrix. For ( )E H to be of 

girth 8 it’s CPM size { }2, 2, 2,, , , 1r r kP  max  a aa   ≥ … +  for any 

( )0 1k k l≤ ≤ −  

Proof: For simplicity we will write ( )E H to be B . We will use 
induction method to justify our proof and the absence of 4 and 
6 cycles. To prove it, suppose   P = + ∞ then 4 cycles cannot 
exist according to definition of ( )E H  (by using theorem 2.1 
[4] mod equation will become a normal equation). Now to 
prove that cycle 6 is also absent we will assume that ( )1l −B

be the current setting of exponent matrix having 0th and 1st row 
and the first ( )1l − elements of the 2nd row. The new setting is 

assumed to be ( )lB  which is obtained by adding a new entry 

2,( )ka  of 2nd row to be ( )1l −B . We will prove that no 6 cycle 

exist in ( )1l −B . The proof is by induction method so we will 

assume that there exists a 6 cycle in ( )lB , so if this exist then 

there are only two patterns of cycle 6 as in [8]. Let us denotes 
u, v and w be the three columns
( )0 1,0 1, ,u P v u u v v w≤ ≤ − ≤ ≤ − ≠ ≠  respectively which form 

a 6-cycle, as per in Theorem 1[10], it is impossible to have 6-
cycle if { }2, 2, 2,, , , 1r r kP  max  a aa  ≥ … + . 

IV. SIMULATION AND RESULTS 

In this section, we deals with the above mentioned 
procedure and also deals with the bit error rate (BER) 
performance of our algorithm with some well known existing 
methods. For computing the BER performance we have 
considered a m n×  size H  matrix, where n  is the length of a 
codeword, and m  is the number of parity bits. The code rate R 
will be (1 / )m n− . The BER plot based on AWGN channel 

model, in which a binary input sequence { }0,1ka ∈  of length

n m− bits is encoded and is mapped to a n bit coded sequence

{ }1kb ∈ ± . After mapping the received sequence is ky which 

is given by k k ky b n= + , where kn stands for AWGN with 

variance 2σ  and zero mean. A LDPC decoder is used at the 
receiver end to decode received sequence ky  with 50 
iterations by using message passing algorithm. 

A minimum of 10000 data packets are used to compute 
each BER point. Signal to noise ratio (SNR) is defined in 
decibel as dB. The mathematical formula for computing SNR 
is defined as 

10 2

1
SNR 10log

Rσ
 =  
 

 

Example 1: By using the subtraction method proposed in 
Section III, the exponent matrix B for block-column length of 

9K =  having girth 8 is expressed as 

0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8

0 9 17 25 34 42 50 58 73

 
 =  
  

B

 
The 1st row and 1st column of B matrix filled as per our 
defined necessary conditions in Section III-A. To obtain 
remaining indices of 2nd row we follow Section III-B. After 
obtaining indices of 2nd row we move for the indices of the 3rd 
row, in order to get first non-zero element of the 3rd row which 
is ( )( )9 0 1 8 0+ + −  and the last non-zero element of 3rd row is

( )( )73 58 8 8 1+ + −  according to (7), in between indices can 

be obtained by third formula as in (8), for example 2,3 25a =  

is basically ( )(17 3 8 5)3 2+ + − =  according to (8) and so on. 

Therefore we can obtain the rest of the indices of the 3rd row. 
Since the maximum index of the 3rd row is 73 so according to 
the Theorem 1, the size of CPM should be   73  1  74P = + =  
for girth 8. In this way, we get our desired exponent matrix, 
hence H matrix, which is having reduced computational time 
complexity by a good amount. 

The Table 1 compares the CPM size of Construction I 
(refer to the method I of Zhang [9]) and Construction II based 
on our proposed algorithm. We can obtain better BER 
performance while losing lower bound as compared to 
construction I, still, there exists a trade-off between 
performance and complexity. 

Table 1 CPM SIZE COMPARISON OF PROPOSED ALGORITHM 

K  5 6 7 8 9 10 11 12 

I 19 27 37 48 61 75 91 108 

II 21 31 43 57 74 91 111 133 

 
We also compares BER performance as illustrates in Fig. 1 

of the proposed code for different code rates of one third and 
half code rate respectively, which is compared with some 
well-known existing QC-LDPC codes such as shortened array 
codes as in [10] and QC-LDPC codes as described in [9]. 

 
Fig. 1.  BER performance comparison 
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Clearly, the proposed algorithm performs better than other 
algorithms when the SNR is high with reduced construction 
complexity. 

Furthermore, we also compare the BER performance of 
different schemes as a function of the number of iterations at 
SNR=3 dB as shown in Fig. 2. It is apparent that the proposed 
algorithm converges faster than other compared algorithms at 
around 20 iterations. Our simulation results can be useful to 
construct good QC-LDPC codes in less computation time with 
comparable performance to other applicable existing work in 
the domain of QC-LDPC codes. 

 
Fig. 2.  BER performance as a function of the number of iterations for 
different H matrices 

V. CONCLUSION 

In this paper, we presented a simple less time consuming 
construction method for H  matrix, the construction of QC-
LDPC codes having girth 8. The choice of the block-column 
length K is kept flexible and the method was able to reduce the 
computational complexity of the H matrix by a decent 
amount. The CPM size P can be obtained by adding one to 
maximum indices of the 2nd row of E(H)  matrix. We 

obtained a class of QC-LPDC code having girth 8 as explained 

in our example in section IV. The performances of the 
proposed QC-LDPC codes are simulated in terms of BER 
which is comparable to the existing recent work. The results 
are helpful in the construction of binary and non- binary QC-
LDPC codes. 
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