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Abstract—This paper presents the application of a random 

number table for the parity check matrix construction of 
irregular low-density parity check (LDPC) codes.  The 
performance of the constructed codes was tested in bit-patterned 
media recording channels.  The obtained performance of the 
proposed codes was compared with that of the existing codes.  
The simulation results show that, at a block length of 4110 bit 
and code rate of 0.9, the proposed LDPC code yields better 
performance than the existing ones, especially at high signal-to-
noise ratio scenario. 

Keywords—Bit-patterned media recording; irregular LDPC 
code; random number table 

I.   INTRODUCTION 
Current hard disk drives (HDDs) are based on perpendicular 

recording, which is approaching its storage limit a 1 terabits 
per square inch (Tb/in2) [1].  To increase the storage capacity, 
new recording technologies must be employed for HDDs.  Bit-
patterned media recording (BPMR) is a promising candidate 
for future HDDs because it can achieve a recording density up 
to 4 Tb/in2 and beyond [1].   

In practice, a low-density parity check (LDPC) code is an 
outstanding error-correction code (ECC) because of its 
excellent performance close to Shannon’s limit [2-3].  
Generally, the performance of LDPC codes depends on their 
sparse parity check matrices [3].   

Consequently, this paper proposes a novel construction 
algorithm of a parity check matrix for irregular LDPC codes, 
which can be used for arbitrary block length when it was 
designed with structured matrix and using a non-prime number 
parameter.  Specifically, this parity check matrix is constructed 
using an application of referred Tippett’s random number table 
[4] denoted as “TRN.”  The objective of this study is to design 
the parity check matrix with simple construction, simple 
encoding, good performance, and high code rate.  Our designed 
matrix has a high code rate, which is suitable for BPMR 
channels.  Simulation results indicate that the proposed LDPC 

code has less complexity and performs better than the 
previously proposed LDPC codes for BPMR channels. 

II.  LDPC CODES 

LDPC codes are ECCs which became more popular and 
widely used for a wide area of applications, including 
communications and data storage systems.  The main 
advantages of these codes are that they provide the 
performance close to the limited capacity for many different 
channels, and the decoding complexity is linear.  Thus, the 
LDPC codes are suitable well for the parallel realization. 

In general, LDPC codes are said to be regular if the number 
of “1” in each row or column is constant.  If the parity check 
matrix H is low density but the number of “1” in each row or 
column is not constant, the code is said to be an irregular one. 

A. Encoding 
Similar to all other linear block codes, the parity check 

matrix H must satisfy the following relation: 
 

ሺ௡ൈ௠ሻࡴሺଵൈ௡ሻ࡯
் ൌ ૙    (1) 

 
where ࡯ is a codeword matrix, ࡴ is a parity check matrix, and 
a 1×m vector with all 0’s.  In a systematic form, ࡯ can be 
written as: 
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where ࢖ሺଵൈ௡ି௠ሻ represents the parity portion, and  ࢓ሺଵൈ௠ሻ 
denotes the message portion.  With ࡴ ൌ ሾࡴଵ  ଶሿ orࡴ
்ࡴ ൌ ቂࡴభ
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Fig. 1. A typical discrete-time BPMR channel model. 

 

Then, the task of the encoder is to compute the parity 
matrix p that can be directly appended to the message to 
produce the codeword. 

 
B. Decoding 

There are several methods used to decode the LDPC codes, 
where each method was derived individually.  These are, for 
instance, Believe Propagation (BP), Sum-Product (SP), and 
Message Passing (MP). 

In the Log-domain Sum-Product algorithm [3], the 
message passes between the check nodes and the variable 
nodes.  In each pass the log-likelihood ratio (LLR) is recorded, 
which is the probability of its likely symbol.  In summary, the 
decoder goes through five steps as follows: 

 
Step 1: Compute the initial value of ܮሺ௤೔ೕሻ transmitted from the 
variable node ݅ to check node ݆; for all ݅; 1 ൑ ݅ ൑ ݊ . 

 

ሺ௤೔ೕሻܮ ൌ ሺ௖೔ሻܮ ൌ
ଶ௬೔
ఙమ

ൌ ௜ܴܮܮ ൌ log ቀ௣ሺ௖೔ୀ଴|௬೔ሻ
௣ሺ௖೔ୀଵ|௬೔ሻ

ቁ  (4) 

 
where ܮሺ௖೔ሻ denotes log-likelihood ratio, ߪଶ denotes the 
variance of additive white Gaussian noise (AWGN), and 
ሺܿ௜݌ ൌ  ௜ሻ denotes the probability the ܿ௜ = 0 given that theݕ|0
input is ݕ௜. 

 
Step 2: Compute ܮሺ௥ೕ೔ሻ transmitted from the check node ݆ to 
the variable node ݅, for all i and 1 ൑ ݅ ൑ ݊.  Let ߶ሺݔሻ ൌ
݃݋݈ ቀ௘

ೣାଵ
௘ೣିଵ

ቁ.  Then, we obtain 
 

ሺ௥ೕ೔ሻܮ ൌ ∏ ߶௜ᇲ௝ߙ ቀ∑ ߶൫ߚ௜ᇲ௝൯௜ᇲఢ௏ೕ ೔⁄ ቁ௜ᇲఢ௏ೕ ೔⁄         (5) 

 
where ߙ௜௝ ൌ ௜௝ߚ  ௜௝൯ൟ andݍ൫ܮ൛݊݃ݏ ൌ หܮ൫ݍ௜௝൯ห. 

 
Step 3: Modify ܮ൫ݍ௜௝൯ and used it as the data transmitted from 
the variable node ݅ to the check node ݆, for all ݅ and 1 ൑ ݅ ൑ ݊. 

 

௜௝൯ݍ൫ܮ ൌ ሺ௖೔ሻܮ ൅ ∑ ௝ᇲ௜൯௝ᇲఢ௏೔ݎ൫ܮ ೕ⁄                       (6) 

Step 4: Compute the soft output according to 
 

ሺܳ௜ሻܮ     ൌ ሺ௖೔ሻܮ ൅ ∑ ௝௜൯௝ఢ஼೔ݎ൫ܮ                         (7) 

 
Step 5: The soft output obtained in step 4 is then employed in 
the hard decision as 

 

ܿ̂௜ ൌ 1  if  ܮሺܳ௜ሻ ൏ 0 , otherwise  ܿ̂௜ ൌ 0.                      (8) 

 

III.  BPMR CHANNEL 

A typical discrete-time BPMR channel model is illustrated 
in Fig. 1, where we assume only two adjacent tracks cause 
most of the ITI.  Therefore, the readback signal can be 
expressed as 

௞ݕ ൌ ∑ ∑ ݄௜,௠ݑ௞ି௜,௠ ൅ ݊௞௠௜                             (9) 

where uk,0, uk,-1, and uk,1 ∈ {±1} represent an independent and 
identically distributed (i.i.d.) binary input bit sequences in the 
main track and the two adjacent tracks, respectively, hi,m’s are 
the 2D channel response coefficients, and nk is AWGN with 
zero mean and variance σ2.  Without the track mis-registration, 
we consider a discrete-time 3-by-3 symmetric channel 
response matrix of the form 

ܪ     ൌ ቎
݄଴,ିଵ ݄ଵ,ିଵ ݄ଶ,ିଵ
݄଴,଴ ݄ଵ,଴ ݄ଶ,଴
݄଴,ଵ ݄ଵ,ଵ ݄ଶ,ଵ

቏=൥
0.0347 0.2297 0.0347
0.1277 1 0.1277
0.0347 0.2297  0.0347

൩, (10) 

which is for a magnetic medium with SUL [1, 5].  Therefore, 
the sequence yk is sent to a turbo equalizer, which iteratively 
exchanges soft information between the proposed two-
dimensional (2D) SOVA equalizer and the LPDC decoder 
implemented based on the message passing algorithm with 3 
internal iterations.   

To perform maximum-likelihood (ML) equalization via the 
2D SOVA, we propose to use a similar technique that was 
employed in the so-called bidirectional SOVA [6] to compute 
the LLR of the bit uk,0, i.e., L(uk,0).  For this 3-by-3 channel matrix, 



TABLE I.  FIRST 40 NUMBERS FROM THE TIPPETT’S TABLE. 

2952 6641 3992 9792 7979 5911 3170 5624 
4167 9524 1545 1396 7203 5356 1300 2693 
2370 7483 3408 2762 3563 1089 6913 7691 
0506 5246 1112 6107 6008 8126 4433 8776 
2754 9143 1405 9025 7002 6111 8816 6446 

 
the trellis of this 2D SOVA will have 36 states.  For each state 
at time k, there are 6 outgoing branches to 6 different states at 
time k + 1. 

IV.  RANDOM NUMBER TABLE 

Random number tables have been used in statistics for 
tasks such as selected random samples. This was much more 
effective than manually selecting the random samples (with 
dice, cards, etc.). Tables of random numbers have the desired 
properties no matter how chosen from the table: by row, 
column, diagonal or irregularly. The first such table was 
published by L.H.C. Tippett in 1927 [7]. These numbers have 
been largely   used   with   remarkable   success   not   only in 
statistics but also for others fields, e.g., for conducting sampling 
experiments and simulations. This random number table was 
tested for its randomness by [8] through a variety of ways—
the test results shown that these numbers can be considered to 
be random. The desired feature of these random numbers is 
that the entries are independent of each other. 

Tippett’s random number are by far the most popular ones 
and very much used.  Table 1 gives the first 40 numbers from 
the Tippett’s random number table. 

A. Using random number tables 

To select a random number from the random number, we 
could choose all required numbers at any point of table every 
two-digit number. It depends on where you start in the table, 
and whether we work down or across. Keep going until you 
have enough different numbers (two-digit) for filling in the 
sub-matrix as a shifting order.  Fig. 2 illustrates the flowchart 
that describes how to use the random number table. 

V.  CONSTRUCTION OF PARITY CHECK MATRIX 

The parity check matrix H can be constructed according to 
the following steps. 

1. Define the designed parameters of J, K and L to be an 
integer greater than 3, where {J, K} ≤ L.  All values must 
satisfy the following condition: 

ሺܬ ൈ ሻܭ െ ܭ െ ߣ ൑ ,ܮ ߣ ൌ 5, 9, 14, …                             (11) 

2. Place two-digit random number from Tippett’s table in the 
structured parity check matrix H designed for irregular 
LDPC codes.  These two-digit random numbers will be 
used as a shifting order of circulant matrix of L×L. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Flowchart to use the random number table. 
 

    

VI.  SIMULATION RESULTS 
The performance of the proposed codes (referred to as TRN) 

was investigated and compared with the existing comparable 
works, where their parity check matrices were generated based 
on Magic Square Theorem (denoted as MSBA) [9] and based 
on Random Gallager Codes (referred to as MacKay) [10].  The 
parameters used in our simulation are: J = 3, K = 30, and L = 
137 such that all codes will have same block length of 4110 
bits, the parity bits of J×L = 411, the message bits of K×L = 
3699 and the code rate of R = 1 – J/K = 0.9.  We also define 

SNR ൌ 10logଵ଴ ቀ
ଵ

ோఙమ
ቁ,                                        (12) 

in decibel (dB).  Fig. 3 compares the performance of different 
LDPC codes after 30 iterations.  Simulation results show that 
the proposed codes perform moderately better than the others. 
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Fig. 3.   BER performance comparison. 

 

VII.  CONCLUSION 

The construction algorithm of LDPC codes using Tippett’s 
random number table was proposed and the performance of 
the constructed codes was tested in BPMR channels.  At a 
block length of 4110 bit and a code rate of 0.9, the proposed 
codes yield moderately better performance than the existing 
codes. 
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