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Abstract

Since the revolutionary introduction of Turbo
codes and rediscovery of LDPC codes and its non-
binary variant in 90’s, the world of forward error
correcting codes (FEC) in channel coding has
undergone a major transformation. Quasi-Cyclic
low-density parity-check (QC-LDPC) codes is an on-
going research area in the field of channel coding to
construct a parity-check matrix, H. It comprises of
realistic,  hardware-friendly  architecture — and
reasonable  error-correction performance. This
article presents a simple, less computational
complexity method for constructing non-binary QC-
LDPC codes, having girth of at least 8 using the
subtraction method. The code construction deals
with the generation of an exponent matrix by three
formulas. The simulation illustrates that the
proposed non-binary QC-LDPC codes perform
better than its binary counterpart.

Keywords: Channel coding; Circulant Permutation
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1. Introduction

LDPC channel codes, proposed by Gallager are
one of the best choice for FEC in communication
systems [1]. They were further reinvented in 1996 by
Mackay and Neal [2] and, since then, many
researchers have contributed remarkable literature for
practical wireless communication standards. As the
name depicts, these codes are lies in the category of
block codes defined in the form of parity-check
matrix with low density of number of 1’s. These
codes have iterative decoding scheme which has
increased complexity as block-length increases.
These codes beat all other existing FEC codes for
half rate and large block-length in terms of BER

performance and decoding complexity. It is the
world’s best performing code falls only 0.0045 dB
short of Shannon limit [3].

LDPC codes with large block-length usually
provide a good performance at the cost of huge
memory requirement and computation complexity of
the H matrix [4]. To overcome this problem, Quasi-
cyclic LDPC (QC-LDPC) codes were proposed by
Fossorier [5], which is based on algebraic, geometric
theories along with combinatorial designs, that are
mostly accepted form of structured LDPC codes.
However, the flexibility of code rate and code length
is restricted by the matrix construction theories [6-9].

These features motivate us to take an intensive
interest in the construction of large block-length QC-
LDPC codes with high girth for future applications in
the data storage and communication system. Note
that the term “girth” implies the shortest cycle in a
Tanner graph or in the H matrix. Application of good
QC-LDPC codes includes in standards such as
enhanced Mobile Broadband (eMBB) service
category in 5G, IEEE 802.11n/ac, 802.16¢, 802.20,
ETSI DVB S2/T2, 10 Gb Ethernet etc. QC-LDPC
codes can be easily encoded using shift-registers,
thus demanding less memory and less computational
complexity [10].

Furthermore, Non-Binary LDPC (NB-LDPC)
codes were first investigated by Davey and Mackay
in 1998 [11], During the last two decades, NB-LDPC
codes were investigated rigorously by researchers,
basically evolving from a binary LDPC code over a

Galois field, GF(q), where ¢ =2”, p is an integer

number. An NB-LDPC code generally offers
enhanced performance, compared to its binary
counterpart [11-14] for a trivial to modest block
length. Although many researchers are working on
the topic of NB-LDPC codes, there is still the
possibility for extensive research in the field of NB-
LDPC codes. Moreover, NB-LDPC code can be
pooled with a greater order of modulation in a quite
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straightforward manner. A commonly used belief
propagation (BP) algorithm in binary LDPC codes
causes NB-LDPC codes to increase computational
analysis, almost infeasible in the higher order of ¢. Tt
is shown that decoding complexity can be reduced to

O(glog, q) if we extend a BP algorithm for GF(q)

using frequency domain computation [13].

In this paper, we present an effectively reduced
complexity algorithm for high girth QC-NB-LDPC
codes based on subtraction method, which not only
reduces memory requirement of shift registers but
also takes the least time for computing the girth of H
matrix. In our proposed method, we construct H
matrix by using a subtraction method which is based
on initially constructing a base matrix of
size (3, K) and further finding the remaining exponent

indices by mathematical formulas. Recently, in the
domain of QC-LDPC codes, the construction of H

matrix by explicit method for (3,K) of girth 8 is

appreciable [15]. They showed three construction
methods for generating exponent matrix. Moreover,
array codes are a class of QC-LDPC codes based on
CPMs of size Px P has been proven good decoding
performance [16]. We analyzed method for
constructing NB-QC-LDPC codes is further
extension of our work as in [17] has an advantage of
reducing the time complexity for generating large-
block length NB-QC-LDPC codes along with less
CPM size a good amount. This method can be useful
to generate column weight 3 class of LDPC codes
which has good error performance and less hardware
memory size requirement.

This correspondence is organized as follows.
Preliminaries of QC-LDPC and NB-LDPC codes are
described in Section 2. Section 3 deals with the
algorithm to generate H matrix so as to construct
NB-QC-LDPC codes. Section 4 investigates the
performance by presenting the simulation details and
finally, Section 5 concludes this paper.

2. Quasi-Cyclic LDPC Codes

2.1 Construction of NB-QC-LDPC codes

In general, for QC-LDPC codes having a quasi-
cyclic construction of the parity-check matrix (PCM),
binary or NB-QC-LDPC codes can be divided into
either the structure-based method or the random-like
method. In the latter method, the shift offset values
for component circulant permutation sub-matrices are
determined through random methods [7], [14].
However, in structure-based methods, a special
algebraic and structural method [7], [14] is used for
computing circulant permutation sub-matrices. Using
these methods can achieve high girth, but code block
length is not always fixed, because it limits the
performance of this constructed PCM, as different

multimedia applications have a different quality of
service, and wireless channels are persistently time-
varying.

Consider an mxn matrix named B(H), called a
base matrix. After smearing cyclic expansion, which
is actually the substitution of entries “0” and “1” in
B(H) with zero sub-matrices of size LxL and
circulant permutation sub-matrices of size LXL,
respectively, one can construct a PCM H matrix of
dimensions mLxnL , which describes a binary QC-

LDPC  matrix. Precisely, let P be an
L x L permutation matrix, as follows:
01 0 0 O
001 -0

P=|: & & " i (1)
1
0

For a finite PCM, 0<a<L , P denotes a
circulant permutation sub-matrix of size LxL ,
which is obtained by cyclically shifting identity
matrix I, to the right by a times. For simple
notation, P* denotes a zero matrix of size Lx L . By
applying cyclic expansion to the mother matrix,
B(H), a PCM of size mLxnL for a binary QC-LDPC
code can be obtained [7] :

Pau P”lz - P“ln
P“n P”zz o Paln

H=| . . . (2
Pam l)am2 s Pa lllll

where the shift offset value a; €10,1,..., L 1,00} for
i=12,..m, j=12,..n, and a, =, when the

corresponding entry in B(H) is “0”.

In a given binary PCM, as in (2), a non-binary
PCM H matrix can be obtained by replacing each
non-zero entity in H with a non-zero element from
GF(q). Below is a summary of a design algorithm of
non-binary QC-LDPC matrix.

e Step 1: Construct base matrix B(H).

e Step 2: Specify the shift offset value, a;. in

(7) for each nonzero entry of B(H). After
cyclic expansion, obtain a binary PCM H.

*  Step 3: Specify the non-zero elements of H
over GF(q) by replacing each “1” entry in H
by an element from GF(q), excluding “0”
entries.
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3. Parity-check matrix generation
algorithm and its generalized form for
girth 8

This Section deals with the construction of
exponent or shifting matrix of QC-LDPC codes.
Through this method we are able to reduce time
complexity for generating H matrix by a good
amount.

3.1 Necessary conditions:

There are three easy rules for the generation of

base matrix as follow:
1. The first row and the first column of an exponent
matrix both are fixed to be a zero vector.
2. Tt is mandatory that the 2nd row will always be
in the ascending order.
3. Repetitions of indices are not allowed, i.e. at
different indices we will have different values.
3.2 Base matrix generation

For simplicity, we demonstrate 3x K exponent

matrix of non-negative integers is expressed as

0o 0 .- 0
EMH)=|0 g, 4 k-1 3)
0 ay, Ay k-1

3.3 Algorithm for generating (3,K) exponent
matrix of girth 8

Since we have fixed our first row and first
column to be a zero vector as in (3). so we have to
work basically for only the 2" row and 3" row
indices. To obtain the 2" row of our exponent
matrix, we replace a = [, which means a1 = 1,

ay = 2 and so on. For realizing the 3 row, we

have to apply the below three formulas so as to get
the desired row

@)= hot a)t (m‘lx {01,19 01,2,'",01,1(-1} - al,O) @

k-1 = G g-F G g1t (max{%,p al,2»-~-»“1,1<—1}— 01,1)

The above two formulas will generate the first non-
zero element and the last non-zero element of the 3™
row in E(H) . In between, the E(H) matrix indices

can be intended by the equation as follows for
t(2<t<K-2)

By using the subtraction method, we can reduce
the computational complexity by a very good
amount, since we have already fixed our 1* row and
It column, so the other entries in 2™ row are
sequence wise indices from 1 onwards. In the 3™ row
the elements can be generated by a simple
mathematical formula as in (4) and (5).

4. Simulation and results

In this Section we simulated the proposed GF(2)
LDPC codes in addition with random allocation of
non-binary number based on GF(g) at each indices of
constructed E(H) and also find the bit-error rate
(BER) performance of our algorithm with
comparison of some well-known existing methods.
For computing the BER performance we have
considered a mxn size H matrix, where n is the
length of a codeword, and m is the number of parity
bits. The code rate R will be (1-m/n). The BER

plot based on AWGN channel model, in which a
binary input sequence a; € {O, 1} of length n —m bits
is encoded and is mapped to a n bit coded

sequence by, e{il} . After mapping the received

sequence is y; which is given by y; =b; +n; , where

ny, stands for AWGN with variance o?= No/2, and

zero mean. A NB-LDPC decoder is used at the
receiver end to decode received sequence y; with 50

iterations by using FFT based decoding algorithm.
The parity-check matrix has 3 non-zero elements in
each column.

A minimum of 50000 data packets are used to
compute each BER point. Signal to noise ratio (SNR)
is defined in decibel as dB. The mathematical
formula for SNR is defined as

1
SNR =10 lng (FJ (6)

Figure 1 compares the performance of different
QC-LDPC codes as in [15], [16] and [17] over GF
(¢) at the 50" iteration in terms of bit-error rate
(BER), where ¢=2,4,8, and 16. Note that ¢ =2
represents a binary LDPC code. In addition, we also
plot the BER performance of a conventional binary
phase shift keying (BPSK) system for the sake of
comparison. As expected a NB-LDPC code with
large ¢ performs better than that with small g.

Example 2: By using our algorithm, the exponent
matrix E(H) for the case of K =6 having girth 8
can be generated as per algorithm given in Sec. 3 as

00 0 0 0 O
EH)=[0 1 2 3 4 5 (7)
0 6 11 16 21 30

The comparison of CPM’s size of our method with

Zhang [15] as shown in Table 2, where construction |

refer to method II of Zhang [13] and construction II
refers to our proposed method.

Table 1: CPM’s size compares for girth 8
K |5 6 7 8 9 10 | 11 12
19 | 27 |37 |48 | 61 | 75 | 91 108
I1 |21 |31 |43 |57 [74 |91 | 111 | 133

—




The 33rd International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC) 2018 168

- - ~Theory BPSK
= 0CADPC Zharg (16281), GF2) R=05
+ (13869),GF(2) R=05 E
QCLDPC Proposed Code (1853, GF(2).R=05 E
4= QCNB-LOPC Proposed Code 186,93 GF(4), R-05
10°  [~#=QCNBAOPC Poposed Code (186,99, GFB), =05 3
== CCNBLDPC Proposed Code (86,93 GF(16),R=0.5
| I I I
1 15 2 25 3 35 4

EbiNo 6B)

Figure 1. BER performance comparison

We also compare the performance of different
schemes by plotting the number of iterations needed
to decode all codeword of finite GF(¢) LDPC codes
as a function of BER with fixed SNR as shown in
Figure 2.

F [ 0ci0pC g 6281), 67 05
| ~4QCLOPC Shortened Ay 138,69, GF(2), =05
QC-LDPC Proposed Code (186,93), GF(2), R-0.5
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Figure 2. BER performance as a function of the
number of iterations for different H matrices at
SNR =3dB

5. Conclusion

In this paper, we presented a simple less time
consuming construction method for H matrix that
can be useful to construct NB-QC-LDPC codes. We
obtained a class of NB-QC-LPDC codes as explained
in Section 3. The performance of proposed NB-QC-
LDPC codes is simulated in terms of BER and
number of iterations with considerations of higher
order of GF(g), which is comparable to the existing
work. The results are helpful in construction of
regular NB-QC-LDPC codes. In a broader
prospective, the field of LDPC code is huge and
well-studied but several areas especially NB-LDPC
codes still offer challenging problems in terms of
decoding complexity and throughput optimization.
There would be some features that will be of great
interest in specific when applied to our class of QC-
LDPC codes.
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