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Abstract— Quasi-Cyclic low-density parity-check (QC-LDPC) 
codes are an attractive solution to construct a parity-check matrix, 
H, that offers hardware-friendly architecture and has a satisfactory 
error-correction performance.  In general, a large girth property 
of LDPC codes ensures a good error-correction performance. 
Thus, this paper proposes a method to construct the H matrix of 
QC-LDPC by sequentially maximizing the local girth for each 
column of the H matrix.  The performance of the proposed method 
will be compared with that of the existing ones.  Simulation results 
show that the proposed method performs better than the existing 
ones in terms of bit-error rate and provides a higher girth. 

Keywords— QC-LDPC, girth, Shannon limit. 

I.  INTRODUCTION  

An important class of linear block codes known as low-
density parity-check (LDPC) codes was originally introduced 
by Gallager [1] in 1962.  Despite its significant impact on recent 
communication systems and standards, LDPC codes were 
neglected for almost three decades because of its complexity 
and hardware unavailability at that time.  However, LDPC 
codes were rediscovered by Mackey and Neal in 1997 [2], and 
since then many methods for constructing good LDPC codes 
have been proposed [3, 4] and investigated continuously. 

In practice, a quasi-cyclic LDPC codes (QC-LDPC) are 
widely used in many applications because it is suitable for 
hardware implementations [5].  Many standards such as IEEE 
802.16e and 802.11n also employ QC-LDPC codes.  Generally, 
a parity check matrix H of QC-LDPC codes consist of an 
array of circulant sub-matrices, in which each sub-matrix is a 
cyclic shift version of the base sub-matrix.  

A girth is one of important constraints for designing a good 
LDPC codes because a large girth facilitates an iterative 
decoding and imposes a respectable minimum distance bound, 
which can improve the decoding performance at high signal-
to-noise ratio (SNR) scenario [3].  Therefore, this work aims 
at designing good QC-LDPC codes by maximizing the local 
girth.  The H matrix is constructed column by column to avoid 
complexity associated with the exhaust search for appropriate 
combination of sub-matrices.  As can be seen in simulation 
results, the proposed LDPC codes can perform better than the 

existing ones in terms of bit-error rate (BER), and also 
provides a high girth.  

This paper is organized as follows.  Section II summarizes 
an LDPC code and a Quasi-Cyclic LDPC code.  Section III 
briefly explains a method to generate a parity-check matrix, H, 
based on circulant matrix algorithms, including the QC-LDPC 
codes.  Section IV explain our proposed method and Section V 
gives simulation details and results.  Finally, Section VI 
concludes this paper. 

II. LDPC CODES 

LDPC codes are a class of linear block codes, which can 
be defined by a sparse parity-check matrix H of size M × N, 
where M is the number of rows and N is the number of columns.  
In general, the H matrix can also be represented by a Tanner 
graph [6] or bipartite graph, which consists of two sets (V, E), 
where V = Vc ∪ Vs, Vc = {c0, c1, …, cM–1} is a set of check 
nodes, Vs = {s0, s1, …, sN–1} is a set of bit nodes (or symbol 
nodes), E is a set of edges, ( , )m nc s E∈  corresponds to a 
nonzero element at the mth row and the nth column in the H 
matrix.  Below is an example of the H matrix, i.e., 

1 0 1 0 1 0 0 1
1 0 0 1 0 1 1 0

,
0 1 1 0 1 0 1 0
0 1 0 1 0 1 0 1

 
 
 =
 
 
 

H  

whose size is 4×8 with a column weight of wc = 2 and a row 
weight of wr = 4.  Furthermore, if c is a binary codeword, it 
will satisfy       

                                      T   (mod  2)c =H 0 ,                          (1) 

where (.)T is a transpose matrix operator. 

A. Quasi-Cyclic LDPC codes 

A QC-LDPC code is a class of cyclic codes, in which each 
sub-matrix is a shifted version of the base matrix of size p×p.  
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Thus, the M×N H matrix of QC-LDPC codes can be 
constructed as 

            

(0,0) (0,1) (0, 1)

(1,0) (1,1) (1, 1)

( 1,0) ( 1,1) ( 1, 1)

. .

. .
,. . . . .

. . . . .
. .

a a a k

a a a k

a j a j a j k
M N

−

−

− − − −
×

 
 
 
 =
 
 
  

I I I
I I I

H

I I I

       (2) 

where j is the number of block-rows, k is the number of block-
columns, I0 is an p×p identity matrix, a(j, k) is a number of 
cyclic shifts M = pj, and N = pk.  Specifically, Ia(j,k) is a p×p 
circulant permutation matrix obtained by cyclically shifting 
the rows of the identity matrix I0 to the right by a(j, k) times.   

It should be noted that any sub-matrix inside H can also be 
represented by its first column.  For example, if p = 3, we 
obtain I0 = [1 0 0]T and I1 = [0 1 0]T, i.e.,  

         0 1  and  

1 1 0 0 0 0 0 1
0 0 1 0 1 1 0 0
0 0 0 1 0 0 1 0

       
       = ≡ = ≡       
              

I I ,       (3) 

where the xth column is obtained by cyclically shifting the 1st 
column (x – 1) places to the bottom, and 1 < x ≤ p is an integer.  

B. Existing Method for Generating LDPC codes 

In this Section, we mention about some existing methods 
for constructing the H matrix.  For example, Fan [7] proposed 
an array code.  Then, Eleftheriou and Olcer [8] introduced a 
modified array code (MAC), which yielded higher performance 
than the array code.  However, Singhaudom [9] presented an 
interleaved modified array code (IMAC), which was suitable 
for a large block length code and eased an encoding process.  
Then, Prasartkaew and Choomchuay [10] proposed a method 
for constructing the IMAC suitable for short and moderate 
block length codes, whose performance is comparable to 
IMAC.  Moreover, Prasartkaew and Choomchuay also 
presented a method to construct a short-block irregular LDPC 
code by using magic square theorem [11].  Another useful 
method for generating the H matrix is a Sidara-Fuja-Tanner 
(SFT) technique [12], which suits for a regular QC-LDPC 
code.  This paper will compare our proposed LDPC code with 
the codes based on IMAC, SFT, and magic square. 

III. PROPOSED METHOED 

This section explains how to construct the H matrix based 
on our proposed method.  Let us consider the case where j = 3 
and k = 9.  Assuming that p ≥ jk, the procedure for constructing 
the proposed H matrix is as follows. 

1) Construct a j×k index matrix, ,H  as shown in Table I (a), 
where R is a random number, and Z stands for a designed 
shifting order for the p×p circulant permutation matrix.  Note 
that the H matrix will have a size of jp×kp. 

Table I. An example of the 3×9 index matrix. 

bl
oc

k-
ro

w
 in

de
x block-column index 

H  1 2 3 4 5 6 7 8 9 
1 R R R R R R R R R 
2 Z Z Z Z Z Z Z Z Z 
3 Z Z Z Z Z Z Z Z Z 

(a) 

bl
oc

k-
ro

w
 in

de
x block-column index 

H  1 2 3 4 5 6 7 8 9 
1 19 9 44 17 28 8 31 13 32 

2 Z Z Z Z Z Z Z Z Z 
3 Z Z Z Z Z Z Z Z Z 

(b) 
 

2) Construct a j×k index matrix, ,H  as shown in Table I (a), 
where R is a random number, and Z stands for a designed 
shifting order for the p×p circulant permutation matrix.  Note 
that the H matrix will have a size of jp×kp. 

3) Assign a random number R between 0 and 1p −  to all 
elements in the first row of ,H  as depicted in Table I (b) 
for example. 

4) For each column, replace Z in all block-rows using a 
number between 0 to 1p − .  To do so, we find all possible 
data patterns of each column1, Pfc.  In practice, it can be 
demonstrated that the total number of data patterns in Pfc is 
equal to 

                                   # data patterns  =  
1

1

j
p

−
 
 
 

                    (4) 

3.1) We place each 2-block-row data pattern in the column 
and compute its local girth, g, resulting from this 
column2.  The data pattern that yields a maximum 
girth will be used in this column.  Note that when 
finding a local girth for each data pattern, if we cannot 
find the local girth (i.e., no cycle), we will assume that 
this data pattern has a girth of infinity, i.e., g = ∞. 

3.2) Once we obtain a data pattern for the first column, we 
perform the same procedure for the second column.  
This process continues until all columns are filled with 
the chosen number. 

Table II illustrates an example of the index matrix ,H  after 
obtaining all Z’s. 

 

1 For example, there are two block-rows in Table I (b), which are the 
2nd and 3rd rows.  If we assume that p = 3, there will then be 9 data 
patterns of the first column as given in Fig. 1.     
2 When finding a local girth for each data pattern, we will assume 
that all sub-matrices labeled as Z are zero matrices. 
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Fig. 1. An example of data patterns of the first column of the 2nd and 
3nd block-rows for p = 3. 

 
Table II. A designed 3×9 index matrix. 

bl
oc

k-
ro

w
 in

de
x 

block-column index 
H  1 2 3 4 5 6 7 8 9 
1 19 9 44 17 28 8 31 13 32 

2 0 2 3 5 10 7 29 20 18 

3 0 3 5 14 20 12 36 23 45 
 

IV. SIMULATION RESULTS 

Consider an M×N H matrix, where N is the length of a 
codeword, and M is the number of parity bits.  To evaluate the 
performance of the proposed algorithm, we simulate the 
system based on an additive white Gaussian noise (AWGN) 
channel model, where a binary input sequence ak ∈ {0, 1} of 
length N – M bits is encoded by an LDPC encoder and is 
mapped to an N-bit coded sequence bk ∈ {±1}.  Then, the 
received sequence is given by yk = bk + nk, where nk is 
AWGN with zero mean and variance σ2.  At the receiver, the 
received sequence yk is decoded by an LDPC decoder 
implemented based on a message passing algorithm [1] with 
10 iterations.   In simulation, the signal-to-noise ratio is 
defined as  

                                  10 2

1SNR 10log
σ
 =  
 

,                          (5) 

in decibel (dB).  Each BER point is computed based on a 
minimum number of 50000 data packets and 500 error bits, 
and all LDPC codes use the H matrix of size 171×513. 

Fig. 2 compares the BER performance of the proposed 
algorithm with other existing methods, where “Magic 1,” 
“Magic 2” and “Magic 3” are the codes from [11], “SFT” is 
the codes from [12], and “IMAC” is the codes from [10].  We 
also show the performance of a binary phase shift keying 
(BPSK) system as a benchmark so as to see how big the 
performance gain can be obtained from using the LDPC 
codes.  Clearly, the proposed algorithm is superior to other 
algorithms when SNR is high.  Furthermore, we also 
investigate the local girth of each algorithm as given in Table 
III.  Again, the proposed algorithm offers the largest girth if 
compared to other algorithms.   

We also compare the BER performance of different 
schemes as a function of the number of iterations at SNR = 
4.5 dB in Fig. 3.  It is apparent that the proposed algorithm 
converges faster than other algorithms. 

 
Table III. A minimum girth from different H matrices.  

Parameter 
Minimum Girth 

Magic SFT IMAC Proposed 

p = 57, j = 3, k = 9 6 6 6 8 

p = 61, j = 3, k = 10 6 6 6 8 
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Fig. 2. BER performance of different 171×513 H matrices. 
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Fig. 3. BER performance as a function of the number of iterations for 
different 171×513 H matrices at SNR = 4.5 dB. 

V. CONCLUTION 

In this paper, we propose a new algorithm for constructing 
the H matrix of QC-LDPC codes that aims to maximize the 
local girth by sequentially assigning proper sub-matrix for 
each column of the H matrix one by one. As shown in 
simulation results, the proposed algorithm outperforms the 
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existing algorithms in terms of BER and converges faster than 
the others. In addition, we found that the proposed algorithm 
requires more complexity than other algorithms. There exists a 
trade-off between performance and complexity. 
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