
A New Anti-Collision Based on A-Priori Information

Sarawut Makwimanloy1, Piya Kovintavewat2, Urachada Ketprom3, Charturong Tantibundhit4, Chaichana Mitrpant5
1,4 Electrical and Computer Engineering Department, Thammasat University, Thailand

2 RFID Technology and Applications Research Unit, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand
3,5 RFID Program, National Electronics and Computer Technology Center (NECTEC), Thailand

Email: 1makwimanloy@hotmail.com,2piya@npru.ac.th,3urachada.ketprom@nectec.or.th,
4tchartur@engr.tu.ac.th,5chaichana.mitrpant@nectec.or.th

Abstract— A collision occurs when more than two tags present in
the reader’s field of a radio frequency identification system.
Anti-collision algorithms such as binary trees and dynamic
framed slotted aloha (DFSA) have been employed to prevent
such a collision. The identification number of tag consists of 64
bits and certain parts of 64 bits can be considered a priori-
information. This paper proposes a new anti-collision algorithm
based on a-priori information about the manufacturer code. This
prior-information reduces the number of bits to analyze in the
algorithm, hence reduces the operation time for the faster read-
performance. Results indicate that the proposed anti-collision
algorithm required a less number of used time slots, thus
minimizing the operation time more than 50% comparing to the
existing ones.

I. INTRODUCTION
Radio-frequency identification (RFID) system has been

introduced to uniquely identify the object of interest. The
RFID system basically consists of a reader and a tag,
communicating via radio frequency waves. Currently, the
RFID system has been employed in a variety of applications,
such as transportation, ticketing, access control, animal
identification, and so forth.

When more than one tag in the reader’s field
communicates with the reader at the same time, a collision
will occur, resulting in the failure of that communication. In
this case, each tag has to restart communication with the
reader. To prevent this problem, an anti-collision algorithm
must be used. Based on the International Standards
Organization (ISO) and EPCglobal (EPC), there are 3 types of
anti-collision algorithms, namely, Binary Tree (BT) [1, 2],
Framed Slotted ALOHA (FSA) [1], and Dynamic Framed
Slotted ALOHA (DFSA) [1, 3] algorithms.

Many improved anti-collision algorithms have recently
been proposed in the literature. For example, reference [1]
presents the analysis and simulation of several RFID anti-
collision algorithms and partitioning of tags for near-optimum
RFID anti-collision performance. Partitioning technique
enabling a faster accurate estimation on the number of
contending tags, which yields much higher throughput against
previous non-partitioning approaches, was proposed in [4].

Figure 1 shows a structure of a tag’s ID number consisting
of 64 bits. This first 32 bits (the 1-st bit to the 32-nd bit)

represents a serial number of each tag, whereas the last 32 bits
indicates the manufacturer code (the numbers of registered
company and the type of product) which is never changed.
Normally, the manufacturer code is hidden from the users.
Thus, all existing anti-collision algorithms use all 64 bits in a
tag’s ID number to process, starting from the 64-th bit to the
1-st bit [2, 3]. However, for a special case where a-priori
information about the manufacturer code is known,

Fig. 1. A structure of a tag’s ID number used in ISO 18000-6 [7].

there is no anti-collision algorithm that exploits such
information to improve its performance. In this paper, we
therefore propose a new anti-collision algorithm based on a-
priori information, which performs better than the existing
algorithms in terms of the number of used time slots (the less
the used time slot, the faster the algorithm). The performance
comparison of different anti-collision algorithms used in ISO
and EPC standards is also provided to serve as a guideline for
users to decide which algorithm should be utilized for a given
condition.

The rest of this paper is organized as follows: Section II
briefly describes some anti-collision algorithms used in ISO
and EPC standards. A new anti-collision algorithm based on
a-priori information is explained in Section III. Section IV
compares the performance of different anti-collision
algorithms. Finally, Section V concludes this paper.

II. EXISTING ANTI-COLLISION ALGORITHMS
This section briefly describes how the anti-collision
algorithms (i.e., BT, FSA, and DFSA) perform.

A. Binary Tree Algorithm
A Binary Tree (BT) algorithm is employed in ISO 18000-

6 Type B and EPC Class 1 [2]. For ISO 18000-6 Type B, it
divides tags into two groups based on the most significant bit
of the tag’s ID number, denoted as MSBID (i.e., the 64-th bit
in Fig. 1), which consists only of bits “0” and “1”. To search
a tag, a dividing process continues adding up the number “0”

and “1” into each group, until finding a tag [1, 5, 6]. Note that
we consider only the case where the tags do not support a
random generator in hardware for group selection [7],
meaning that the BT algorithm operates on the tag’s ID
number. Fig. 2 shows how the BT algorithm works. Suppose
there are 3 tags in the reader’s field, namely, “011,” “101,”
and “110,” where the first digit is MSB. To obtain all tags,
the reader begins a search by sending bit “0” (step 1) to all
tags and waits for the response. There is one response sent to

Fig. 2. How Binary Tree algorithm works.

reader because there is only one tag beginning (on the left
hand) with bit “0.” Now, the reader recognizes Tag 1. Next,
the reader sends bit “1” (step 2) to the other two tags, i.e.,
“101” and “110”. In this case, a collision occurs because two
tags respond back at the same time. Then, the reader sends
another bit “0” (step 3) to these two tags. At this time, the
reader can recognize Tag 2 because the reader receives only
one response. Then, the reader sends another bit “1” (step 4)
to the remaining tag, which results in only one response from
Tag 3 sent to the reader. This means there is no other tags in
the reader’s field, thus implying the end process of the BT
algorithm.

To compare the performance of different anti-collision
algorithms, we use the required total number of commands
sent from the reader to the tag as a criterion. Each command
is referred to as one used time slot (or, in short, slot).
Assuming that each slot uses the same processing time, the
algorithm that requires a large number of slots will operate
slow. For example, in Fig. 2, the total number of slots that the
reader requires to recognize all three tags is 4 slots. This
means that the number of slots is increased one slot every time
when the reader sends out each one bit, i.e., “0” or “1.”

For the BT algorithm used in EPC Class 1, the searching
procedure is similar to that used in ISO 18000-6 Type B, but
the BT algorithm in EPC Class 1 will divide a group into 8
subgroups based on 3 bits at each step [2]. There are both
advantages and disadvantages between these two BT
algorithms as illustrated in Section IV.

B. Framed Slotted ALOHA (FSA)
This algorithm developed from the Slotted Aloha

algorithm is used in ISO 18000-6 Type A [7]. It divides tags
into many groups according to the number of slots specified
by a reader. All tags will random the slot number, and the
tags having the same number will be in the same group.

First, the reader sends an “Init_round” command to tags
for setting the number of slots within one frame. Next, tags

randomly pick a slot number between 0 to “slot_number,” and
record it into a “slot_count.” If the “slot_count” equals to the
required “slot_number,” the tag will respond to the reader.
Then, three possible outcomes could happen:
1) No Tag response

Reader sends a “Close_slot” command to all tags to
 increase a “slot_count.”
2) One Tag response

Reader passes a “Next_slot” command to the responded
 tag so as not to respond the reader in the next frame.
3) Multiple Tags response

Reader recognizes a collision and will send a “Close_slot”
 to the collided tags to increase a “slot_count.”

This procedure repeats until the reader can identify all tags
completely [6]. In FSA, the total number of slots is equal to
all slots used in the FSA algorithm.

C. Dynamic Framed Slotted ALOHA (DFSA)
This algorithm developed from FSA is utilized in EPC

Class 1 Generation 2. It works similar to FSA, except that the
number of slots in each frame can be adjusted based on a Q-
parameter [3, 4]. In DFSA, a reader sends a command to tags
for specifying a Q-parameter. Next, tags randomly select and
record a value between 0 and 2Q-parameter -1 into a
“slot_counter.” The tag with a “slot_counter” equal to 0 will
respond back to the reader. Then, the reader sends a “Query”
command to decrease the value of a “slot_counter,” and also
sends a “QueryAdjust” command to adjust the value of Q-
parameter. However, if there are empty or collided slots more
than the number of accepted slots, tags will repeat all steps
until the reader can identify all tags.

III. PROPOSED ANTI-COLLISION ALGORITHM
When some a-priori information about the tags is known,

we can exploit such information to improve the performance
of the existing anti-collision algorithms. In this paper, we
consider three types of a-priori information, i.e.,
1) Suppose a-priori information about the total number of

tag’s manufacturers is known. We found that for each
application, if possible, it is preferable to employ all tags
from one manufacturer in the RFID system.

2) Suppose the total number of tags needed to identify is
known. In this case, we found that there is no significant
performance improvement when we use this information
in the anti-collision algorithm.

3) Suppose the manufacturer code of tags is known. In this
case, we can use this information in the anti-collision
algorithm to reduce the time required to identify all tags.

In a searching process, all anti-collision algorithms begins
with the MSBID (i.e., the 64-th bit in Fig. 1), and continues to
the 1-st bit. The proposed anti-collision algorithm is the
existing anti-collision algorithm that exploits a-priori
information. This means that if we know a manufacturer code
(i.e., ranging from the 64-th bit to the 33-th bit in Fig. 1), the
proposed anti-collision algorithm can start the searching
process at the 32-th bit, instead of the 64-th bit. Clearly, this

will reduce the time required to identify all tags. As shown in
simulation, the proposed anti-collision algorithm identifies all
tags much faster than other algorithms.

IV. SIMULATION
Performance comparison of the existing anti-collision

algorithms has been investigated in [1, 6]. Here, we compare
the performance of the proposed anti-collision algorithm with
the existing algorithms in different aspects as follows.

Fig. 3. Performance comparison of BT 1-bit, BT 3-bit, and DFSA.

A. DFSA and Binary Tree
We compare the performance of three algorithms, i.e.,

Binary Tree 1 bit (BT 1-bit), Binary Tree 3 bits (BT 3-bit),
and DFSA, and assume that the tag’s ID number consists of
10 bits (all random bits). Note that we cannot simulate the
tag’s ID number of 64 bits due to the limitation of memory
requirement. Figure 3 compares the performance of different
algorithms, where the x-axis represents the number of used
tags in percentage, and the y-axis is the total number of used
slots. The less the number of used slots, the faster the
algorithm. It is clear that the BT performs better than the
DSFA, especially when the number of tags is large. This is
because the DFSA divides groups of tags randomly into slots.
Thus, tags are more likely to collide, especially when a large
number of tags present in the reader’s field. Furthermore, the
BT 1-bit performs better than the BT 3-bit when the number
of used tags is less than 25%, but worse than the BT 3-bit
when the number of used tags is larger than 25%. Therefore,
the selected algorithm depends on the number of used tags for
a given application.

B. Binary Tree with multiple manufacturer codes
In Figure 3, we assume that the tag’s ID number consists of

20 bits. Here, we consider the case where the IC manufacturer
code is known and can be divided into one, two, and three
groups (i.e. the first 10 bits are the same for each group, the
last 10 bits are random numbers). We expected that the number
of groups affects the performance of the algorithms. Figure 4
compares the performance of the BT with 1, 2, and 3

manufacturer codes, where each point is averaged by 10 data
sets.

It is apparent from Fig. 4 that the BT with 1 manufacturer
code performs better than that with 2 and 3 manufacturer
codes. As expected, the results confirm that the more the
difference in the manufacturer code, the more the number of
slots required to identify all tags. Consequently, for a given
application, it is preferable to use all tags from one
manufacturer if possible.

Fig. 4. Performance of the BT with multiple manufacturer codes.

C. Smart Binary Tree algorithm
Here, we compare the performance of the proposed anti-

collision algorithm with the existing ones. We consider two
cases of a-priori information, i.e., when the total number of
tags is known and when the manufacturer code is known.

The proposed algorithm that knows when the total
number of tags needed to identify is the normal anti-collision
algorithm, but it will stop the searching process when all tags
are identified. We observed that there is no significant
performance improvement (not shown here) when the reader
knows the total number of tags needed to identify. This is
because the normal algorithm will also stop the searching
processing when no tag responds after querying. However, if
a-priori information about the manufacturer code is known,
we can then improve the performance of the anti-collision
algorithms. Let us denote “Smart BT n-bit” as the BT n-bit
algorithm that exploits such a-priori information. We also
assume that the tag’s ID number consists of 20 bits (the first
10 bits represent a manufacturer code and the last 10 bits
represent a random ID number). Again, we cannot simulate
the tag’s ID number of 64 bits because of the limitation of
memory requirement. Then, with the Smart BT algorithm, the
searching process skips the 10-bit manufacturer code, and
starts the normal BT algorithm at the 10-th bit.

Figure 5 compares the performance of the BT and the
Smart BT algorithms with one manufacturer code. Clearly,
the Smart BT performs better than the BT. For the Smart BT
algorithm, the decision point to decide whether or not 1-bit or
3-bit searching process should be used is roughly at 50% of

the number of used tags, whereas for the BT algorithm, the
decision point is at 26% of the number of used tags.

Table I shows the total number of slots used in the Smart
and the normal BT algorithm (extracted from Fig. 5). The
Smart BT algorithm requires the number of slots less than the
BT algorithm, approximately 50%. We also compare the
performance of the BT and the Smart BT algorithms with three
manufacturer codes as depicted in Fig. 6.

Fig. 5. Performance of the BT and the Smart BT with one manufacturer code.

TABLE I

COMPARISON OF THE NUMBER OF USED SLOTS

BT BT 3 bit BT BT 3 bit BT BT 3 bit
30% 736 844 362 462 50.815 45.26
50% 1133 1316 557 564 50.838 57.142
70% 1497 1762 733 581 51.035 67.026

% of tags Normal Smart
Percentage of slot

reduction (%)
One manufacturer code (total slots)

Clearly, the performance improvement is not significant. The
Smart BT algorithm performs well when the numbers of tags
are known prior to data communication, but the manufacturer
codes of three companies have no role in time slot reduction.
It is not possible for the reader to know beforehand which tags
of three companies will be first read and thus keep sending the
new command until no collision occurs. However, the smart
BT algorithm will in general perform better than the normal
BT algorithm. The performance comparison of existing anti-
collision algorithms is summarized in Table II. The speed
refers to the operation time used in each algorithm, while the
complexity refers to the system request memory, computation,
and other functions on tags.

V. CONCLUSIONS
The anti-collision algorithms are crucial to the application

that uses a large numbers of tags. In general, the Binary Tree
algorithm performs faster than the DFSA algorithm as shown
in Fig. 3. Furthermore, one should employ tags with one
manufacture code in each application to expedite the
identification process. The proposed algorithm that exploits

a-priori information performs better than the existing anti-
collision algorithm in terms of the number of used time slots,
resulting in the faster read.

Fig. 6. Performance of BT and Smart BT with three manufacturer codes.

TABLE II
DETAILS OF EACH ALGORITHM

Type FSA DFSA BT 1-bit BT 3-bit
Details
1) Speed slow normal fast normal
2) Ability to add tags
 while working
3) Complexity normal highest low low
4) Security of tag's IDs √ √ X X

 √ √ X X

ACKNOWLEDGMENT
This work was supported by National Science and

Technology Development Agency (NSTDA) and the RFID
Program, National Electronics and Computer Technology
Center (NECTEC), Thailand, under grant TG-44-21-50-098M.

REFERENCES
[1] T. Cheng and L. Jin, “Analysis and Simulation of RFID Anti-collision

Algorithm,” IEEE Advanced Communication Technology, vol. 1, pp.
697 – 701, Mar. 2007.

[2] EPC Global. 860MHz~930MHz Class I Radio Frequency Identification
Tag Radio Frequency & Logical Communication Interface Specification
Candidate Recommendation, Version 1.0.1.

[3] EPC Global. EPCTM Radio-Frequency Identity Protocols Class-1
Generation-2 UHF RFID Protocol for Communications at 860
MHz~960MHz, Version 1.0.9.

[4] W. J. Shin and J. G. Kim, “Partitioning of Tags for Near-Optimum
RFID Anti-collision Performance,” IEEE Wireless communications and
Networking Conference, pp. 1673-1678, Mar. 2007.

[5] C. Abraham, V. Ahuja, A. K. Ghosh, and P. Pakanati, “Inventory
Management using Passive RFID Tags: A Survey,” Department of
Computer Science thesis, University of Texas at Dallas, Richardson,
Texas.

[6] R. Ahmed, “Performance Comparison of RFID Tag Anti-collision
Algorithm using Simulation and Real Testing Based,” M. Eng. thesis,
Asian Institute of Technology, Thailand, May.2007.

[7] ISO/IEC 18000-6:2003(E), Part 6: Parameters for air inter-face
communications at 860-960 MHz, Nov. 26, 2003.

[8] K. Finkenzeller, RFID handbook, John Wiley & Sons, West Sussex,
2003.

