
A Novel Anti-Collision Algorithm for
High-Density RFID Tags

Sarawut Makwimanloy1, Piya Kovintavewat2, Urachada Ketprom3, Charturong Tantibundhit4

1 National Electronics and Computer Technology Center, Thailand (E-mail:sarawut.makwimanloy@nectec.or.th)
2 Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand (E-mail:piya@npru.ac.th)

3 National Electronics and Computer Technology Center, Thailand(E-mail:urachada.ketprom@nectec.or.th)
4 Electrical and Computer Engineering Department, Thammasat University, Thailand (E-mail:tchartur@engr.tu.ac.th)

ABSTRACT

In a radio frequency identification (RFID) system,
when more than one tag communicates with the reader at
the same time, a collision will occur, resulting in the
failure of that communication. Many anti-collision
algorithms, such as Binary Tree (BT), FSA, and DFSA,
have been used in ISO and EPC standards to prevent such
a collision. This paper develops a new anti-collision
algorithm based on the BT and the DFSA algorithms.
Specifically, all tags are divided into many groups using
the DSFA algorithm. Then, the tags in each group are
identified using the BT algorithm. Results indicate that
the proposed algorithm performs better than the existing
ones in terms of the number of used time slots (the less
the used time slot, the faster the algorithm).

Keywords: Anti-Collision, DFSA, BT

1. INTRODUCTION

Radio frequency identification (RFID) is a
technology for automated identification. Typically, an
RFID system consists of a reader and tags, which
communicate with one another via radio frequency
waves. Recently, RFID has been widely used in many
applications, such as transport systems, electronic
ticketing, access control, animal identification, logistics,
and supply chain management [1].

In the application, where many tags are present in the
reader’s field, if more than one tag communicates with
the reader at the same time, a collision will occur
resulting in the failure of that communication. Thus, each
tag has to resend all information to the reader. To prevent
this problem, an anti-collision algorithm must be used.
Based on the International Standards Organization (ISO)
and EPCglobal (EPC), there are 3 types of anti-collision
algorithms, namely, binary tree (BT) [2, 3], Framed
Slotted ALOHA (FSA) [2], and Dynamic Framed Slotted
ALOHA (DFSA) [2, 4] algorithms. However, these
algorithms take a lot of time identify tags [2].

Many improved anti-collision algorithms have
recently been proposed in the literature. For example,
Cheng and Jin [2] presented the analysis and simulation
of several RFID anti-collision algorithms and partitioning
of tags for near-optimum RFID anti-collision
performance. Shin and Kim [5] proposed a partitioning

technique, which enables a faster accurate estimation on
the number of contending tags, and yields much higher
throughput against previous non-partitioning approaches.
Cho et al. [6] proposed an anti-collision algorithm using
parity bit (ACPB) in RFID system. The ACPB identifies
tags without checking all bits in the tags. Then, the
reader uses the parity bit, which is added to the tag’s ID
number. Clearly, ACPB can reduce the number of the
requests from the reader. Thus, it can shorten the time of
identifying all tags in the reader’s field. In this paper, we
propose a novel anti-collision algorithm, which is based
on the BT algorithm. The proposed algorithm can
estimate the number of tags in the reader’s field and
identifies all tag faster than the existing anti-collision
algorithms.

The rest of this paper is organized as follows.
Section 2 briefly describes how BT and DFSA algorithms
work. A new anti-collision algorithm is explained in
Section 3. Section 4 compares the performance of
different anti-collision algorithms. Section 5 analyzes the
effect of data collusion in RFID systems. Finally, Section
6 concludes this paper.

2. EXISTING ANTI-COLLISION ALGORITHMS

This section briefly describes how BT and DFSA
perform because their performances are compared with
the proposed anti-collision algorithm.

2.1 Binary Tree (BT)

The BT algorithm or the Query Tree algorithm [6]
divides tags into two groups based on the most significant
bit (MSB) of the tag’s ID number, which consists only of
bits “0” and “1”. To search a tag, a dividing process
continues adding up the number “0” and “1” into each
group, until finding a tag [2, 7, 8]. Note that we consider
only the case where the tags do not support a random
generator in hardware for group selection [9], meaning
that the BT algorithm operates on the tag’s identification
(ID) numbers.

To obtain all tags, the reader begins a search by
sending a prefix bit “0” or “1” to all tags and waits for the
response. If there is only one response, the reader then
can identify that tag. However, if more than one tag
responds back at the same time, a collision will occur. In
this case, the reader will add another bit (“0” or “1”) to a

prefix bit and send the new prefix bits to the remaining
tags until there is only one response. The reader will do
this process until all tags are identified.

To compare the performance of different anti-
collision algorithms, we use the required total number of
commands sent from the reader to the tag as a criterion.
Each command is referred to as one time slot (or, in short,
slot). Assuming that each slot uses the same processing
time, the algorithm that requires a large number of slots
will operate slow.

2.2 Dynamic Framed Slotted ALOHA (DFSA)

Dynamic Framed Slotted ALOHA developed from
FSA is utilized in Class 1 Generation 2 of EPC [4]. It
divides tags into many groups according to the number of
slots specified by a reader. All tags will random the slot
number between 0 to the number of slots, and the tags
having the same number will be in the same group.

First, the reader sends a command with a
“slot_number.” Note that the “slot_number” will be set
to 0 at the first time, and it will then increase by 1 for
every round. If the tag has a group number equal to the
“slot_number,” that tag will respond to the reader. Then,
if there is only one response at this time, the reader will
identify that tag. If there is a collision, the reader will
increase the “slot_number” by 1 and send it to all
remaining tags. The reader repeats this process until the
“slot_number” is equal to the number of slots.

When the reader finishes sending a command with
the “slot_number” between 0 to the number of slots, we
assume that the operation time is one frame. If the reader
cannot identify all tags in the reader’s filed, the reader
will begin the new frame. The reader can adjust the
number of slots in the new frame based on a Q-parameter
[4 – 5]. The reader will do this process until it can
identify all tags in the reader’s filed.

3. PROPOSED ANTI-COLLISION ALGORITHM

The simulation in [10] showed that the BT algorithm
is more efficient than FSA and DFSA. This is because
the BT algorithm uses a less number of slots when the
number of tags in the system is small. Practically, when
the system has a large number of tags, the BT algorithm
tends to perform worse because it uses a lot of slots to
identify all tags if compared to DFSA [10].

The proposed algorithm is developed based on the
BT and the DFSA algorithms. We first divide tags into
many groups using the DFSA algorithm as illustrated in
Fig. 1. Then, all tags in each group are identified using
the BT algorithm. To achieve this, we assume that the
tag can generate a 9-bit uniform random number and has
a function to select a group according to that random
number. To make the proposed algorithm more efficient,
the number of groups must coincide with the number of
tags. Specifically, the less the number of tags, the less the
number of groups. Therefore, we must first estimate the
number of tags in the reader’s field so as to determine the
number of groups used in the proposed algorithm. To do

Fig.1: How The Proposed Algorithm Work.

this, we use the number of tags in each group to estimate
the total number of tags in the reader’s field since each
group should have an equal probability to have the same
number of tags.

Figure 2 shows how the proposed anti-collision
algorithm works. First, we determine the number of
groups from the estimated total number of tags in the
reader’s field. Based on the simulation with maximum of
1,000 tags, the number of groups suitable for the
proposed algorithm is 32 groups. Next, we randomly
pick three groups in order to identify tags based on the BT
algorithm. Then, the total number of tags in the reader’s
fields can be estimated according to

 ()ˆ /ALL G ALL GT T N N= (1)

where ˆ
ALLT is the estimated total number of tags in

the reader’s field, TG is the number of identified tags in
the selected three groups, NG is the number of selected

groups used to find ̂ALLT (e.g., NG = 3), and NALL is the

total number of groups in the reader’s field (e.g., NALL =
32).

Once we have an estimate of the total number of tags
in the reader’s field, we can now choose a suitable
number of groups to identify tags according to Table 1,
which is obtained from extensive simulation search.
Then, we use a regular BT algorithm to identify tags in
each group.

4. SIMULATION RESULT

Assuming that the tag’s ID number consists of 64 bits
(all random bits). Our proposed method to estimate the
total number of tags in the reader’s field is efficient when
the number of tags is varying.

()ˆ /ALL G ALL GT T N N=

GN

ˆ
ALLT

GT

GT

GT

 Fig.2: A Flowchart of the Proposed Anti-Collision
Algorithm.

Table 1: Number of Groups for Different
Estimated Number of Tags

Estimated number of tags Number of groups

< 50 16

< 100 32

< 200 64

< 400 128

< 900 256

< 950 512

Note that we use the BT algorithm to identify tags in
each group. Figure 3 shows the total number of used
slots to identify all tags for different number of tags and
groups, where the x-axis represents the number of groups,
the y-axis indicates the number of tags, and the z-axis
represents the number of used slots.

Practically, the less the number of used slots, the
faster the algorithm. It is apparent that for a given
number of tags, there is the suitable number of groups
(i.e., the shaded columns) that yields the lowest number
of used slots. Therefore, the proposed algorithm must
first estimate the total number of tags in the reader’s field
so as to determine the suitable number of groups.

Fig.3: The Number of Used Slots for Different Number of

Tags and Groups.

Fig.4: The Estimated Number of Tags for Different

Number of Tags and Groups (for NG=3).

Figure 4 illustrates the estimated number of tags for
different number of tags and groups, where the x-axis
represents the number of groups, the y-axis indicates the
number of tags, and the z-axis represents the estimated
number of tags. Clearly, the less number of groups will
result in a better estimation of the total number of tags.
For example, the number of groups of 2 will give 100%
accuracy of the estimated total number of tags. However,
based on exhaustive search, we found that the number of
groups of 32 is the maximum number of groups, which
yields minimum error of the estimation under specified
condition. For example, for NG = 3 and NALL = 32, the
total number of tags from 0 to 200 tags will give an error
of 31% - 37%, but for NG = 31 and NALL = 32, the total
number of tags from 0 to 200 tags will give an error of
0.05% - 0.15%. Thus, the chosen parameter for NG will
depend strongly on the error threshold requirement.

Fig.5: The Percentage of Error between The Actual
Number of Tags and The Estimated Number of Tags

(for NALL=32).

Figure 5 compares the percentage of error between the
actual number of tags and the estimated number of tags
obtained from our proposed method, where the x-axis
represents the number of used groups for estimating tags,
the number of used groups for estimating tags, the y-axis
indicates the number of actual tags, and the z-axis
represents the percentage of error. We first set the total
number of groups of 32 (i.e., NALL = 32). Then, we vary
the number of used groups from 1 to 32 (i.e., NG = 1 to
32) so as to estimate the total number of tags in the reader’s
field. If we use a large number of used groups, the
estimation error will be small, but the proposed algorithm
will require a lot of number of used slots, which implies
low efficiency. Conversely, if we use a small number of
used groups, the estimation error will be large, resulting in
unacceptable estimate. Based on Fig. 5, we set the
number of used groups to be 3 because if the larger
number of group is utilized, the number of used slots will
increase to an unacceptable level even though the
percentage of error between the estimated tags and the
actual tags is decreased.

In this paper, we compare the performance of the
four algorithms, namely, Binary Tree, Binary Tree 3 bits,
DFSA, and the proposed algorithm (with 32 groups),
assuming that the tag’s ID number consists of 64 bits (all
random bits).

Figure 6 illustrates the performance comparison as
the plot between the number of tags (x-axis) and the total
number of used slots (y-axis). The smaller the number of
used slots, the faster the algorithm. The proposed
algorithm outperforms the other algorithms, i.e., at the
considering total number of used slots, the proposed
algorithm uses a smaller number of tags. The advantage
of the proposed algorithm is more visible as the increase
of the number of tags and could be explained as follow.
The DFSA divides groups of tags into slots randomly.
Thus, tags are more likely to collide especially when a
large number of tags are presented in the reader’s field.
While in the case of BT and BT 3-bit, the more numbers
of tags presented in the reader’s field, the more identical

Fig.6: Performance Comparison of Different Anti-

Collision algorithm.

of the most significant bit ID of the tags. Therefore, more
collisions occur resulting in higher used slots.

5. COLLISION ANALYSIS

In this Section, we analyze the effect of data
collusion in RFID systems. Generally, the functionality
of an anti-collision algorithm depends on data collision.
For example, the DFSA algorithm uses the result of data
collision in the slot to decide if the number of slots per
frame should be adjusted, whereas the BT algorithm uses
the result of tag responses to determine if the number of
bits used to identify tags should be increased. Therefore,
the result of data collision is of importance for anti-
collision algorithms.

To perform the analysis, we create the RFID system
in the hardware, where we use a front-end module from
Austria-microsystems with an MSP430F156
microcontroller to control an RFID system.

Figure 7 shows a system setup for our experiment,
which employs an “as3990” chip controlled by a
microcontroller. Practically, the as3990 chip will receive
a command from a microcontroller that a reader wants to
send to a tag. Then, this command is encoded and
modulated before sending it to a tag. Whether or not the
tag will response back to the reader depends on the tag’s
working status at that time.

In general, one data packet that is transferred in an
RFID system consists of two parts, namely, a preamble
and a data. Thus, the investigation of data collision in an
RFID system can be preformed in two ways as follows:

5.1 By looking at a preamble portion

A preamble is at the beginning of a data packet, which
is used to initiate the data transmission. If a data collision
is occurred at this portion, the remaining data in that data
packet will be lost. Thus, the reader cannot receive any
data from the tags.

5.2 By looking at a data portion

After a preamble can be detected correctly, the reader
will begin receiving a data. However, if there is a collision

Fig.7: A System Setup for Our Experiment.

occurred during receiving a data, the remaining data will
also be lost. In this case, the reader can realize the
damage of the received data by checking at a cyclic
redundant code (CRC).

Figure 8 illustrates the signal that transmits and
receives between a reader and a tag. The signal 1 and
signal 2 are analog signals that the reader receives, while
the signal D0 and D1 are digital signals. It is clear from
Figure 8 that there is no data collision occurred during
data transmission between a reader and a tag.
Conversely, Figure 9 illustrates the data collision during
data transmission. Specifically, there is a distortion in the
analog signals, which causes an error in digital signals
after modulation. This signal distortion can be obtained
from many reasons, such as, the data collision from two
tags, the interference from other signals using the same
frequency, the reflection from signals, and
noises/disturbances. As a consequence, we can classify
the signal distortion into two main reasons, i.e.,

1) The signal distortion that results from the two tags
send out the data to a reader simultaneously. This
definitely causes a data collision. In this case,
although the reader asks the tag to retransmit a data,
the data collision is still occurred. To solve this
problem, we need to increase the number of bits used
to identify the tags in the BT algorithm, whereas the
DFSA algorithm will skip this transmission slot and
start a new transmission slot in a new frame.

2) The signal distortion that results from noises. In this
case, retransmitting a data from the tag to the reader
might help solve the problem. This will reduce the
time to identify the tags because we do not have to
increase the number of bits in the BT algorithm and
the DFSA algorithm does not need to skip the
transmission slot.

Fig.8: Analog and Digital Signals Transmit and Receive

between A Reader and A Tag.

Fig.9: A Response Signal from The Tag that Experiences

A Data Collusion.

Figure 10 shows the result of real testing in the
hardware, which uses the BT algorithm according to ISO
18000-6 Type B. This figure is a plot between the
number of tags (x-axis) and the total number of used slots
(y-axis). The result of real testing coincides with that of
simulation in the Figure 6 in terms of linear relationship
between the number of tags and the number of used slots.
Then, we can find the number of transmission slots when
we know the number of tags following a linear
relationship according to Fig. 10.

6. CONCLUSIONS

The anti-collision algorithms are crucial to the
application that uses a large number of tags. In general,
the BT algorithm performs faster than the DFSA
algorithm when the number of tags is small. The
proposed algorithm exploits the advantage of both the BT
and the DFSA algorithms. Specifically, all tags are
divided into many groups based on the DFSA algorithm,
and the tags in each group are identified using the BT

Fig.10: Performance of BT Algorithm in Real Testing in

Hardware.

algorithm. It is clear from simulation that the proposed
anti-collision algorithm performs better than the existing
ones in terms of the number of used time slots, which
implies fast identification process.

7. ACKNOWLEDGMENT

This work is supported by National Science and
Technology Development Agency (NSTDA) and the
RFID Program, National Electronics and Computer
Technology Center (NECTEC), Thailand.

8. REFERENCES

[1] K. Finkenzeller, RFID handbook, John Wiley & Sons,
West Sussex, 2003.

[2] T. Cheng and L. Jin, “Analysis and Simulation of
RFID Anti-collision Algorithm,” IEEE Advanced
Communication Technology, vol. 1, pp. 697 – 701,
Mar. 2007.

[3] EPC Global. 860MHz~930MHz Class I Radio
Frequency Identification Tag Radio Frequency &
Logical Communication Interface Specification
Candidate Recommendation, Version 1.0.1.

[4] EPC Global. EPCTM Radio-Frequency Identity
Protocols Class-1 Generation-2 UHF RFID Protocol
for Communications at 860 MHz~960MHz, Version
1.0.9.

[5] W. J. Shin and J. G. Kim, “Partitioning of Tags for
Near-Optimum RFID Anti-collision Performance,”
IEEE Wireless communications and Networking
Conference, pp. 1673-1678, Mar. 2007.

[6] J. S. Cho, J. D. Shin and S. K. Kim, “RFID Tag Anti-
Collision Protocol: Query Tree with Reversed IDs,”
ICACT, pp. 225-230, Mar. 2008.

[7] C. Abraham, V. Ahuja, A. K. Ghosh, and P. Pakanati,
“Inventory Management using Passive RFID Tags: A
Survey,” Department of Computer Science thesis,
University of Texas at Dallas, Richardson, Texas.

[8] R. Ahmed, “Performance Comparison of RFID Tag
Anti-collision Algorithm using Simulation and Real
Testing Based,” M. Eng. thesis, Asian Institute of
Technology, Thailand, May.2007.

[9] ISO/IEC 18000-6:2003(E), Part 6: Parameters for air
inter-face communications at 860-960 MHz, Nov. 26,
2003.

[10] S. Makwimanloy, P. Kovintavewat, U. Ketprom, C.
Tantibundhit and C. Mitrpant, “A New Anti-Collision
Based on A-Priori Information,” in Proc. of ECTI-
CON 2008, Krabi, Thailand, vol. II, pp. 733 – 736,
May 14 – 16, 2008.

