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ABSTRACT 
Radio frequency identification (RFID) is a technology for 
automated identification, which consists of a reading device, a 
server and RFID tags.  We are interested in authentication 
protocols where two tags are simultaneously scanned by an RFID 
reader. Although there are several authentication protocols 
proposed in literature, some of them are insecure.  This paper 
analyses the security of the authentication protocols based on two 
possible attacks: the brute-force attack against the proof and the 
forgery attack by using an authorised reader interacting with RFID 
tags. We also evaluate these protocols in terms of computation 
costs, communication costs and the resources used by adversary to 
run the attack (e.g., the size of memories and the number of 
queries). The results from our analysis indicate that our proposed 
protocol is more secure than the others and provides a 
countermeasure against forgery attack.   

Categories and Subject Descriptors 
C.2.2 [Network Protocols]: applications.  

General Terms 
Performance, Design, Experimentation, Security, Verification. 

Keywords 
RFID tags, proof, authentication protocol. 

1. INTRODUCTION 
An RFID system has been employed to identify the object of 
interest. The system consists of servers, readers and RFID tags. 
The readers and RFID tags communicate with each other via radio 
frequency waves. Since the RFID tags have data storage 
capability, and multiple RFID tags can be read without line-of-
sight, they are widely used in various applications such as access 
control, transportation, ticketing and logistics [2]. In some 
applications, such as pharmaceutical distribution, some 
medications are required to be dispensed along with the leaflets 
describing their side-effects.  

In such a case, two RFID tags are required for a medicine and a 
leaflet. In 2004, Juels proposed an authentication protocol for the 
case that two tags are required to be scanned simultaneously by a 
reading device and verified by a server. The protocol enables a 
pair of RFID tags to generate a proof (Yoking proof) that they 
have been scanned simultaneously by a reading device. However, 
the protocol has a problem that an unauthorised RFID reader can 
generate the proof even though two RFID tags are not presented at 
the same time [5]. Later several approaches [4, 5, 6] are proposed 
to resolve such a problem. In order to solve the problem in 
Yoking proof [4], Saito and Sakurai proposed “Grouping proof” 
[5]. However, if the adversary knows the time-stamp issued by a 
server, she can possibly generate a valid proof although two RFID 
tags are not concurrently presented. Later, Piramuthu proposed a 
“Modified proof” [6] but it is still vulnerable to the attack if the 
adversary knows the nonce sent by the server. Recently, we 
proposed a proof [1], which is more secure and can resolve this 
problem. In this consecutive paper, we analyse the efficiency and 
security of these authentication schemes in terms of 
communication bandwidth and the size of memories used for the 
scheme, computation cost and the number of queries that the 
adversary requires to perform the attack.   

The rest of this paper is organised as follows.  Section 2 briefly 
describes the existing protocols for scanning two tags 
simultaneously.  We also examine the resources required to attack 
such protocols in this section. Section 3, the performance and 
security of the protocols mentioned in Section 2 are discussed and 
compared.  Finally, Section 4 concludes this paper. 

2. RELATED WORKS 
This section briefly describes four protocols, namely, “Yoking 
Proof,” “Grouping Proof,” “Modified Proof,” and “Proposed 
Proof,” used to scan two tags simultaneously in a reader’s field.  
We also show how the adversary forges the proof under some 
conditions.  Before explaining these protocols, some notations 
need to be defined and used throughout this paper. 

Notation: 

• TA, TB :  RFID tags (i.e., Tag A and Tag B) 

• r, rA, rB, rT :  Nonces (random numbers) 

• TS :  a time stamp 

• xR, xA, xB :  secret keys of the reader, TA and TB 

• MACx(m) :  MAC applying a secret key x on a message m 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MEDES’10, October 26-20, 2010, Bangkok, Thailand. 
Copyright © 2010 ACM 978-1-4503-0047-6/10/10...$10.00. 
 



• PAB:  a proof that TA and TB are simultaneously 
presented 

In our review, we also simulate forgery attack where the adversary 
can use an illegitimate reader to receive/send the messages 
from/to the server and the tags. The goal of the attack is to 
generate forged proofs of two tags being presented at the same 
time.  
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Figure 1. Yoking Proof 

 
2.1 Yoking Proof 
Yoking Proof [4] is proposed by Juels. The scheme (Figure 1) 
aims to provide a proof that is verifiable off-line by a trusted
server, even when readers are untrusted. In order to generate a 
proof, the reader sends a “left proof” to TA (tag A). TA responds by 
sending a nonce (rA) to the reader. Then the reader forwards rA 
along with “right proof” to TB (tag B). Upon receiving the 
message, TB generates ( )AxB rMACm

B
= . After that, TB sends mB 

and a nonce (rB) to the reader. The reader then forwards rB to TA. 
Upon receiving rB, TA generates ( )BxA rMACm

A
=  and sends it 

back to the reader. xA and xB are the secret keys shared by the 
server and both tags. The reader creates the proof PAB by 
assembling A, B, mA and mB, and then sends the proof to the 
server for verification. With the stored values: rA and rB, the 
server uses xA and xB to verify the MACs: mA and mB.  

However, the adversary can use an untrusted reader to forge the 
proof although two tags are not concurrently presented. Figure 2 
shows the attack against a “Yoking proof,” where the dashed line 
indicates the differences in time and place.  In order to forge the 
proof, the attacker uses the illegitimate reader to acquire the 
values: rA and mA. By sending the “left proof” to TA, the adversary 
receives A and rA from TA.  Then, she generates and sends a nonce 
r’ to TA. In return, she receives the MAC mA from TA. The 
adversary sends the “right proof” and the nonce r’ to T in order to 
obtain B, mB and rB at a different time. Finally she can forge the 
proof, PAB = (A, B, mA, mB), and uses it to convince the server that 
TA and TB are presented at the same time. 

Suppose r’ and rA have i bits, and mA and mB have j bits. When the 
adversary sends the “left proof” to TA, she needs i bits of memory 
to store rA. Then, by sending r’  to TA, she needs j bits of memory 
for mA. 

)'(rMACm
AXA = )'(rMACm

BXB =  
Figure 2.  Forgery attack against Yoking proof 

 
 

)(TSMACm
AXA = ),( AXB mTSMACm

B
=

 
Figure 3. Grouping proof 

 
 
Last, after she sends the “right proof” and r’ to TB, she needs i+j 
bits of memory for mB and rB.The attack only requires three 
queries and she needs 2(i + j) bits of memory in total. The scheme 
is vulnerable because mA and mB are solely generated from r and 
rA, in other words, mB is independent of TA , and mA is 
independent of TB. 
 

2.2 Grouping Proof 
In order to solve the problem of forgery, Saito and Sakurai 
proposed a “Grouping proof” or a “Yoking proof using time 
stamp” [5].  The scheme sets the condition that the protocol must 
be completed within a given time interval t by checking the time-
stamp (TS) issued by the server. From the Figure 3, a reader 
receives the time-stamp (TS) from a server and sends it to TA (tag 
A) and TB (tag B) in order to create a proof. Upon the receipt of 
TS, TA generates the MAC (mA) from TS by using the secret key 
xA. Then the reader sends mA to TB. By using mA and TS, TB 
generates the MAC (mB) with the secret key xB and sends it to the 
reader. The reader generates the proof: PAB = (TS, mB). The server 
checks mB to verify the proof. 

However, the adversary can forge a proof in the scheme if she 
knows the value of TS [6]. She can obtain TS by either 
eavesdropping or guessing. If the communication channel 
between the server and the reader is secure, then she needs to 
guess TS. 
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Figure 4. Forgery attack against Grouping proof 

 
For the case that the adversary needs to guess TS in Figure 4, 
firstly, she generates a guess, TS’, and sends it to TA. Upon the 
receipt of TS’, TA will provide the adversary with the 
corresponding mA. At a different time, the adversary sends TS’ and 
mA to TB to obtain mB.  Finally, she can compute PAB, and sends it 
to the server for verification.  The proof is valid when TS is equal 
to TS’. 
Assuming that TS has i bits and mA has j bits, there are 2i possible 
values of TS. Therefore, she needs i×2i bits to store all values of 
TS and j×2i bits to store mB. We note that storage for mA is 
temporary. Thus, a number of memory required are (j+i)×2i bits, 
and the attack totally requires 2i+1 queries. The scheme is still 
vulnerable for forgery attack since the MAC mA is independent of 
TB. Hence, she can create a valid proof for a specific time interval 
although both tags are not presented at the same time. The attack 
is shown in Figure 4. 

 

2.3 Modified Proof 
Piramuthu proposed a variation of “Yoking proof” called 
“Modified proof” [6]. The remarkable idea of the scheme is to 
create dependence of the tags on each other so that they cannot 
be read separately. The assumption of the scheme is that the 
reader is authenticated by the back-end verifier before 
beginning of the process of obtaining the nonce r from the 
server as well as when returning PAB at the end of the process. 

At the beginning of the protocol (Figure 5), the reader receives 
the nonce r from the server. Then, the reader forwards r along 
with the request to TA (tag A). TA responds with the identity A 
and the nonce rA. Next, the reader sends the request and 
forwards rA and the identity A to TB (tag B). Upon the receipt of 

the message from TA, TB generates ( )rrMACm AxB B
,= , and 

sends mB, rB and the identity B to the reader. After that, the 
reader forwards mB to TA. Upon the receiving of mB, TA 

computes ( )ABxA rmMACm
A

,=  and sends it to the reader. 

Finally, the reader can compute the proof PAB = (rA, rB, r, mA, 
mB) and sends it to the server for verification. 

 

),( ABXA rmMACm
A

= ),( rrMACm AXB B
=

 

Figure 5. Modified proof 
 
Although the reader is authenticated by the back-end verifier, the 
scheme did not define any mechanisms for a reader 
authentication. Therefore, it is possible that the adversary can use 
an illegitimate reader to intercept a nonce sent from the server. If 
she obtains a nonce r, she can forge the proof PAB accepted by the 
server. If the unauthorised reader is not allowed to communicate 
with the server, then the adversary needs to guess the value of r. 
This attack can be performed as follows.  First, the adversary 
generates all possible values of r and rA along with a request to 
TB.  Apparently, one generated pair of r and rA will correspond to 
the actual r and rA, which then causes TA to send mB and rB to the 
adversary.  Next, the adversary sends mB and rB to TB to obtain mA 
and rA.  Finally, the adversary can now compute PAB to be verified 
by the server.   

Suppose r and rA have i bits whilst mA and mB have j bits.  There 
are 2i possible values for each of r and rA. In the attack, the 
attacker needs to send r for 2i times and requires i×2i bits of 
memory to store rA. Next, she needs to send “request”, r and rA for 
2i times and requires (i+j)×2i bits of memory to store rB and mB. 
Last, she needs to send mB for 2i times and requires j×2i bits of 
memory to store mA. Therefore, the adversary needs (2i+2j) bits of 
memory for storing all possible r, rA, rB, mA and mB. A number of 
queries required for the attack are 3×2i queries in total. The 
scheme requires more memory than “Yoking proof” and 
“Grouping proof”. However, the mechanism for reader 
authentication has not been defined in this protocol. Therefore, it 
is possible that the attacker may use an unauthorised reader to 
forge a proof. 

 

2.4 Proposed Proof 
Since the modified proof does not define any mechanisms for a 
reader authentication, the adversary possibly use an illegitimate 
reader to intercept a nonce that the server sends to the reader. 
Therefore, we proposed the secure authentication protocol in the 
previous paper, referred to as a “Proposed Proof” [1].   
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Figure 6. Proposed proof 

 
This scheme (Figure 6.) contains two mechanisms: a reader 
authentication and forgery resistance. For a server to authenticate a 
reader, both have shared secret keys that can be used for MAC 
computation and proof verification. A proof is created based on 
the MAC values from nonces collaboratively generated by all the 
tags and the server by using secret keys shared between each tag 
and the server.  

Although the adversary uses an illegitimate reader to intercept the 
nonce r, she needs the value of mR in order to forge a proof in this 
scheme. That means the adversary needs to know the value of the 
shared secret key xr or obtains an authorised reader to generate mR 
from the nonce r. There are two possible cases that the attacker 
can forge the proof. 

First, in the case that the adversary uses the authorised reader to 
intercept r and to generate mR. Then, she can obtain rA and rB 
from both tags by sending the nonce r (referred to Figure 6). After 
that, she generates rT and sends it to obtain the MACs: mA and mB 
respectively. The adversary finally has sufficient information to 
compute PAB verified by the server.  For this case, we note that 
she can forge the proof by stealing an authorised reader. 

Second, if the adversary has the authorised reader but she cannot 
obtain the nonce r from the server for some reasons. For this case, 
she can compute mR from any trials of nonce r. Similar to the 
attack simulations in the previous schemes, she needs to guess r, 
compute mR, and obtains the rest of the values used for generating 
a valid proof by sending queries to both tags. Assuming that r, rA, 
rB and rT have i bits, and mA, mB and mR have j bits. First, the 
attacker sends the nonce r to both tags (two queries) and requires 
2×i bits of memory for rA and rB. Then, she computes rT and mr 
from 2×i possible r and requires i×2i bits of memory for all rT and 
j×2i bits of memory for all mr. Next, she sends rT to TA and TB for 
2×2i times in total and requires 2× j×2i bits of memory for mA and 
mB. Therefore, the adversary totally needs (i+3j)×2i+2i bits of 
memory and 2+2i+1 queries for the attack. 

The adversary needs to obtain the secret key xr in order to create 
the MAC mR since only the authorised reader has the secret key xr. 
It is impossible to create the valid proof without mR although she 
can guess the nonce r or intercept it. The security of this scheme 
relies on the secret of the key xr instead of a nonce or a time-stamp 
like the previous schemes. The attacker needs to use an exhaustive 

search to obtain the secret key or uses the authorised reader 
containing the secret key xR to generate mR. 

 

3. PERFORMANCE COMPARISON 
In this section, we discuss about the features and security of each 
protocol described in the previous section. Table 1 and Table 2 
show various features, computation cost and communication cost for 
each of them. “Grouping proof” uses time-stamps for checking the 
freshness of the messages whereas the others use nonces. Therefore, 
“Grouping proof” has the least number of message exchanges 
comparing with others since it does not use challenge-response 
technique. “Yoking proof” and “Grouping proof” do not have any 
mechanisms to authenticate readers. Thus, it is very easy to forge a 
proof by using an illegitimate reader. Although “Modified proof” 
have mentioned about the back-end verifier used to authenticate the 
reader, it has not defined any mechanisms for the authentication. 
Hence, it is possible that the attacker may use any illegitimate 
readers to forge a proof and send it to the server. On the contrary, 
“Proposed proof” provides a mechanism for reader authentication. 
The server shares a secret key with the reader. The shared secret key 
is used to verify the proof whether it is sent from the authorised 
reader or not. This mechanism is a countermeasure against the 
forgery of proof. In addition, “Proposed proof” can be employed for 
scanning multiple tags (more than two tags) simultaneously while 
some of them are limited for scanning two tags only. In the case of 
multiple-tag authentication, the “Proposed proof” requires only n+1 
hash operations comparing with “modified proof” which requires 2n 
hash operations. 

Table 3 and Table 4 show the required resources (i.e., the size of 
memory and the number of queries) that the adversary needs for 
attacking the protocols. We examine the security of the protocols 
based on two possible attacks: the brute-force attack against the 
proof and the forgery attack by using a reader interacting with 
RFID tags. 

 

Table 1. Features of different protocols 

Protocols Time-varient 
parameter 

Reader 
authentication 
mechanism 

Multi-tags 
support 

Yoking 
proof 

Nonce Not available No 

Grouping 
proof 

Time-stamp Not available No 

Modified 
proof 

Nonce A reader is 
authenticated by 
back-end verifier 

Yes 

Proposed 
proof 

Nonce A reader is 
authenticated by 
using a shared key 
between reader and 
server 

Yes 

 

 



Table 2. Computation and Communication costs of  
different proofs 

Protocols Number of message 
exchange between 
tags and a reader 
(passes) 

Number of hash 
operations (H) 

Yoking proof 6 2 

Grouping Proof 5 2 

Modified proof 6 2      (for 2 tags) 
2n      (> 2tags) 

Proposed proof 8 n+1    (≥ 2 tags) 

 

If the adversary needs to forge a proof by using brute-force attack 
against “Yoking proof”, a number of brute-force attempts are 22j 
times. For forging a valid proof, the adversary needs to send three 
queries to both tags and requires 2(i+j) bits of memory. For 
“Grouping proof”, brute-force attempts are 2(i+j) times in order to 
create a valid proof. If the adversary tries all possible TS in order 
to forge the proof, she needs to send 2i+1 queries to both tags and 
requires (j+1)×2i bits of memory. To launch a brute-force attack 
against “Modified proof”, the adversary must try all 2(3i+2j) 
possible proofs. For forging a proof by guessing all possible r, the 
adversary needs to send 3×2i queries to both tags and requires 
(3i+2j) ×2i bits of memory. Finally, Brute-force attempts against 
“Proposed proof” are 2(3i+3j) times. We note that there are two 
scenarios for the forgery attack against our protocol as mention in 
the previous section. One of them is that the attacker obtains the 
authorised reader but somehow does not have any knowledge of r 
and xr. Therefore, she needs to guess all possible r and use the 
reader to compute mR. For such an attack, the adversary needs to 
send 4×2i queries to both tags and requires (3i+3j)×2i bits of 
memory.  

From Table 3 and Table 4, the adversary requires more resources 
than other protocols in order to launch the attacks against 
“Proposed proof”.  

Table 3. Memory consumption for the forgery attack 

Protocols Memory 
consumption 
(Bits) 

Notes 

Yoking 
proof 

2(i+j) The total memory includes i bits 
for rA, j for mB, i bits for rB and j 
bits for mA 

Grouping 
proof 

(j+1) ×2i The total memory includes 2i 
bits for TS and j×2i for mB 

Modified 
proof 

(3i+2j) ×2i The total memory includes i×2i 
for rA, j×2i for mA and (i+j) ×2i 
for rB and mB 

Proposed 
proof 

(3i+3j)×2i The total memory includes  as 
follows: 3i×2i for rA, rB and rT 

3j×2i for mA, mB and mR 

 

Although the memory consumption and the number of queries 
required for the attack between “Modified proof” and “Proposed 
proof” is not significantly different, the “Proposed proof” 
provides an essential security feature, the mechanism to 
authenticate an authorised RFID readers. Because of this 
mechanism, the attacker cannot use any illegitimate readers to 
forge the proofs. Only for the special case that the attacker obtains 
an authorised reader and uses it to forge the proof by guessing r.  

Table 4. Number of queries and attempts required  
for the attacks 

Protocols Number of 
queries 
required for 
the forgery 
attack 

Number of 
brute-force 
attempts for 
forgery 
attack 

Yoking proof 
 PAB= (A,B,mA,mB) 

3 22j 

Grouping proof  
PAB=( A,B, TS,mB) 

2i+1 2(i+j) 

Modified proof  
PAB=( A,B, rA,rB,r,mA,mB) 

3×2i 2(3i+2j) 

Proposed proof  
PAB=( A,B, rA,rB,r,mA,mB,mR) 

4×2i 2(3i+3j) 

 

4. CONCLUSION 
In this paper, we examined and evaluated the performance and 
security of four protocols including our proposed protocol based 
on two types of the attack: the brute-force attack against the proof 
and the forgery attack by using a reader interacting with RFID 
tags. Furthermore, we compared the features of these schemes. 
The results are shown in Table 1, Table 2, Table 3 and Table 4.  
From the results, both attacks against “Proposed proof” require 
more resources and hassles than other protocols. Not only the 
“Proposed proof” is secure comparing with others, but it also can 
be extensively implemented for scanning multiple tags 
simultaneously while it requires less computation cost comparing 
with “modified proof”. 
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