
Computer and Information Technology
Other
Paper ID 1 207

Multi-threading in Disl< Cloner

S.Panichprecha
Epiphany Consulting Co., Ltd.
422 Sukhumvit Rd., Klongtoey

Bangkok, Thailand 10110
sorot.p@gmail.com

N. Pongsawatkul*, C. Mitrpant,
U.Ketprom

P. Kovintavewat
Data Storage Technology Research Unit

Nakhon Pathom Rajabhat University
Nakhon Pathom, Thailand 73000

piya@npru.ac.th

Digital Forensics Technology Laboratory
National Electronics and Computer

Technology Center (NECTEC)
112 Phahon Yothin Rd., Klong 1,

Klong Luang,
Pathumthani ,Thailand 12120

*nared.pongsawatkul@nectec.or.th

Abstract-Disk c10ner is a device for duplicating or creating a

bit-by-bit copy of a hard disk. The current methodology for

cloning a large disk is inefficient which results in a very slow

speed of such a cloning process. The program called dd is often

used for this duplication purpose. The cloning speed depends on

both hardware and software. This paper aims to utilize the

technique of multi-threading on multi-core processors to enable

parallelism between reading and writing data in the disk cloning

processes. Comparing to the existing dd program, our multi

threading program can perform the disk cloning function with

more than 40% improvement in transfer rate or speed.

LINTRODUCTION

Hard disk duplication is a process of making copies of the
data stored in a hard disk. Such a process is commonly used
for i) Making backups of data for safekeeping of the original
data, ii) Duplicating data for setting up multiple computers
that have the same configuration (e.g., in a lab or an
enterprise environment), and iii) Making copies of data stored
in digital evidence for digital forensics.

Digital forensics is the process of acqmnng, verifying,
analyzing, and storing evidence in digital form that resides in
a device, such as a personal computer, a laptop computer, or a
mobile phone. This digital data can be used to identify an
offender (or a wrongdoer), or it can be considered as evidence
in a court of law. The digital evidence is very sensitive
because it can be modified, damaged or destroyed if
precautions are not carefully taken. Also, unlike "hard"
evidence such as fingerprints, the digital evidence can be
easily hidden and altered. Therefore, the key procedure in the
digital forensic process is to create exact copies of the original
evidence. Then, only copies will be used for further analysis
instead of using the original evidence. In other words, digital
forensic investigators must preserve the integrity of the
original evidence. In practice, copies of original evidence can
be created using several tools of which the most common one
is the dd program (part of the GNU coreutils) [1][2]. The dd
program is widely accepted as a tool for creating copies of
digital evidence due to the fact that dd preserves data integrity
and guarantees that the duplicated data is the exact copy of
the original data [3]. The dd program creates duplicated data

The 8th Electrical Engineering/ Electronics, Computer,
Telecommunications and Information Technology (ECTI)
Association of Thailand - Conference 2011

in a bit-by-bit manner. Once a duplicated disk has been
created, a forensic investigator can use additional tools to
verify the integrity of the duplicated disk. Such verification
can be achieved using a hash function to compute the
massage digests of the original data and the duplicated data.
There are some variations of the dd program, e.g., dcfldd and
dc3dd, that provides an on-the-tly integrity check. These
variations produce the message digest of the input data when
the program finishes [4][5]. If these two message digests,
from the original disk and from the duplicated disk, are equal,
we can imply that the duplicated disk is same as the original
disk [6]. The dd program duplicates data in a bit-by-bit
fashion, where the entire disk even empty spaces are copied.
Thus, cloning a large disk will result in an image file which
has the same size as the original disk. Due to the sequential
bit-by-bit methodology used in dd, it takes a long time to
duplicate a large disk

Disk duplication can be a very long process. The time taken
to duplicate a disk depends on the speed of the disk and the
disk controller bus throughput. Hence, in terms of hardware,
there is very little we can do to improve the cloning speed.
Even when using the state of the art in hardware, we can only
improve the transfer rate up to a certain point. Thus, it is
necessary to start pushing the boundary through enhancing
the software. The existing disk cloning software, i.e., dd, was
implemented as a single-thread program. Therefore, we see
that we can improve the speed of the dd's disk cloning
process by utilizing the multi-threading. The main purpose for
the multi-threading/processing is to resolve the resource
sharing between read thread and write thread when accessing
the same resource using the disk cloning software (dd).

I I. BACKG ROUN 0

A. DD Internal working mechanism

The dd program is commonly found in UNIX operating
systems. According to the GNU coretuils manual page, dd is a
program for converting and copying a file [3]. However, in
practice, dd can be used to perform much more than just
copying files. One of the most important capabilities of dd is

Page 512

that it can create a bit-by-bit copy of a hard disk. Due to such
a capability, dd has been used widely in the digital forensic
community to create copies of digital evidence. In other
words, the dd program produces the exact copies of the
original evidence. The copies of the original evidence will be
used during the forensic analysis so that the integrity of the
original evidence is preserved.

There are a few commonly used options when a user invokes
dd. These options are as follows:

• The input file (if) and output file (of) options specify
the name of the file to be read (source file) and written
(target file) respectively. The arguments to the input and
output file options can be a device name (e.g., /dev/sda)
or a file name.

• The block size (bs) specifies the size of the data to be
read and written each time. The block size has a
significant impact on the performance of dd. If the size
is too small the program performs slowly because it has
to read from the disk multiple times. If the size is too
large, the program may not gain a performance
improvement. The calculation of an optimum block size
can be in and of itself another topic; hence, such a
calculation is not discussed in this paper.

• The count (count) argument specifies the number of
blocks of data to be read and written where the size of
the block is defined by the bs argument. Note that the
numbers of read and written blocks of data are always
the same number.

• The skip (skip) argument specifies the offset of the
input file where the read starts. The value of the skip is
the number of block offset from the beginning of the
input file where the size of the block is defined by the bs
argument.

From the arguments listed above, a dd command may be
invoked like this: dd if=/dev/sda of=image.dd bs=512.
This command creates a bit-by-bit copy of the whole disk
(hence the count and skip are not specified) where the source
disk is the device / dev / sda and the output of the program is
the file called imaged. dd.

The internal working mechanism of dd is quite simple. We
have analyzed the source code of the dd (which is part of the
GNU coretuils version 7.6 [8]) and simplified the working
mechanisms as follows:

Step 1: Validate the command line arguments. This step sets
the variables related to the input and output file, the blocks
size, number of counts, and the skip values.
Step 2: Open the input file and set the input offset (or skip) if
it needs be.
Step 3: Open the output file.
Step 4: Start the timer. This step starts the timer where the
time spent running the program and the speed (bytes per
second) are reported when the copy routine finishes.

The 8th Electrical Engineering/ Electronics, Computer,
Telecommunications and Information Technology (ECTI)
Association of Thailand - Conference 2011

Computer and Information Technology
Other

Step 5: Allocate memory portions for the input buffer and the
output buffer.
Step 6: Read from the input file and write to the output file.
Repeat the read and write subroutines until the read
subroutine reaches the end of file (EOF) or number of read
blocks reaches the count argument.
Step 7: Close the input and output files.
Step 8: Report the statistic of the program, i.e., the time spent
and the speed (bytes per second).

From our analysis of the working mechanisms listed above,
we have found that the dd spent the majority of the time at
Step 6. We have also found that the read and write
subroutines are performed sequentially. The speed of the
overall program can be improved if we can perform the
subroutines in parallel. Therefore, the multi-thread
programming theory has been used in our work to improve
the speed of dd.

B. Multi-Thread Programming

Most modern personal computers nowadays are equipped
with multiple logical Central Processing Units (CPUs) with
one physical cpu. Such a CPU is called a multi-core cpu.

These multi-core processors allow a computer to perform
multiple threads (small instructions) simultaneously.
Intuitively, performing multiple tasks at the same time will
significantly improve the speed of software. However, the
utilization of multiple threads have not been used widely due
to a few reasons, i.e., software must be modified (or
rewritten) to support multi-thread. Also, in many cases,
software developer is required to support legacy hardware
that is not capable of performing multiple threads
simultaneously. In addition, using multiple threads raises an

issue with resource sharing where one thread is using a
resource and the other thread tries to access the same
resource.

From our experiments which will be presented later in this
paper, we found that by converting the software into a multi
thread capable, the overall speed of the program has improved
significantly. As discussed above regarding the issues of
migrating software to multi-thread programming. We had
issues with resource sharing. The detail of the issue will be
discussed later.

In order to implement a multi-thread program, developers
generally use the existing common application programming
interface (API) to save their development time. There are
several APIs for implementing multi-thread program, to name
a few POSIX Threads and OpenMP [8] [9].

Page 513

III.MuLTI-THREADING DISK DUMP

C. Multi-threading Disk Duplication

In our experiments, we use OpenMP (Open Multi
Processing) as an API in our multi-thread disk duplicating
program. The program carries out the tasks described in
Steps 1 - 8 in the previous section. At Step 6, the program
creates two threads: a reading thread and a writing thread.
The reading thread reads data from the source specified by a
user through 'if' or input file option, and the writing thread
writes data to the target specified by the user through 'of' or
output file option.

Since reading data from a hard disk generally takes less time
than writing data to a hard disk, we create a buffer for the
program to temporarily store data read in by the reading
thread (TO). The data sits in the buffer until it is written to the
target by the writing thread (T I) as illustrated in Fig.l.

[11 [21 [31 [4J [5]

tTl

Fig. 1 ButTer in multi-threading processes

The reading thread puts the source data in the buffer data
block sequentially from left to right. Once the reading thread
reaches the end of the buffer, it goes back to the beginning
and continues putting data in to the buffer.

Concurrently, the writing thread takes data sequentially from
the right of the buffer to the left and writes the data to the
target. Once the writing thread reaches the end of the buffer,
it goes back to the beginning and continues taking data from
the data blocks.

If the two threads worked independently, we would face a
problem of data synchronization because the reading thread
might overwrite the part of the buffer that has not been
written to the target by the writing thread. On the other hand,
the writing thread might take data from a data block with
staled data.

We prevent the data synchronization error by imposing
conditions on when the two threads can access the
buffer. That is the movement of the two threads along the
buffer is sequential, and the reading thread is not allowed to
access the buffer when the buffer is full while the writing
thread is not allowed to access the buffer when the buffer is
empty. The buffer is full when all the data blocks in the
buffer contain data that has not been written to the
target. The buffer is empty when all the data blocks in the
buffer have already been written to the target.

The 8th Electrical Engineering/ Electronics, Computer,
Telecommunications and Information Technology (ECTI)
Association of Thailand - Conference 2011

Computer and Information Technology
Other

IV. EXPERIMENTAL RESULTS

We prepare the experiment by setting up the process with
two threads to work in parallel. The first thread is READ; its
function is to read data from the source and transfer it to a
buffer memory with the pre-determined size, e.g., 64 MB.
The buffer memory acts as a parameter for threading process.
The second thread is WRITE; its function is to read data from
the buffer memory and write the data to the destination
following the pre-determined size. In this experiment, we set
maximum of five parameters for buffer memory.

The input data for the experiment is set to be 1,5,10 and 20
gigabyte (GB). For each input data size, we set up 'count'

option in dd program accordingly. For 64 MB buffer
parameter, an input of 1 GB requires setting up 'count'

option to be 16, and for 20 GB, 'count' option to be 320. An
example of cloning 1 GB of the input data is given by
deploying the following dd command:

TABLE I
DD COMMAND

dd if=/dec/sdb of=/dev/sdc bs=64MB count=16

The experiment for each input is performed repeatedly
several times to calculate an average of the transfer rate. In
order to test the transfer rate for different hard disk interfaces,
we explore the IDE to IDE interfaces and SATA to SATA
interfaces. Most current systems will use SATA but IDE is
quite common in old systems. Therefore, it will be useful to
study both interfaces.

D. IDE-IDE

This IDE-IDE connection is the setup between IDE-interface
of source hard disk to the IDE-interface of target hard disk.
As shown in Table II, experimental results agree that the
transfer rate of multi-threading (MT)-dd is faster than regular
dd. The increasing rate is between 43%-48% depending the
input data size. Even though the transfer rate for the large
size input data will be a bit slower, it is an insignificant
amount of few megabytes per second (MB/s) difference. In
term of time spent cloning each input, the cloning time
increases linearly as the input size increases as illustrated in
Fig.2. Therefore, the difference in time spent cloning 20 GB
is much more significant than 1 GB. Using multi-threading
dd, we can save approximately 187 seconds or approximately
3 minutes out of 20 GB cloning.

E. SATA-SATA

SA T A-SAT A connection is commonly used in a high
performance system. Comparing with IDE, the transfer rate
of SATA-SATA connection is usually double of the IDE rate.
The difference in input size has no effect on the average
transfer rate as seen in Table III. Each input has the transfer

Page 514

TABLE II
COMPARISON OF TRANSFER RATE FOR IDE CONNECTION

FOR DIFFERENT INPUT

IDE-IDE

�
dd Muti-threading-dd

Size (GB) AVGTime AVG Rate AVGTime AVG Rate
(sec) (MB/s) (sec) (MB/s)

1 25.8861 39.56 18.1065 56.58

5 132.7290 38.56 90.6395 56.50

10 272.7912 37.56 184.5390 55.46

20 571.5106 35.84 384.6210 53.24

TABLE III
COMPARISON OF TRAN SFER RATE FOR SAT A CONNECTION

FOR DIFFERENT INPUT

SATA-SATA

�
dd Muti-threading-dd

Size (GB) AVGTime AVG Rate AVGTime AVG Rate
(sec) (MB/s) (sec) (MB/s)

1 14.3621 71.32 10.1556 100.94

5 72.0524 71.08 49 0263 104.60

10 143.9062 71.18 97.4820 105.00

20

Time (sec)

700

600

500

400

300

zoo

100

o

287.5482 71.22

IDE -IDE

10

194.5674 105.00

.dd

• MT-dd

20 Size (GB)

Fig.2 Comparison of IDE transfer rate between dd and multi-threading-dd
(shorter bar means faster)

SATA- SATA
Time (sec)

350

300

250

200
.dd

150
• MT-dd

100

50

0

10 20 Size (GB)

Fig.3 Comparison of SATA transfer rate between dd and multi-threading-dd
(shorter bar means faster)

The 8th Electrical Engineering/ Electronics, Computer,
Telecommunications and Information Technology (ECTI)
Association of Thailand - Conference 2011

Computer and Information Technology
Other

rate approximately at 71 MB/s using the regular dd. Utilizing
multi-threading-dd, the average transfer rate increases to be
105 MB/sec or at about 48%. In terms of time spent cloning,
the SATA connection is more appealing than IDE connection
because it takes less than 2 minutes to clone the 20GB input
using multi-threading-dd. Therefore, it is worth spending
more money on SATA interface-hardware in order to shorten
the cloning time. Similar to previous results with IDE-IDE,
SAT A-SA T A cloning time is also linearly dependent on the
size of the input. Therefore, the time spent cloning increases
linearly with the input size regardless of the connection type
as illustrated in Fig.3.

V.CONCLUSION AND FUTURE WORKS

With the prevalence of multi-core processors, multi
threading programming is brought in to enable parallelism
between the data read and write in the disk cloning
processes. A buffer for temporary data storage is shared by
the reading and writing threads. A buffer access management
strategy is implemented to ensure the correct order of data
duplication. Comparing to the existing dd program, our
multi-threading program can perform the disk cloning
function with more than 40% improvement in transfer rate or
speed. Further speed improvement could be explored by
optimizing the size of the buffer data block, the size of the
buffer and the sleep time of the reading threads.

ACKNOWLEDGMENT

This work was supported by a research grant DSTAR-R&D
02-01-52 from IIUCRC in Data Storage Technology and
Application Research Center (D*STAR), King Mongkut's
Institute of Technology Ladkrabang, and National Electronics
and Computer Technology Center (NECTEC). We would like
to thank P.Warapom, S. Makwimanloy, P. Makhapun,
S.Laokok, S. Jantarapatin, N. Phookesom for their great helps
on disk cloner development. We also appreciate comments
from our colleague and students from Nakhon Pathom
Rajabhat University and Thammasat university.

REFERENCES

[I] Gabriela Limon Garcia, "Forensic physical memory analysis: an
overview of tools and techniques TKK T - 1 1 0.5290", Seminar on
Network Security, October 2007.

[2] Paul Rubin, David MacKenzie, and Stuart Kemp. dd: GNU coreutils.
dd manpage, September 201 0.

[3] National Institute of Justice, 'Test Results for Disk Imaging Tools: DD
GNU fileutils 4.0.36, Provided with Red Hat Linux 7. 1 "

[4] Dcfldd: http://dcfldd.sourceforge.netl

[5] Dc3dd: http://dc3dd.sourceforge.netl

[6] DD and Computer Forensics - Deuce by Thomas Rude, CISSP :
http://www.crazvtrain.comldd2.html

[7] Blaise Barney. POSIX Threads Programming. Tutorials UCRL-MI-
1 333 1 6, Lawrence Livermore National Laboratory, October 201 0.

[8] Paul Rubin, David MacKenzie, and Stuart Kemp. dd.c. dd program as
part of GNU coreutils version 7.6, 2009.

[9] OpenMP Architecture Review Board. OpenMP: API Specification for
Parallel Programming. http://openmp.org. 20 I O.

Page 51 5

