
Performance Comparison of the Authentication Protocols
in RFID System

S. Jantarapatin* & C. Mitrpant
National Electronics and Computer

Technology Center (NECTEC)
Pathumthani, Thailand, 12120

supachok.jantarapatin@nectec.or.th

C.Tantibundhit & T. Nuamcherm
Electrical and Computer Engineering
Department, Thammasat University

Bangkok, Thailand, 12120
tchatur@engr.tu.ac.th

P. Kovintavewat
Nakhon Pathom Rajabhat University

Nakhon Pathom, Thailand, 73000

piya@npru.ac.th

ABSTRACT
Radio frequency identification (RFID) is a technology for
automated identification, which consists of a reading device, a
server and RFID tags. We are interested in authentication
protocols where two tags are simultaneously scanned by an RFID
reader. Although there are several authentication protocols
proposed in literature, some of them are insecure. This paper
analyses the security of the authentication protocols based on two
possible attacks: the brute-force attack against the proof and the
forgery attack by using an authorised reader interacting with RFID
tags. We also evaluate these protocols in terms of computation
costs, communication costs and the resources used by adversary to
run the attack (e.g., the size of memories and the number of
queries). The results from our analysis indicate that our proposed
protocol is more secure than the others and provides a
countermeasure against forgery attack.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: applications.

General Terms
Performance, Design, Experimentation, Security, Verification.

Keywords
RFID tags, proof, authentication protocol.

1. INTRODUCTION
An RFID system has been employed to identify the object of
interest. The system consists of servers, readers and RFID tags.
The readers and RFID tags communicate with each other via radio
frequency waves. Since the RFID tags have data storage
capability, and multiple RFID tags can be read without line-of-
sight, they are widely used in various applications such as access
control, transportation, ticketing and logistics [2]. In some
applications, such as pharmaceutical distribution, some
medications are required to be dispensed along with the leaflets
describing their side-effects.

In such a case, two RFID tags are required for a medicine and a
leaflet. In 2004, Juels proposed an authentication protocol for the
case that two tags are required to be scanned simultaneously by a
reading device and verified by a server. The protocol enables a
pair of RFID tags to generate a proof (Yoking proof) that they
have been scanned simultaneously by a reading device. However,
the protocol has a problem that an unauthorised RFID reader can
generate the proof even though two RFID tags are not presented at
the same time [5]. Later several approaches [4, 5, 6] are proposed
to resolve such a problem. In order to solve the problem in
Yoking proof [4], Saito and Sakurai proposed “Grouping proof”
[5]. However, if the adversary knows the time-stamp issued by a
server, she can possibly generate a valid proof although two RFID
tags are not concurrently presented. Later, Piramuthu proposed a
“Modified proof” [6] but it is still vulnerable to the attack if the
adversary knows the nonce sent by the server. Recently, we
proposed a proof [1], which is more secure and can resolve this
problem. In this consecutive paper, we analyse the efficiency and
security of these authentication schemes in terms of
communication bandwidth and the size of memories used for the
scheme, computation cost and the number of queries that the
adversary requires to perform the attack.

The rest of this paper is organised as follows. Section 2 briefly
describes the existing protocols for scanning two tags
simultaneously. We also examine the resources required to attack
such protocols in this section. Section 3, the performance and
security of the protocols mentioned in Section 2 are discussed and
compared. Finally, Section 4 concludes this paper.

2. RELATED WORKS
This section briefly describes four protocols, namely, “Yoking
Proof,” “Grouping Proof,” “Modified Proof,” and “Proposed
Proof,” used to scan two tags simultaneously in a reader’s field.
We also show how the adversary forges the proof under some
conditions. Before explaining these protocols, some notations
need to be defined and used throughout this paper.

Notation:

• TA, TB : RFID tags (i.e., Tag A and Tag B)

• r, rA, rB, rT : Nonces (random numbers)

• TS : a time stamp

• xR, xA, xB : secret keys of the reader, TA and TB

• MACx(m) : MAC applying a secret key x on a message m

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MEDES’10, October 26-20, 2010, Bangkok, Thailand.
Copyright © 2010 ACM 978-1-4503-0047-6/10/10...$10.00.

• PAB: a proof that TA and TB are simultaneously
presented

In our review, we also simulate forgery attack where the adversary
can use an illegitimate reader to receive/send the messages
from/to the server and the tags. The goal of the attack is to
generate forged proofs of two tags being presented at the same
time.

Tag A Tag BReaderLeft proof
Right proof

A, rA

, rA

B, mB, rBrB

mA

PAB = (A, B, mA, mB)

)(BXA rMACm
A

=)(AXB rMACm
B

=

Figure 1. Yoking Proof

2.1 Yoking Proof
Yoking Proof [4] is proposed by Juels. The scheme (Figure 1)
aims to provide a proof that is verifiable off-line by a trusted
server, even when readers are untrusted. In order to generate a
proof, the reader sends a “left proof” to TA (tag A). TA responds by
sending a nonce (rA) to the reader. Then the reader forwards rA
along with “right proof” to TB (tag B). Upon receiving the
message, TB generates ()AxB rMACm

B
= . After that, TB sends mB

and a nonce (rB) to the reader. The reader then forwards rB to TA.
Upon receiving rB, TA generates ()BxA rMACm

A
= and sends it

back to the reader. xA and xB are the secret keys shared by the
server and both tags. The reader creates the proof PAB by
assembling A, B, mA and mB, and then sends the proof to the
server for verification. With the stored values: rA and rB, the
server uses xA and xB to verify the MACs: mA and mB.

However, the adversary can use an untrusted reader to forge the
proof although two tags are not concurrently presented. Figure 2
shows the attack against a “Yoking proof,” where the dashed line
indicates the differences in time and place. In order to forge the
proof, the attacker uses the illegitimate reader to acquire the
values: rA and mA. By sending the “left proof” to TA, the adversary
receives A and rA from TA. Then, she generates and sends a nonce
r’ to TA. In return, she receives the MAC mA from TA. The
adversary sends the “right proof” and the nonce r’ to T in order to
obtain B, mB and rB at a different time. Finally she can forge the
proof, PAB = (A, B, mA, mB), and uses it to convince the server that
TA and TB are presented at the same time.

Suppose r’ and rA have i bits, and mA and mB have j bits. When the
adversary sends the “left proof” to TA, she needs i bits of memory
to store rA. Then, by sending r’ to TA, she needs j bits of memory
for mA.

)'(rMACm
AXA =)'(rMACm

BXB =
Figure 2. Forgery attack against Yoking proof

)(TSMACm
AXA =),(AXB mTSMACm

B
=

Figure 3. Grouping proof

Last, after she sends the “right proof” and r’ to TB, she needs i+j
bits of memory for mB and rB.The attack only requires three
queries and she needs 2(i + j) bits of memory in total. The scheme
is vulnerable because mA and mB are solely generated from r and
rA, in other words, mB is independent of TA , and mA is
independent of TB.

2.2 Grouping Proof
In order to solve the problem of forgery, Saito and Sakurai
proposed a “Grouping proof” or a “Yoking proof using time
stamp” [5]. The scheme sets the condition that the protocol must
be completed within a given time interval t by checking the time-
stamp (TS) issued by the server. From the Figure 3, a reader
receives the time-stamp (TS) from a server and sends it to TA (tag
A) and TB (tag B) in order to create a proof. Upon the receipt of
TS, TA generates the MAC (mA) from TS by using the secret key
xA. Then the reader sends mA to TB. By using mA and TS, TB
generates the MAC (mB) with the secret key xB and sends it to the
reader. The reader generates the proof: PAB = (TS, mB). The server
checks mB to verify the proof.

However, the adversary can forge a proof in the scheme if she
knows the value of TS [6]. She can obtain TS by either
eavesdropping or guessing. If the communication channel
between the server and the reader is secure, then she needs to
guess TS.

)'(TSMACm
AXA =),'(AXB mTSMACm

B
=

Figure 4. Forgery attack against Grouping proof

For the case that the adversary needs to guess TS in Figure 4,
firstly, she generates a guess, TS’, and sends it to TA. Upon the
receipt of TS’, TA will provide the adversary with the
corresponding mA. At a different time, the adversary sends TS’ and
mA to TB to obtain mB. Finally, she can compute PAB, and sends it
to the server for verification. The proof is valid when TS is equal
to TS’.
Assuming that TS has i bits and mA has j bits, there are 2i possible
values of TS. Therefore, she needs i×2i bits to store all values of
TS and j×2i bits to store mB. We note that storage for mA is
temporary. Thus, a number of memory required are (j+i)×2i bits,
and the attack totally requires 2i+1 queries. The scheme is still
vulnerable for forgery attack since the MAC mA is independent of
TB. Hence, she can create a valid proof for a specific time interval
although both tags are not presented at the same time. The attack
is shown in Figure 4.

2.3 Modified Proof
Piramuthu proposed a variation of “Yoking proof” called
“Modified proof” [6]. The remarkable idea of the scheme is to
create dependence of the tags on each other so that they cannot
be read separately. The assumption of the scheme is that the
reader is authenticated by the back-end verifier before
beginning of the process of obtaining the nonce r from the
server as well as when returning PAB at the end of the process.

At the beginning of the protocol (Figure 5), the reader receives
the nonce r from the server. Then, the reader forwards r along
with the request to TA (tag A). TA responds with the identity A
and the nonce rA. Next, the reader sends the request and
forwards rA and the identity A to TB (tag B). Upon the receipt of

the message from TA, TB generates ()rrMACm AxB B
,= , and

sends mB, rB and the identity B to the reader. After that, the
reader forwards mB to TA. Upon the receiving of mB, TA

computes ()ABxA rmMACm
A

,= and sends it to the reader.

Finally, the reader can compute the proof PAB = (rA, rB, r, mA,
mB) and sends it to the server for verification.

),(ABXA rmMACm
A

=),(rrMACm AXB B
=

Figure 5. Modified proof

Although the reader is authenticated by the back-end verifier, the
scheme did not define any mechanisms for a reader
authentication. Therefore, it is possible that the adversary can use
an illegitimate reader to intercept a nonce sent from the server. If
she obtains a nonce r, she can forge the proof PAB accepted by the
server. If the unauthorised reader is not allowed to communicate
with the server, then the adversary needs to guess the value of r.
This attack can be performed as follows. First, the adversary
generates all possible values of r and rA along with a request to
TB. Apparently, one generated pair of r and rA will correspond to
the actual r and rA, which then causes TA to send mB and rB to the
adversary. Next, the adversary sends mB and rB to TB to obtain mA
and rA. Finally, the adversary can now compute PAB to be verified
by the server.

Suppose r and rA have i bits whilst mA and mB have j bits. There
are 2i possible values for each of r and rA. In the attack, the
attacker needs to send r for 2i times and requires i×2i bits of
memory to store rA. Next, she needs to send “request”, r and rA for
2i times and requires (i+j)×2i bits of memory to store rB and mB.
Last, she needs to send mB for 2i times and requires j×2i bits of
memory to store mA. Therefore, the adversary needs (2i+2j) bits of
memory for storing all possible r, rA, rB, mA and mB. A number of
queries required for the attack are 3×2i queries in total. The
scheme requires more memory than “Yoking proof” and
“Grouping proof”. However, the mechanism for reader
authentication has not been defined in this protocol. Therefore, it
is possible that the attacker may use an unauthorised reader to
forge a proof.

2.4 Proposed Proof
Since the modified proof does not define any mechanisms for a
reader authentication, the adversary possibly use an illegitimate
reader to intercept a nonce that the server sends to the reader.
Therefore, we proposed the secure authentication protocol in the
previous paper, referred to as a “Proposed Proof” [1].

)(TXr rMACm
r

=

),(TBXB rrMACm
B

=

Figure 6. Proposed proof

This scheme (Figure 6.) contains two mechanisms: a reader
authentication and forgery resistance. For a server to authenticate a
reader, both have shared secret keys that can be used for MAC
computation and proof verification. A proof is created based on
the MAC values from nonces collaboratively generated by all the
tags and the server by using secret keys shared between each tag
and the server.

Although the adversary uses an illegitimate reader to intercept the
nonce r, she needs the value of mR in order to forge a proof in this
scheme. That means the adversary needs to know the value of the
shared secret key xr or obtains an authorised reader to generate mR
from the nonce r. There are two possible cases that the attacker
can forge the proof.

First, in the case that the adversary uses the authorised reader to
intercept r and to generate mR. Then, she can obtain rA and rB
from both tags by sending the nonce r (referred to Figure 6). After
that, she generates rT and sends it to obtain the MACs: mA and mB
respectively. The adversary finally has sufficient information to
compute PAB verified by the server. For this case, we note that
she can forge the proof by stealing an authorised reader.

Second, if the adversary has the authorised reader but she cannot
obtain the nonce r from the server for some reasons. For this case,
she can compute mR from any trials of nonce r. Similar to the
attack simulations in the previous schemes, she needs to guess r,
compute mR, and obtains the rest of the values used for generating
a valid proof by sending queries to both tags. Assuming that r, rA,
rB and rT have i bits, and mA, mB and mR have j bits. First, the
attacker sends the nonce r to both tags (two queries) and requires
2×i bits of memory for rA and rB. Then, she computes rT and mr
from 2×i possible r and requires i×2i bits of memory for all rT and
j×2i bits of memory for all mr. Next, she sends rT to TA and TB for
2×2i times in total and requires 2× j×2i bits of memory for mA and
mB. Therefore, the adversary totally needs (i+3j)×2i+2i bits of
memory and 2+2i+1 queries for the attack.

The adversary needs to obtain the secret key xr in order to create
the MAC mR since only the authorised reader has the secret key xr.
It is impossible to create the valid proof without mR although she
can guess the nonce r or intercept it. The security of this scheme
relies on the secret of the key xr instead of a nonce or a time-stamp
like the previous schemes. The attacker needs to use an exhaustive

search to obtain the secret key or uses the authorised reader
containing the secret key xR to generate mR.

3. PERFORMANCE COMPARISON
In this section, we discuss about the features and security of each
protocol described in the previous section. Table 1 and Table 2
show various features, computation cost and communication cost for
each of them. “Grouping proof” uses time-stamps for checking the
freshness of the messages whereas the others use nonces. Therefore,
“Grouping proof” has the least number of message exchanges
comparing with others since it does not use challenge-response
technique. “Yoking proof” and “Grouping proof” do not have any
mechanisms to authenticate readers. Thus, it is very easy to forge a
proof by using an illegitimate reader. Although “Modified proof”
have mentioned about the back-end verifier used to authenticate the
reader, it has not defined any mechanisms for the authentication.
Hence, it is possible that the attacker may use any illegitimate
readers to forge a proof and send it to the server. On the contrary,
“Proposed proof” provides a mechanism for reader authentication.
The server shares a secret key with the reader. The shared secret key
is used to verify the proof whether it is sent from the authorised
reader or not. This mechanism is a countermeasure against the
forgery of proof. In addition, “Proposed proof” can be employed for
scanning multiple tags (more than two tags) simultaneously while
some of them are limited for scanning two tags only. In the case of
multiple-tag authentication, the “Proposed proof” requires only n+1
hash operations comparing with “modified proof” which requires 2n
hash operations.

Table 3 and Table 4 show the required resources (i.e., the size of
memory and the number of queries) that the adversary needs for
attacking the protocols. We examine the security of the protocols
based on two possible attacks: the brute-force attack against the
proof and the forgery attack by using a reader interacting with
RFID tags.

Table 1. Features of different protocols

Protocols Time-varient
parameter

Reader
authentication
mechanism

Multi-tags
support

Yoking
proof

Nonce Not available No

Grouping
proof

Time-stamp Not available No

Modified
proof

Nonce A reader is
authenticated by
back-end verifier

Yes

Proposed
proof

Nonce A reader is
authenticated by
using a shared key
between reader and
server

Yes

Table 2. Computation and Communication costs of
different proofs

Protocols Number of message
exchange between
tags and a reader
(passes)

Number of hash
operations (H)

Yoking proof 6 2

Grouping Proof 5 2

Modified proof 6 2 (for 2 tags)
2n (> 2tags)

Proposed proof 8 n+1 (≥ 2 tags)

If the adversary needs to forge a proof by using brute-force attack
against “Yoking proof”, a number of brute-force attempts are 22j
times. For forging a valid proof, the adversary needs to send three
queries to both tags and requires 2(i+j) bits of memory. For
“Grouping proof”, brute-force attempts are 2(i+j) times in order to
create a valid proof. If the adversary tries all possible TS in order
to forge the proof, she needs to send 2i+1 queries to both tags and
requires (j+1)×2i bits of memory. To launch a brute-force attack
against “Modified proof”, the adversary must try all 2(3i+2j)
possible proofs. For forging a proof by guessing all possible r, the
adversary needs to send 3×2i queries to both tags and requires
(3i+2j) ×2i bits of memory. Finally, Brute-force attempts against
“Proposed proof” are 2(3i+3j) times. We note that there are two
scenarios for the forgery attack against our protocol as mention in
the previous section. One of them is that the attacker obtains the
authorised reader but somehow does not have any knowledge of r
and xr. Therefore, she needs to guess all possible r and use the
reader to compute mR. For such an attack, the adversary needs to
send 4×2i queries to both tags and requires (3i+3j)×2i bits of
memory.

From Table 3 and Table 4, the adversary requires more resources
than other protocols in order to launch the attacks against
“Proposed proof”.

Table 3. Memory consumption for the forgery attack

Protocols Memory
consumption
(Bits)

Notes

Yoking
proof

2(i+j) The total memory includes i bits
for rA, j for mB, i bits for rB and j
bits for mA

Grouping
proof

(j+1) ×2i The total memory includes 2i
bits for TS and j×2i for mB

Modified
proof

(3i+2j) ×2i The total memory includes i×2i
for rA, j×2i for mA and (i+j) ×2i
for rB and mB

Proposed
proof

(3i+3j)×2i The total memory includes as
follows: 3i×2i for rA, rB and rT

3j×2i for mA, mB and mR

Although the memory consumption and the number of queries
required for the attack between “Modified proof” and “Proposed
proof” is not significantly different, the “Proposed proof”
provides an essential security feature, the mechanism to
authenticate an authorised RFID readers. Because of this
mechanism, the attacker cannot use any illegitimate readers to
forge the proofs. Only for the special case that the attacker obtains
an authorised reader and uses it to forge the proof by guessing r.

Table 4. Number of queries and attempts required
for the attacks

Protocols Number of
queries
required for
the forgery
attack

Number of
brute-force
attempts for
forgery
attack

Yoking proof
 PAB= (A,B,mA,mB)

3 22j

Grouping proof
PAB=(A,B, TS,mB)

2i+1 2(i+j)

Modified proof
PAB=(A,B, rA,rB,r,mA,mB)

3×2i 2(3i+2j)

Proposed proof
PAB=(A,B, rA,rB,r,mA,mB,mR)

4×2i 2(3i+3j)

4. CONCLUSION
In this paper, we examined and evaluated the performance and
security of four protocols including our proposed protocol based
on two types of the attack: the brute-force attack against the proof
and the forgery attack by using a reader interacting with RFID
tags. Furthermore, we compared the features of these schemes.
The results are shown in Table 1, Table 2, Table 3 and Table 4.
From the results, both attacks against “Proposed proof” require
more resources and hassles than other protocols. Not only the
“Proposed proof” is secure comparing with others, but it also can
be extensively implemented for scanning multiple tags
simultaneously while it requires less computation cost comparing
with “modified proof”.

5. ACKNOWLEDGMENTS
This work is supported by National Science and Technology
Development Agency (NSTDA) and the RFID Program, National
Electronics and Computer Technology Center (NECTEC),
Thailand, under grant TG-44-21-50-097M. The authors would like
to thank Assist. Prof. Dr. Chanathip Namprempre and Dr.
Urachada Ketprom for insightful advice.

6. REFERENCES
[1] T. Nuamcherm, P. Kovintavewat, U. Ketprom, C.

Tantibundhit and C. Mitrpant, “An Improved Proof for RFID
Tags,” in Proc. of ECTI-CON 2008, Krabi, Thailand, vol.
II, pp. 737 – 740, May 14 – 16, 2008.

[2] K. Finkenzeller, RFID Handbook, 2nd ed., Wiley & Sons,
2002.

[3] A. Juels. “RFID Security and Privacy: A Research Survey,”
IEEE Journal on Selected Areas in Communications, vol. 24,
pp. 381-394, 2006.

[4] A. Juels. “Yoking Proofs” for RFID Tags,” in Proc. of the
First International Workshop on Pervasive Computing and
Communication Security. IEEE Press. 2004.

[5] J. Saito and K. Sakurai, “Grouping Proof for RFID Tags,” in
Proc. of the 19th International Conference on Advanced
Information Networking and Applications (AINA’05), pp.
621-624, 2005.

[6] S. Piramuthu, “On Existence Proofs for Multiple RFID
Tags,” IEEE International Conference on Pervasive Services
(ICPS’06), pp. 26-29, June 2006, Lyon, France.

[7] T. Dimitriou. “A Lightweight RFID Protocol to Protect
Against Traceability and Cloning Attacks,” in Proc. of the
IEEE International Conference on Security and Privacy for
Emerging Areas in Communication Networks –
SECURECOMM, 2005.

[8] A. Lenstra and E. Verheul. “Selecting Cryptographic Key
Sizes,” Journal of Cryptography, vol. 14, no. 4, pp. 255 –
293, 2001.

	1. INTRODUCTION
	2. RELATED WORKS
	2.1 Yoking Proof
	2.2 Grouping Proof
	2.3 Modified Proof
	2.4 Proposed Proof

	3. PERFORMANCE COMPARISON
	4. CONCLUSION
	5. ACKNOWLEDGMENTS
	6. REFERENCES

