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A NEW ADAPTIVE ALGORITHM FOR CHANNEL EQUALIZATION 
IN PERPENDICULAR RECORDING CHANNELS 

 
ABSTRACT 

 
Perpendicular magnetic recording systems have played 

an important role to support an enormous demand for storage 
capacity.  As the recording density keeps increasing, the 
perpendicular recording channels will inevitably encounter 
intersymbol interference (ISI), and nonlinear and additive 
distortions such as media jitter noise and pulse broadening.  
To solve this problem, an adaptive finite impulse response 
equalizer has been used because it is stable and no special 
adjustments are needed for implementation.  This paper 
proposes a new adaptive algorithm for channel equalization 
in perpendicular recording channels to combat media jitter 
noise and pulse broadening.  This algorithm is denoted as a 
VL-adaline, whose variable learning step size is controlled 
by an adaline neural network.  The proposed algorithm 
differs from the existing adaline algorithm in a sense that it 
utilizes the estimated energy and the auto-correlation of the 
equalizer outputs as parameters to update the step size.  
Results indicate that the proposed algorithm performs better 
than other adaptive algorithms in terms of bit-error rate 
(BER) at the output of the detector. 
 

Index Terms—Adaptive filter, adaline network, LMS 
algorithm, media jitter noise, pulse broadening 
 

1. INTRODUCTION 
Practically, a read-channel chip utilizes a finite impulse 

response (FIR) equalizer to shape the readback signal to a 
predetermined target before performing maximum-likelihood 
equalization by the Viterbi detector [1].  This technique is 
known as partial-response maximum-likelihood (PRML) 
[2], which can efficiently combat the intersymbol 
interference (ISI).  However, at high recording density, the 

channel will face with many nonlinearity problems, such as 
media jitter noise and pulse broadening.  To deal with this 
problem, an adaptive filter based on a least mean square 
(LMS) algorithm [3] is usually used for channel equalization 
in perpendicular recording channels because of its 
simplicity.  Nevertheless, Nair and Moon [4] have shown 
that a nonlinear equalizer based on a neural network can 
perform better than a linear FIR equalizer.  This motivates 
us to develop a new equalizer so as to improve overall 
system performance. 

To improve the system performance, we propose the 
VL-adaline (variable learning rate and adaptive linear neural 
network) algorithm for channel equalization.  The proposed 
algorithm employs an adaline neural network [5] to update a 
learning step size.  It will be shown in simulation that the 
proposed algorithm can help improve the system 
performance if compared with an FIR equalizer, especially 
when the channel experiences severe ISI and distortions. 

The rest of this paper is organized as follows.  After 
explaining the system model in Section 2, Section 3 describes 
a design of an adaline algorithm.  Section 4 gives simulation 
results.  Finally, Section 5 concludes this paper. 
 

2. SYSTEM MODEL 
 
The channel model along with the equalizer is shown in 

Fig. 1. The binary input sequence to be stored in the 
recording disk is denoted by ak ∈ {±1}, with bit period T is 
filtered by an ideal differentiator (1 – D)/2 to form a 
transition sequence bk ∈ {–1,0,1}, where D is a unit delay 
operator, bk = ±1  corresponds to a positive or a negative 
transition, and bk = 0 corresponds to the absence of the 
transition. The transition bk passes through the magnetic 
recording channel represented by g(t). The transition 
response for perpendicular recording is given by [6] 
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Fig. 1. A channel model with an adaptive equalizer. 
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determines the width of the derivative of g(t) at half its 
maximum.  In the context of magnetic recording, a 
normalized recording density is defined as ND = PW50/T, 
which determines how many data bits can be packed within 
the resolution unit PW50. 
     The readback signal,  p(t), can then be written as [7] 
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where N is the length of a data sequence bk, and n(t) is 
additive white Gaussian noise (AWGN) with two-sided 
power spectral density N0/2.  The media jitter noise, ktΔ , is 

modeled as a random shift in the transition position with a 
Gaussian probability distribution function with zero mean 

and variance 2
k jb σ  truncated to T/2 [6], where | c | takes the 

absolute value of c, whereas the bloom parameter, btΔ , is 

modeled as random pulse broadening [8] with a Gaussian 
probability distribution function with zero mean and 

variance 2
k bb σ .  This bloom parameter can also be thought 

of as the change in the location of a domain edge measured 
along the track center. 
     In conventional setting, the read-back signal p(t) is 
filtered by a seventh-order Butterworth low-pass filter 
(LPF) and is then sampled at time t = kT, assuming perfect 
synchronization.  The sample output sk is equalized by an 
equalizer F(D), where D is a delay operator, such that the 
output sequence yk resembles the desired sequence rk.  
Finally, the Viterbi detector performs sequence detection to 
determine the most likely input sequence. 
 

3. DESIGN OF ADALINE ALGORITHM 
 
3.1 The LMS-adaline algorithm  
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Fig. 2. An adaline adaptive filter. 

 
     Based on the adaline network that uses the Widrow-Hoff 
learning rule or an LMS algorithm [3], finding a suitable 
learning step size (μ) is an essential problem in the LMS 
algorithm.  Generally, if μ is too small, a convergence speed 
of the algorithm will be very slow.  On the other hand, if μ  
is too large, it will cause severe mis-adjustment for channel 
equalization, which can in turn result in system instability.  
In practice, a suitable μ should be in the range of 0 < μ 
<1/λmax [3], where λmax is the maximum eigenvalue of the 
auto-correlation matrix of the equalizer inputs. 
     The design of adaline algorithm can be described by a 
block diagram as shown in Fig. 2. Assuming that the PR 
target H(D) is known, meaning that rk is also known.  Let 
the PR target H(D) be of the form 

                                    
0

( )
v

k
k

k

H D h D
=

= ∑                             (3) 

where hk is coefficients of the channels, and v is memory of 
channel.  Then, the desired signal rk = ak∗hk, where * denotes 
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the convolution operator.  The error output ek is the difference 
between the desired signal and the equalizer output, which 
can be expressed as 

           ek = rk − sk
Twk,                              (4) 

where wk = [w–M … w–1 w0 w1 … wM]T is a (2M+1)-element 
column vector of the equalizer weights at time k, sk = [sk sk–1 
sk–2 … sk – 2M]T is a (2M+1)-element column vector, M is an 
integer, and [.]T is a transpose operator.  In this paper, we 
use K = 5 for our simulation so that the equalizer has 11 taps 
as used in today’s hard disk drive.   
     The update equation of the existing LMS-adaline 
algorithm is given by [3] 

                       wk+1 = wk + μek sk,                      (5) 

and the bias update is given by 

                                     ik+1 = ik + 2μek,                          (6) 

where ik is a bias parameter at time k.  However, for 
perpendicular recording channels, we found that using a 
fixed bias parameter ik = i = 0.004 can yield better 
performance than using an updated bias parameter from (6).  
Thus, we will use i = 0.004 in our simulation.    
      In addition, if a fixed μ is used in this channel, it might 
lead to poor performance.  To solve this problem, we utilize 
the variable step-size LMS algorithm based on an adaline 
algorithm as illustrated in Fig. 2.  This proposed algorithm 
is denoted as VL-adaline, where the step size is updated by 
the energy and the auto-correlation of the equalizer outputs.  
Generally, the VL-adaline algorithm can help reduce the 
output error and achieves a faster convergence rate in many 
applications [9]. 

 
3.2 The VL-adaline algorithm  

In the VL-adaline algorithm, the fixed step size μ is replaced 
by μk, which is a variable step size at time k.  Then, the 
coefficient vector wk is updated according to 

                       wk+1 = wk + μkek sk,                          (7) 

The VL-adaline algorithm uses a new variable learning step 
size adaline algorithm (i.e, VL-adaline) so as to improve the 
performance of the LMS algorithm.  This can be achieved 
by employing large step sizes at the early stages of the 
adaptive process and small step sizes after the system 
approaches the convergence speed of the algorithm.  Based 
on our proposed method, the mathematical formulations of 
the updates of the variable step size μk is given by

 

                                  

2 2
1 ,k k k kp gμ αμ γ+ = +

                       
(8) 

 

Fig. 3. BER performance of different algorithms. 

 
where pk controls the speed of convergence of the VL-
adaline algorithm, which can be obtained from [9]  

                  

2
1 + (1 ) ,k k kp = p yσ σ− −                    (9) 

and gk controls the adaptation of the step size μk, which can 
be obtained from [9] 

                
1 1(1 ) ,k k k kg g y yλ λ− −= + −                  (10)

 
where α, γ, σ, and λ are positive constants between 0 and 1. 
     It will be shown in simulation that the proposed VL-
adaline algorithm can significantly improve the performance 
of the adaptive equalizer. 
 

4. SIMULATION RESULTS 
 

     Consider a perpendicular recording channel at ND = 3 
and a fixed bias i = 0.004.  The signal-to-noise ratio (SNR) 
is defined as 

                                  10
0

SNR 10log iE
N

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,                    (8) 

in decibel (dB), where Ei is the energy of the channel 
impulse response (the derivative of the transition response 
scaled by 2).  The 11-tap equalizer was designed based on 
the MMSE approach [4] to match the EPR2 target H(D) = 
1+ 3D + 3D2 + D3.  We compute the BER of the system 
based on a minimum number of 1000 data sectors and 500 
error bits.   
      The system using a fixed equalizer (referred to as 
“Conventional”) will be compared with that using adaptive  
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Fig. 4. Performance comparison as a function of σj/T’s. 

 

 
Fig. 5. Performance comparison as a function of σb/T’s. 

 
equalizers based on LMS, LMS-adaline, and VL-adaline 
algorithms.  Fig. 3 compares the BER performance of 
different algorithms as a function of SNRs for the system 
with 5% media jitter noise (i.e., σj/T = 5%) and 3% bloom 
parameter (i.e., σb/T = 3%).  It is apparent that the proposed 
VL-adaline algorithm performs better than other algorithms. 
      We also compare the performance of different algorithms 
by plotting the SNR required to achieved BER = 10–3 as a 
function of jitter noise amounts in Fig. 4, where a bloom 
parameter of σb = 0.2% is utilized.  Again, the proposed 
algorithm performs the best for all jitter noise amounts 
because it requires the lowest SNR to achieve the same BER 
as other algorithms do.   Finally, Fig. 5 plots the SNR 
required to achieved BER = 10–4 as a function of bloom 
amounts, where we use media jitter noise of σj/T = 3%.  
Again, the proposed algorithm performs better than other 

algorithms for all bloom amounts, especially when a bloom 
parameter is large. 

 
5. CONCLUSION 

 
      At ultra high recording density, perpendicular recording 
channels experiences severe intersymbol interference and 
many nonlinearity problems, such as media jitter noise and 
pulse broadening.  This paper proposes a new adaptive 
algorithm for channel equalization to combat media jitter 
noise and pulse broadening.  This algorithm is denoted as a 
VL-adaline, whose variable learning step size is controlled 
by an adaline neural network.  It has been illustrated in 
simulation that the proposed algorithm performs better than 
existing algorithms, especially when media jitter noise is 
high or when a bloom parameter is large. 
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