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Abstract 
 

This paper presents the construction of parity check 
matrix for irregular low-density parity-check (LDPC) 
codes. We propose a new algorithm based on a magic 
square theorem to construction the parity check 
matrix.  The performance of the constructed codes will 
be tested in bit-patterned media recording (BPMR) 
channels.  At a block length of 4080 bit and code rate 
of 0.9, the simulation results show that the proposed 
LDPC code yields better performance than the existing 
ones, especially at high signal-to-noise ratio scenario.   
 
Keywords: Bit-patterned media recording, irregular 
LDPC code, magic square theorem. 
 
1. Introduction 

BPMR is a promising candidate for future hard disk 
drives because it can achieve high recording density up 
to 1 Tb/in2 and beyond.  A low-density parity-check 
(LDPC) code is an outstanding error-correction code 
(ECC) because of its excellent performance close to 
Shannon’s limit [1-2].  In general, the performance of 
LDPC codes depends on their sparse parity-check 
matrices.   

Consequently, this paper proposes a novel parity-
check matrix for irregular LDPC codes, which can be 
used for arbitrary block length when it was designed 
with structured matrix and using a non-prime number 
parameter.  Specifically, this parity-check matrix is 
constructed using a novel algorithm based on a Magic 
Square Theorem [3], denoted as “MSA.”  The objective 
of this study is to design the parity-check matrix with 
simple construction, simple encoding, good 
performance, and high code rate.  Our designed matrix 
has a high code rate, which is suitable for BPMR 

channels.  Results show that the proposed LDPC code 
has less complexity and performs better than 
previously proposed LDPC codes in BPMR channels.  
 
2. BPMR Channel 

A typical discrete-time BPMR channel model is 
illustrated in Fig. 1, where we assume only two adjacent 
tracks cause most of the ITI.  Thus, the readback signal 
can be expressed as 
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where uk, 0, uk, -1, and uk, 1 represent the random, uncoded 
binary (i.e., ±1) input bit sequences in the main track 
and the two adjacent tracks, respectively, hi,m’s are the 
2D channel response coefficients, and nk is AWGN 
with zero mean and variance σ2.  Without the track 
mis-registration, we consider a discrete-time 3-by-3 
symmetric channel response matrix of the form H = 
[h0,-1 h1,-1 h2,-1;  h0,0 h1,0 h2,0;  h0,1 h1,1 h2,1] = [0.0347  
0.2297  0.0347;  0.1277  1  0.1277;  0.0347  0.2297  
0.0347], which is for the media with SUL [4].  Hence, 
the sequence yk is sent to a turbo equalizer, which 
iteratively exchanges soft information between the 
proposed two-dimensional (2D) SOVA equalizer and 
the LPDC decoder implemented based on the message 
passing algorithm with 3 internal iterations.   

To perform maximum-likelihood (ML) equalization 
via a 2D SOVA, we propose to use a similar technique 
that was employed in the so-called bidirectional SOVA 
[5] to compute the log likelihood ratio (LLR) of the bit 
uk,0, i.e., L(uk,0).  For this 3-by-3 channel matrix, the 
trellis of this 2D SOVA will have 36 states.  For each 
state at time k, there are 6 outgoing branches to 6 
different states at time k + 1. 
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Fig. 1. A typical discrete-time BPMR channel model. 
 
3. Construction of parity-check matrix 

The parity-check matrix P can be constructed 
according to the following steps. 
1) Define the designed parameters of J, K and L to be 

an integer greater than 3, where {J, K} ≤ L.  Only L 
value is used for sizing the magic square array, which 
will be generated as the next step.  Moreover, all 
values must satisfy the following condition: 

( ) ,   =5,9,14,× − −λ≤ λ …J K K L  

2) A magic square array of size ≥ L can be generated as 
 If L is odd number, the magic square array will be 
generated by using the Simon de la Loubère’s 
algorithm. 
 If L is even number, the magic square array will 
be generated by using the Heinrich Cornelius 
Agrippa’s algorithm. 

3) Place this magic square array in the structured parity-
check matrix P designed for irregular LDPC codes. 
Each number in the magic square array will be used 
as a shifting order of circulant matrix of L×L. 

 
4. Simulation results 

In this study, the performance of the constructed 
code (referred to as MSA) is compared with the previous 
works, where their parity-check matrices was generated 
based on Chinese Remainder Theorem (denoted as Non-
prime CRT) [6] and based on Size Compatible-Array 
(referred to as SC-Array) [7].  The parameters used in 
our simulation are: J = 3, K = 30, and L = 136 such 
that all codes will have same block length of 4080 bits, 
the parity bits of J×L = 408, the message bits of K×L = 
3672 and the code rate of R = 1 – J/K = 0.9.  We also 
define SNR = 10log10(1/(Rσ2)) in decibel (dB).  Fig. 2 
compares the performance of different LDPC codes 
after 5 iterations.  Clearly, the proposed LDPC code 
performs better than the others, especially at high SNR. 
 
5. Conclusion 

A new algorithm based on a magic square theorem 
was proposed for the parity-check matrix construction 

 
Fig. 2. BER performance comparison. 
 
of the irregular LDPC codes.  The performance of the 
constructed codes was tested in BPMR channels.  At a 
block length of 4080 bit and a code rate of 0.9, the 
proposed codes yield better performance compared to 
the existing codes, especially at high SNRs.  
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