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Abstract— We propose a new iterative timing recovery scheme
based on per-survivor processing that jointly performs timing
recovery and turbo equalization on partial response channels
with error-correction codes. The scheme embeds the timing re-
covery process inside the Bahl, Cocke, Jelinek, and Raviv (BCJR)
equalizer using per-survivor processing. This per-survivor BCJR
equalizer then iteratively exchanges soft information with an
error-correction decoder. Results indicate that the proposed
scheme yields a better performance than a conventional receiver
that performs timing recovery and turbo equalization separately,
and also the iterative timing recovery scheme proposed in [1],
especially when the channel encounters severe timing jitter noise.
We also present evidence that suggests that the proposed scheme
can correct a cycle slip much more efficiently than the others.

Index Terms— Iterative timing recovery, per-survivor process-
ing (PSP), synchronization.

I. INTRODUCTION

THE process of synchronizing the sampler with the re-
ceived analog signal is known as timing recovery. The

quality of synchronization has a dominant impact on over-
all performance. The large coding gains of iterative error-
correction codes (ECCs) allow reliable operation at low signal-
to-noise ratio (SNR). This means that timing recovery must
also function at low SNR. A conventional receiver performs
timing recovery and error-correction decoding separately.
Specifically, conventional timing recovery ignores the presence
of ECCs. Thus, it fails to work properly at low SNR.

Theoretically, joint maximum-likelihood (ML) estimation of
timing offsets and message bits, which will jointly perform
timing recovery, equalization, and error-correction decoding, is
a preferred method of synchronization. However, its complex-
ity is huge. A solution based on the expectation-maximization
(EM) algorithm is also complex [2]. Fortunately, a solution to
this problem with complexity comparable to the conventional
receiver has been proposed by Nayak, Barry, and McLaughlin
[1], which will be referred to as the NBM scheme. It is
realized by embedding the timing recovery step inside the
turbo equalizer [3] so as to perform those three tasks jointly.
Nonetheless, this scheme requires a large number of turbo
iterations to provide a good performance even with a cycle slip
[4] detection and correction algorithm as used in [1], especially
when the timing jitter is large.

Per-survivor processing (PSP) [5] is a technique for jointly
estimating the data sequence and unknown parameters, such as
the channel coefficients, the carrier phase, and so forth. It has
been employed in many applications, including channel iden-
tification, adaptive ML sequence detection, and phase/carrier
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Fig. 1. Data encoding with a PR-IV channel model.

recovery [5]-[7]. In [8], we applied PSP to develop the
PSP-based timing recovery implemented based on a Viterbi
algorithm [9], which performs timing recovery and ML equal-
ization jointly.

In this paper, we apply the per-survivor concept to the BCJR
algorithm [10], resulting in a per-survivor BCJR equalizer de-
noted as “PSP-BCJR.” We also propose per-survivor iterative
timing recovery, which iteratively exchanges soft information
between PSP-BCJR and a soft-in soft-out (SISO) decoder.
Although each iteration of per-survivor iterative timing re-
covery has high complexity, it can automatically correct a
cycle slip much more efficiently than the NBM scheme. In
other words, per-survivor iterative timing recovery requires
fewer turbo iterations than the NBM scheme to yield good
performance.

The PSP-BCJR module can be considered as a special case
of the so-called adaptive SISO module developed by Anasta-
sopoulos and Chugg [11]. In [11], the exact expressions for the
soft metrics in the presence of parametric uncertainty modeled
as a Gauss-Markov process were derived, but the complexity
is huge. Suboptimal solutions have also been proposed in [11],
and used in the trellis-coded modulation (TCM) in interleaved
frequency-selective fading channels [11] and the turbo-coded
systems with carrier phase tracking [12]. Nevertheless, the
application of timing recovery for the intersymbol interference
(ISI) channel with time-varying timing offsets has not been
addressed and investigated.

This paper is organized as follows. After explaining our
channel model in Section II, we propose and describe PSP-
BCJR in Section III. Section IV compares the performance of
different iterative timing recovery schemes. Finally, Section V
concludes the paper.

II. CHANNEL DESCRIPTION

We consider the coded partial response (PR) channel model
shown in Fig. 1. The message bits {xk} are encoded by
a serial concatenation of an error-correction encoder, an s-
random interleaver [13] (i.e., the π block), and a 1/(1 ⊕ D2)
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precoder. The readback signal, s(t), can then be written as

s(t) =
L−1∑
k=0

bkh(t − kT − τk) + n(t), (1)

where {bk} are the precoded bits of length L with bit period
T , h(t) = p(t) − p(t − 2T ) is a PR-IV pulse, p(t) =
sin(πt/T )/(πt/T ) is a 0% excess bandwidth pulse, and n(t)
is additive white Gaussian noise (AWGN) with two-sided
power spectral density N0/2. We model τk as a random walk
[6] according to τk+1 = τk +N (0, σ2

w), where σw determines
the severity of the timing jitter. The random walk model is
chosen because of its simplicity and its ability to represent a
variety of channels by changing only one parameter. We also
assume perfect acquisition by setting τ0 = 0.

At the detector, the readback signal s(t) is filtered by a
low-pass filter (LPF), whose impulse response is p(t)/T to
eliminate out-of-band noise, and is sampled at time kT + τ̂k,
creating

yk = y(kT + τ̂k) =
∑

i

bih(kT + τ̂k − iT − τi) + nk, (2)

where τ̂k is the receiver’s estimate of τk, and nk is i.i.d. zero-
mean Gaussian random variable with variance σ2

n = N0/(2T ).
Conventional timing recovery is based on a phase-locked-

loop (PLL) [4]. Because perfect acquisition is assumed and our
model has no frequency offset component, the sampling phase
offset can then be updated by a first-order PLL according to
[4]

τ̂k+1 = τ̂k + µ{ykr̃k−1 − yk−1r̃k}, (3)

where µ is a PLL gain parameter, and r̃k is the k-th soft
estimate of the channel output rk ∈ {0,±2} given by [1]

r̃k = E[rk|yk] =
2 sinh(2yk/σ2

n)
cosh(2yk/σ2

n) + e2/σ2
n
. (4)

The soft estimate provides a better performance than the hard
estimate [1], which is obtained by a memoryless three-level
quantization of yk.

In the conventional receiver, conventional timing recovery is
followed by a turbo equalizer [3] (see Fig. 2), which iteratively
exchanges soft information between the SISO equalizer for the
precoded PR-IV channel and the SISO decoder.

III. PSP-BCJR

As shown in (3), the performance of conventional timing
recovery relies on the decision r̃k provided by its own sym-
bol detector, which might yield an unreliable decision. To
overcome this drawback, a reliable decision can be extracted
by utilizing the already-given information inside the trellis

*(A-1) Initialize τ̂0(p) = 0 for ∀p

(A-2) Initialize [α0(0) . . . α0(Q − 1)] = [1 0 . . . 0]
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∑
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Fig. 3. PSP-BCJR algorithm, where the lines beginning with * are the
additional steps beyond the conventional BCJR algorithm.

structure [9]. Specifically, each state transition in the trellis
uniquely specifies a corresponding symbol. Thus, at least one
state transition in each trellis stage will correspond to a correct
decision. Using that decision for the timing update operation
will improve the performance of timing recovery. The idea of
using the information available in the trellis to estimate other
unknown parameters is known as PSP [5].

With PSP, we develop PSP-BCJR by embedding the timing
recovery process inside the BCJR equalizer so as to perform
timing recovery and equalization jointly. Fig. 3 shows the PSP-
BCJR algorithm, where the lines beginning with * are the
additional steps beyond the conventional BCJR algorithm. The
key idea is that each node in the trellis has its own sampling
phase offset. Thus, the branch metric is calculated based on
the sampling phase offset of the starting state. Furthermore,
we propose to update the timing estimate at each state based
on the incoming branch that contributes the most to the state
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Fig. 4. The trellis structure demonstrating how PSP-BCJR performs during
forward recursion.

information. The detail on how PSP-BCJR performs during
forward and backward recursions can be explained as follows.

A. Forward Recursion

Consider the PR-IV trellis structure shown in Fig. 4. Let
Ψk = {bk−1 bk−2} denote the state at time k. There are Q =
2ν = 4 states in this trellis, labeled as state 0 to state 3, where
ν = 2 is the precoded PR-IV channel memory. Let (p, q) be
the state transition from state p to state q, and let πk(p) denote
a predecessor for state p at time k, defined as the starting state
associated with the best state transition leading to state p at
time k. We define τ̂k(p) as the k-th forward sampling phase
offset for state p at time k, which is used to sample y(t) at
time k for the state transition emanating from state p at time k,
e.g., yk(p) = y(kT + τ̂k(p)), where yk(p) is the k-th sampler
output for state p at time k.

Consider the k-th stage of the trellis. There are two state
transitions arriving at state 2 at time k+1, i.e., (1, 2) and (3, 2).
First, we sample y(t) using τ̂k(1) and τ̂k(3) to obtain yk(1)
and yk(3), respectively. Next, we compute the metrics γk(1, 2)
and γk(3, 2) based on (A-6), where â(p, q) is the interleaved
bit (or the precoder input bit) associated with (p, q), and λk is
the a priori log-likelihood ratio (LLR) of ak. Then, the state
information αk+1(2) is updated according to (A-7).

The starting state associated with the best state transition
leading to state 2 at time k + 1 is chosen according to (A-
8). Suppose (1, 2) is the best state transition leading to state
2 at time k + 1 so that πk+1(2) = 1. We update the next
forward sampling phase offset, τ̂k+1(2), based on (A-9). This
τ̂k+1(2) will be used to sample y(t) at time k+1 for the state
transitions emanating from state 2 at time k + 1.

B. Backward Recursion

The backward timing update operation serves as refining
the samples {yk} so as to improve the quality of the branch
metrics. To explain how it works, we introduce the backward
transition represented by the gray arrows as shown in Fig. 5.
We define τ̂ b

k+1(q) as the k-th backward sampling phase offset
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Fig. 5. The trellis structure illustrating how PSP-BCJR performs during
backward recursion.

for state q at time k +1, which is used to sample y(t) at time
k during backward recursion, e.g., yb

k(q) = y(kT + τ̂ b
k+1(q)).

Let πb
k+1(q) be a successor for state q at time k+1, defined as

the starting state associated with the best backward transition
leading to state q at time k + 1.

Consider the backward transition at the k-th stage. There are
two backward transitions arriving at state 1 at time k, which
correspond to (1, 2) and (1, 3). We first sample y(t) using
τ̂ b
k+1(2) and τ̂ b

k+1(3) to obtain yb
k(2) and yb

k(3), respectively.
Then, we compute the metrics γb

k(1, 2) and γb
k(1, 3) based on

(A-17), and update the state information βk(1) using (A-18).
Similarly, the starting state associated with the best backward
transition leading to state 1 at time k is selected according
to (A-19). Suppose (1, 2) corresponds to the best backward
transition leading to state 1 at time k so that πb

k(1) = 2. The
next backward sampling phase offset, τ̂ b

k(1), is updated by
(A-20).

To avoid a cycle slip [4] when τ̂ b
k(1) starts deviating from

τ̂k(1), we propose a simple remedy by averaging the backward
sampling phase offset according to (A-21), where ∆ is the
threshold that allows the backward sampling phase offset to
deviate from the forward one. In this paper, we set ∆ = 0.1T
because we want to keep {τ̂ b

k} close to {τ̂k}. This τ̂ b
k(1) will be

used to sample y(t) at time k−1 for the backward transitions
emanating from state 1 at time k. Finally, the a posteriori LLR
of ak, λp

k, is computed based on (A-23).

C. Complexity of PSP-BCJR

Apparently, for the precoded PR-IV channel, PSP-BCJR
requires eight PLLs, i.e., one PLL for each state in one stage
of the trellis during both forward and backward recursions.
Furthermore, instead of storing the received analog signal y(t),
we could uniformly sample y(t) at symbol rate to obtain a set
of samples {yk}. Then, we can only store this set of samples
because the bandlimited nature of y(t) makes them sufficient
statistics. Consequently, PSP-BCJR can perform the timing
update operation using {yk} and a digital interpolation filter,
thus decreasing its complexity. In this paper, a 21-tap sinc
interpolation filter is employed.



Beyond the conventional BCJR, PSP-BCJR also needs new
storage requirements for (i) the forward/backward sampling
phase offsets, (ii) the starting states, and (iii) the sampler
outputs. However, only backward sampling phase offsets,
starting states, and sampler outputs of the current and previous
stages need to be stored, thus minimizing extra memory.

IV. NUMERICAL RESULTS

The per-survivor iterative timing recovery scheme is easily
obtained by discarding the front-end PLL in Fig. 2 and
replacing the BCJR equalizer with PSP-BCJR.

Consider a rate-8/9 system in which a block of 3636 mes-
sage bits is encoded by a rate-1/2 recursive systematic convolu-
tional encoder with a generator polynomial [1, 1⊕D⊕D3⊕D4

1⊕D⊕D4 ],
and then punctured to a block length of 4095 bits by retaining
only every the eighth parity bit. The punctured sequence passes
through an s-random interleaver with s = 16 to obtain an
interleaved sequence of ak. Both the SISO equalizer and the
SISO decoder are implemented based on BCJR. Note that the
PLL gain parameters for different iterative timing recovery
schemes were optimized based on minimizing the RMS timing
error, σε =

√
E[(τk − τ̂k)2], at a per-bit SNR, Eb/N0, of 5

dB. Each bit-error rate (BER) point was computed using as
many data sectors as possible until at least 100 sectors in error
were collected at the 100-th iteration.

Fig. 6 compares the BER performance of different schemes
for the system with a moderate random walk parameter
σw/T = 0.5%, which implies a low probability of occurrence
of a cycle slip. Note that the number inside the parenthesis in
Fig. 6 indicates the total number of iterations used to generate
each curve. The curve labeled “Perfect timing” represents
the conventional receiver that uses τ̂k = τk to sample y(t).
Also, the curve labeled “Genie-aided receiver” represents the
conventional receiver whose PLL has access to all correct
decisions, thus serving as a lower bound for a timing recovery
scheme that is based on a PLL. The µ’s for the conventional
receiver, the NBM scheme, the per-survivor iterative timing
recovery scheme, and the genie-aided receiver are 0.0053,
0.0053, 0.0028, and 0.0036, respectively. Apparently, per-
survivor iterative timing recovery performs slightly better than
the NBM scheme at the 50-th iteration, and both yield about a
0.45 dB gain at BER = 10−5 over the conventional receiver. In
addition, per-survivor iterative timing recovery performs close
to the genie-aided receiver and is only a 0.35 dB away from
the system with perfect timing at BER = 10−5.

Next, let us consider the system with a severe random walk
parameter σw/T = 1%, which implies a high probability
of occurrence of a cycle slip. The µ’s for the conventional
receiver, the NBM scheme, the per-survivor iterative timing
recovery scheme, and the genie-aided receiver are 0.0103,
0.0103, 0.006, and 0.007, respectively. Fig. 7 compares the
BER performance of different schemes for the system with
σw/T = 1%. The NBM scheme still outperforms the conven-
tional receiver; however, it seems to have an error floor at high
BER. On the other hand, per-survivor iterative timing recovery
provides a large performance gain over the NBM scheme and
starts to have an error floor at low BER. Again, per-survivor
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iterative timing recovery still performs similar to the genie-
aided receiver and loses approximately a 0.35 dB relative to
the system with perfect timing at BER = 10−5.

One reason that per-survivor iterative timing recovery out-
performs the NBM scheme when σw/T is large might be
because the front-end PLL used in the NBM scheme does not
work as well as PSP-based timing recovery [8]. Additionally,
per-survivor iterative timing recovery can automatically correct
a cycle slip (without a cycle slip detection and correction
technique as employed in the NBM scheme [1]) much more
efficiently than the NBM scheme. This property is illustrated
in Fig. 8 by plotting the probability of an uncorrected cycle
slip, where we declare a cycle slip when the actual timing
offset and the estimated one are 0.75T apart from each other
for more than 100 consecutive bit periods. Clearly, the NBM
scheme requires a large number of iterations to correct a cycle
slip as opposed to per-survivor iterative timing recovery. Note
that the reason that the NBM scheme increases the probability
of an uncorrected cycle slip at the first 10 iterations (see Fig. 8)
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might be because it takes a few iterations for the cycle slip
detection algorithm to recognize a cycle slip according to our
cycle slip criterion.

Finally, Fig. 9 shows the timing waveform for two different
sample packets, where the gray curve represents the actual τ
sequence, and the number labeled on each curve denotes the
number of iterations. As shown in Fig. 9(a), the NBM scheme
takes more than 150 iterations to correct a cycle slip, whereas
per-survivor iterative timing recovery takes only one iteration.
This implies that the NBM scheme corrects a cycle slip
slowly. Similarly, Fig. 9(b) shows that per-survivor iterative
timing recovery takes about 5 iterations to correct a cycle
slip, whereas the NBM scheme cannot correct it even with
50 iterations. This implies that per-survivor iterative timing
recovery corrects a cycle slip quickly.

V. CONCLUSION

In this paper, we proposed a per-survivor version of the
BCJR algorithm that performs timing recovery and equaliza-
tion jointly. With a per-survivor BCJR equalizer, we proposed
a per-survivor iterative timing recovery scheme to jointly
perform timing recovery, equalization, and error-correction
decoding, for coded partial response channels.

Simulation results have shown that per-survivor iterative
timing recovery performs close to the genie-aided receiver,
provided that the number of turbo iterations is large enough.
Furthermore, it also performs better than the NBM scheme,
especially when the timing error is large. This is because it
can automatically correct a cycle slip much more efficiently
than the NBM scheme. In other words, per-survivor iterative
timing recovery requires fewer turbo iterations than the NBM
scheme to yield good performance.
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