
REDUCED-COMPLEXITY PER-SURVIVOR ITERATIVE TIMING RECOVERY
FOR CODED PARTIAL RESPONSE CHANNELS

Piya Kovintavewat, John R. Barry

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

M. Fatih Erden, Erozan M. Kurtas

Seagate Technology
1251 Waterfront Place
Pittsburgh, PA 15222

ABSTRACT

A (full-complexity) per-survivor iterative timing recovery
scheme, which jointly performs timing recovery, equaliza-
tion, and error-correction decoding, was recently proposed
[1] to deal with the problem of timing recovery operating
at low signal-to-noise ratio. Although it outperforms other
iterative timing recovery schemes, it has very high com-
plexity. In this paper, we propose a reduced-complexity
per-survivor iterative timing recovery scheme to make it
implementable in real-life applications. Simulation results
indicate that for low to moderate complexity, the reduced-
complexity scheme provides a better performance than the
full-complexity scheme.

1. INTRODUCTION

At some point in a digital communications receiver, the re-
ceived analog signal must be sampled at the instants con-
trolled by the timing recovery block. Sampling at the wrong
times can have a devastating impact on overall performance.
Therefore, the quality of synchronization is very important.

The large coding gains of iterative error-correction codes
allow reliable operation at low signal-to-noise ratio (SNR).
This means that timing recovery must also function at low
SNR. Thus, a conventional receiver, which performs timing
recovery and error-correction decoding separately, normally
fails to work properly at low SNR. To solve this problem,
three iterative timing recovery schemes have been proposed
in the literature [1, 2]. However, it has been shown in [1]
that (full-complexity) per-survivor iterative timing recovery
(will be referred to as a full-complexity scheme) performs
better than the others, especially when timing error is large.

The full-complexity scheme [1] is realized by first de-
veloping a per-survivor Bahl, Cocke, Jelinek, and Raviv
(BCJR) [3] equalizer, denoted as “PSP-BCJR,” by embed-
ding the timing recovery step inside the BCJR equalizer us-
ing per-survivor processing (PSP) [4]. Hence, PSP-BCJR
iteratively exchanges soft information with a soft-in soft-
output (SISO) decoder. As will be seen later, this scheme

p(t)

n(t)

ka kr
kτ21 D−kx s(t)

Encoder

Fig. 1. Data encoding with a PR-IV channel model.

has high complexity because of PSP-BCJR, thus preventing
it from being employed in real-life applications.

To reduce the complexity of PSP-BCJR, we apply the
PSP concept to a soft-output Viterbi algorithm (SOVA) [5],
resulting in a per-survivor SOVA equalizer, denoted as “PSP-
SOVA.” Then, we propose reduced-complexity per-survivor
iterative timing recovery (will be referred to as a reduce-
complexity scheme), which iteratively exchanges soft infor-
mation between PSP-SOVA and the SISO decoder.

This paper is organized as follows. After explaining our
channel model in Section 2, we propose and describe PSP-
SOVA in Section 3. Section 4 compares the performance of
different iterative timing recovery schemes. Finally, Section
5 concludes the paper.

2. CHANNEL DESCRIPTION

We consider the coded partial response (PR) channel model
shown in Fig. 1. A message sequence xk ∈ {0, 1} is en-
coded by an error-correction encoder and is mapped to a
binary sequence ak ∈ {±1} with bit period T of length L.
The read-back signal, s(t), can then be expressed as

s(t) =
∑

k

akh(t − kT − τk) + n(t), (1)

where h(t) = p(t) − p(t − 2T) is a PR-IV pulse, p(t) =
sin(πt/T)/(πt/T) is a 0% excess bandwidth pulse, and
n(t) is additive white Gaussian noise with two-sided power
spectral density N0/2. We model τk as a random walk [1]
according to τk+1 = τk + N (0, σ2

w), where σw determines
the severity of the timing jitter. The random walk model is
chosen because of its simplicity and its ability to represent

LPF
y(t) SISO

equalizer

PLL

kkT τ̂+
SISO

decoder

kλ

kx̂s(t) ky p
kλ

Fig. 2. Conventional receiver architecture.

a variety of channels by changing only one parameter. We
also assume perfect acquisition by setting τ0 = 0.

At the receiver, the signal s(t) is filtered by a low-pass
filter (LPF), whose impulse response is p(t)/T , to eliminate
out-of-band noise, and is sampled at time kT + τ̂k, creating

yk = y(kT + τ̂k) =
∑

i

aih(kT + τ̂k − iT −τi)+nk, (2)

where τ̂k is the receiver’s estimate of τk, and nk is i.i.d.
zero-mean Gaussian random variable with variance σ2

n =
N0/(2T), i.e., nk ∼ N (0, σ2

n).
Conventional timing recovery is based on a phase-locked-

loop (PLL) [6]. Because perfect acquisition is assumed and
our model has no frequency offset component, the sampling
phase offset can be updated by a first-order PLL [6], i.e.,

τ̂k+1 = τ̂k + µ{ykr̃k−1 − yk−1r̃k}, (3)

where µ is a PLL gain parameter, and r̃k is the k-th soft
estimate of the channel output rk ∈ {0,±2} given by [2]

r̃k = E[rk|yk] =
2 sinh(2yk/σ2

n)
cosh(2yk/σ2

n) + exp(2/σ2
n)

. (4)

The soft estimate provides a better performance than the
hard estimate [2], which is obtained by a memoryless three-
level quantization of yk.

In a conventional setting, conventional timing recovery
is followed by a turbo equalizer [7] (see Fig. 2), which itera-
tively exchanges soft information between the SISO equal-
izer for the PR-IV channel and the SISO decoder.

3. PSP-SOVA

Because SOVA performs on the same trellis as the Viterbi
algorithm [8] does, we then apply the PSP concept to de-
velop PSP-SOVA by embedding the timing recovery step
inside the SOVA equalizer so as to perform timing recov-
ery and equalization jointly. Fig. 3 shows the PSP-SOVA
algorithm, where the lines starting with * are the additional
steps beyond the conventional SOVA. It should be noted that
PSP-SOVA works in a same manner as PSP-based timing
recovery1 [9] does (i.e, from (A-1) to (A-10)), except that

1It is implemented based on the Viterbi algorithm.

(A-1) Initialize Φ0(p) = 0 for ∀p

*(A-2) Initialize τ̂0(p) = 0 for ∀p

(A-3) For k = 0, 1, . . . , L + ν − 1 + δ

(A-4) For q = 0, 1, . . . , Q − 1

*(A-5) yk(p) = y(kT + τ̂k(p)) for ∀p

(A-6) ρk(p, q) = |yk(p) − r̂(p, q)|2 for ∀p

(A-7) πk+1(q) = arg minp{Φk(p) + ρk(p, q)}
(A-8) Φk+1(q) = Φk(πk+1(q)) + ρk(πk+1(q), q)

(A-9) Sk+1(q) = [Sk(πk+1(q)) | πk+1(q)]

*(A-10) τ̂k+1(q) = τ̂k(πk+1(q))+µ{yk(πk+1(q))r̂(πk(πk+1(q)), πk+1(q))

− yk−1(πk(πk+1(q)))r̂(πk+1(q), q)}
(A-11) ∆k+1(q) = maxp{Φk(p) + ρk(p, q)} − Φk+1(q)

(A-12) Initialize L̂k(q) = +∞ [Soft decision update [5]]

For j = k − ν, . . . , k − δ

Compare the two paths merging in state q (i.e., Ψk+1 = q)

If â
(1)
j (Ψj+1) �= â

(2)
j (Ψj+1), update

L̂j(Ψj+1) = min(L̂j(Ψj+1), ∆k+1(q))

End

(A-13) End

(A-14) If k ≥ δ

Output the soft decision according to λp
k−δ = âk−δL̂k−δ , which

can be extracted from the survivor path that minimizes Φk+1

(A-15) End

(A-16) End

Fig. 3. PSP-SOVA algorithm, where the lines starting with
* are the additional steps beyond the conventional SOVA.

PSP-SOVA has extra steps for approximating the a poste-
riori log-likelihood ratio (LLR) of each data bit (or a soft
decision), which can be briefly explained as follows.

Following the notations in [9], at each k-th stage, the
metric difference for state q at time k+1, ∆k+1(q), is com-
puted by (A-11). Then, the tentative LLR is updated based
on (A-12), where L̂k(q) is the k-th LLR associated with
state q, â

(m)
j (Ψj+1) is the j-th estimated data bit associated

with the m-th path that passes Ψj+1, and m ∈ {1, 2} is used
to indicate the two paths that merge in state q (where m = 1
represents a correct path and m = 2 represents a wrong
path). After a decoding depth, δ, the a posteriori LLR of
ak, λp

k, is produced by (A-14). Note that δ = 5(ν + 1),
where ν is channel memory, is employed in this paper.

Beyond the conventional SOVA, PSP-SOVA needs new
storage requirements for (i) the sampling phase offsets and
(ii) the sampler outputs. However, only sampling phase off-
sets and sampler outputs of the current and previous stages
need to be stored, thus minimizing extra memory. Like
PSP-based timing recovery, PSP-SOVA requires one PLL
for each survivor path. Thus, for a PR-IV channel, the com-
plexity of timing recovery is four times the complexity of

conventional timing recovery. Additionally, instead of stor-
ing y(t), we could uniformly sample y(t) at symbol rate to
obtain a set of samples {yk}. Then, we can only store this
set of samples because the bandlimited nature of y(t) makes
it sufficient statistics. Therefore, PSP-SOVA can perform
the timing update operation using {yk} and a digital inter-
polation filter, thus decreasing its complexity. In this paper,
a 21-tap sinc interpolation filter (i.e., Ns = 21) is used.

To help quantify how much computational complexity
PSP-SOVA contains if compared to PSP-BCJR, we measure
complexity by counting the total number of additions and
multiplications (per bit). For other mathematical functions,
e.g., log(x), exp(x), etc., we assume they are implemented
as lookup tables, and that we ignore their complexity. It can
be shown that PSP-SOVA has (8 + 4Ns)Q + δ2+9δ+9

2 + 1
additions and (9+Ns)Q+1 multiplications, whereas PSP-
BCJR has (14 + 8Ns)Q − 2 additions and (26 + 2Ns)Q +
1 multiplications, where Q = 2ν is the number of trellis
states. Clearly, PSP-SOVA has lower complexity than PSP-
BCJR. Furthermore, we also found that PSP-SOVA needs
less memory than PSP-BCJR. Specifically, based on our
channel model, PSP-BCJR requires 2(L+ν+8)Q+4 mem-
ory units, whereas PSP-SOVA needs only (16+2δ)Q+8+δ
memory units. This suggests that PSP-SOVA is preferable
to PSP-BCJR in terms of cost implementation.

4. NUMERICAL RESULTS

Reduced-complexity per-survivor iterative timing recovery
is obtained by discarding the front-end PLL in Fig. 2 and
replacing the SISO equalizer with PSP-SOVA.

Consider a rate-8/9 system in which a block of 3640
message bits is encoded by a regular (3, 27) low-density
parity-check (LDPC) code [10], resulting in a coded block
length of 4095 bits. The parity-check matrix has 3 ones in
each column and 27 ones in each row. The SISO equal-
izer is implemented based on SOVA, whereas the SISO de-
coder is implemented based on the message passing algo-
rithm [10] with Ni = 5 internal iterations. The PLL gain
parameters for different iterative timing recovery schemes
were optimized based on minimizing the RMS timing error,
σε =

√
E[(τk − τ̂k)2], at a per-bit SNR, Eb/N0, of 5 dB.

Fig. 4 compares the BER performance of different iter-
ative timing recovery schemes at the 10-th iteration for the
systems with σw/T = 0.5% (imply a low probability of oc-
currence of a cycle slip) and σw/T = 1% (imply a high
probability of occurrence of a cycle slip). Apparently, the
reduced-complexity scheme outperforms the conventional
receiver, especially when σw/T is large. This is because the
reduced-complexity scheme can correct a cycle slip (same
as the full-complexity scheme) as opposed to the conven-
tional receiver. It is evident that for a given number of it-
erations, the full-complexity scheme yields a better perfor-

4 4.25 4.5 4.75 5 5.25 5.5

10
−4

10
−3

10
−2

10
−1

(a) SNR, E
b
/N

0
 (dB)

B
E

R

Conventional (1,10)

1 iteration

Reduced−com
plexity (10)

Full−com
plexity (10)

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6

10
−4

10
−3

10
−2

10
−1

(b) SNR, E
b
/N

0
 (dB)

B
E

R

Conventional (1, 10)

Full−complexity (10)

Reduced−complexity (10)

Fig. 4. Performance comparison at the 10-th iteration when
(a) σw/T = 0.5% and (b) σw/T = 1%.

mance than the reduced-complexity scheme. Nonetheless,
we will show that the reduced-complexity scheme will per-
form better than the full-complexity scheme if we compare
their performances when they have same complexity.

To do so, we count the number of operations (per bit) of
different schemes, including an LDPC decoder. Note that it
can be shown the LDPC decoder requires (j + (k − 1)(1 −
R))Ni + 1 additions and (1−R)Ni multiplications, where
(j, k) = (3, 27) is an LPDC parameter, and R = 1− j/k is
a code rate. Let N be the number of iterations. Then, by us-
ing Ns = 21, Q = 4, δ = 15, and Ni = 5, we can show that
the conventional receiver has 86 + 245.94N additions and
27 + 25.56N multiplications; the full-complexity scheme
has 758.44N additions and 273.56N multiplications; and
the reduced-complexity scheme has 585.94N additions and
121.56N multiplications. However, it should be pointed out
that multiplication has much more complexity than addi-

2 4 6 8 10 12 14 16 18 20

10
2

10
3

Number of iterations, N

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

 (
pe

r
bi

t)

Conventional

Reduced−complexity

Full−complexity

Fig. 5. Complexity comparison (based on a PR-IV channel).

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6

10
−4

10
−3

10
−2

10
−1

SNR, E
b
/N

0
 (dB)

B
E

R

Conventional (20)

Full−complexity (2)

Reduced−complexity (4)

 σ
w

/T = 1%

 σ
w

/T = 0.5%

Fig. 6. Performance comparison with same complexity.

tion in terms of circuit implementation. Consequently, we
consider only the number of multiplications when compar-
ing the performance of different iterative timing recovery
schemes. Fig. 5 compares the number of multiplications of
each scheme. Clearly, the full-complexity scheme has very
high complexity if compared to the others.

In addition, we also assume that current technology can
support the total number of multiplications equal to 2 itera-
tions of the full-complexity scheme, which is approximately
equal to 4 iterations of the reduced-complexity scheme and
20 iterations of the conventional receiver (see Fig. 5). Fig. 6
compares the performance of different iterative timing re-
covery schemes when they have same complexity. It is ev-
ident that the reduced-complexity scheme performs better
than both per-survivor iterative timing recovery and the con-
ventional receiver, especially at high SNR.

5. CONCLUSION

We proposed reduced-complexity per-survivor iterative tim-
ing recovery, which jointly performs timing recovery, equal-
ization, and error-correction decoding, to make it imple-
mentable in real-life applications. Simulation results have
shown that for low to moderate complexity, the reduced-
complexity scheme performs better than the full-complexity
scheme and the conventional receiver.

6. REFERENCES

[1] P. Kovintavewat, J. R. Barry, M. F. Erden, and E. M.
Kurtas, “Per-survivor iterative timing recovery for
coded partial response channels,” to appear in Proc. of
Globecom’04, Dallas, Texas, Nov 29 – Dec 3, 2004.

[2] J. R. Barry, A. Kavcic, S. W. McLaughlin, A. R.
Nayak, and W. Zeng, “Iterative timing recovery,”
IEEE Signal Processing Magazine, vol. 21, pp. 89–
102, Jan 2004.

[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal
decoding of linear codes for minimizing symbol error
rate,” IEEE Trans. Inform. Theory, vol. IT-20, no. 2,
pp. 248–287, Mar 1974.

[4] R. Raheli, A .Polydoros, and C. K. Tzou, “The princi-
ple of per-survivor processing: a general approach to
approximate and adaptive MLSE,” in Proc. of Globe-
com’91, vol. 2, pp. 1170–1175, Dec 1991.

[5] J. Hagenauer and P. Hoeher, “A viterbi algorithm
with soft-decision outputs and its applications,” in
Proc. of Globecom’89, pp. 1680–1686, Nov 1989.

[6] J. W. M. Bergmans, Digital baseband transmission
and recording, Kluwer Academic Publishers, Boston,
Massachusetts, 1996.

[7] T. Souvignier, A. Friedmann, M. Öberg, P. H. Siegel,
R. E. Swanson, and J. K. Wolf, “Turbo decod-
ing for PR4: parallel vs. serial concatenation,” in
Proc. of ICC’99, vol. 3, pp. 1638–1642, Jun 1999.

[8] G. D. Forney, “Maximum-likelihood sequence estima-
tion of digital sequences in the presence of intersym-
bol interference,” IEEE Trans. Inform. Theory, vol.
IT-18, no. 3, pp. 363–378, May 1972.

[9] P. Kovintavewat, J. R. Barry, M. F. Erden, and E. M.
Kurtas, “Per-survivor processing (PSP) -based timing
recovery for uncoded partial response channels,” in
Proc. of ICC, vol. 5, pp. 2715–2719, Jun 2004.

[10] R. Gallager, “Low-density parity-check codes,” IRE
Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan 1962.

