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Abstract—Active research has been carried out in the domain of 
channel coding in order to achieve the Shannon limit.  This paper 
presents the performance analysis of binary and non-binary low-
density parity-check (LDPC) codes for various Galois Field.  
Performance comparison has been made for non-binary LDPC 
and its binary counterpart by applying Progressive Edge Growth 
(PEG) algorithm.  Decoding is based on belief propagation and 
Fast Fourier Transform (FFT) based belief propagation for 
binary and non-binary LDPC codes, respectively. Simulation 
results indicate that the non-binary LDPC code outperforms its 
binary counterpart significantly. 

Keywords—Galois filed (GF), Progressive Edge Growth (PEG),  
Shannon Limit 

I. BACKGROUND 
In 1948, Claude E. Shannon published his work on a 

channel capacity limit, which imposed the limit on reliable 
transmission of data over unreliable channels [1]. Since then 
various efforts have been made to achieve this limit but not yet 
realized.  Channel codes, which tends to approach the Shannon 
capacity, are very useful in modern communication engineering 
but Shannon’s theorem is non-constructive and do not give 
any clue about how to construct such codes.  Furthermore, 
even if an oracle gives a sequence of codes that can achieve 
the capacity limit for a certain code rate, efficient decoding 
still remains a big challenge [4].  The fundamental bounds on 
channel capacity have been known for many years, where only 
a turbo code [2] and a low-density parity-check (LDPC) code 
[3][4] have realized a performance close to the capacity with 
the requirement that the code length (or data size) must 
approaches infinity.  Therefore, it can be safely stated that 
there is a wide room for the researches in this area, especially 
on finite length codes and efficient decoding. 

II. INTRODUCTION 
Many researchers have been carried out on channel coding 

since Shannon introduced a theory of mathematical constraints 
for channel capacity.  Currently, special focus has been given 
to a non-binary LDPC code, which is a derivative of a binary 
LDPC over Galois field GF(q), where 𝑞𝑞 = 𝑝𝑝𝑚𝑚  ,p is prime 

number and m is a positive integer [5].  Various standards 
such as IEEE 802.11n, WiMAX, DVB-S2, and so forth, have 
adopted LDPC codes. Today, LDPC codes are considered to 
be the most eligible channel code for next generation high data 
rate communication and various practical applications.  
Development of most optimized and efficient constructed 
LDPC codes have been also studied widely in current decade.  
LDPC codes can provide lower probability of error than 
equivalent conventional codes e.g. Turbo codes, RS code etc.  

This paper is organized as follows.  Section III summarizes 
the LDPC code followed by the non-binary LDPC code in 
Section IV.  Section V deals with the methods of generating a 
parity-check matrix based on progressive edge growth (PEG) 
algorithm.  Section VI deals with the decoding technique of 
non binary LDPC codes.  Section VII gives simulation details 
and results followed by the conclusion in Section VIII.  

III. LOW DENSITY PARITY CHECK 
An LDPC code, a class of linear block codes, is defined by 

a sparse parity-check matrix, H, of size m ∗ n.  The H matrix 
for a regular (j, k) LDPC code is a binary matrix having j ones 
in each column and k ones in each row, where j and k are 
small integer numbers if compared to n.  An irregular LDPC 
matrix is also sparse, but in this case not all columns and rows 
have same number of 1’s.  Below is an example of regular and 
irregular matrices. 
 

𝐇𝐇regular =   �

1 1 0 1 0 0
0 1 1 0 1 0
1
0

0
0

0 0 1 1
1 1 0 1

� 

 

𝐇𝐇irregular = �

1 1 0 1 0 0
1 1 1 0 1 1
1
0

0
0

0 0 1 1
1 0 0 1

� 
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IV. NON-BINARY LDPC CODES  
In 1998, David and Mackay presented an idea of LDPC 

over finite fields GF(q), where q > 2 [6][7]. A non-binary 
LDPC code is based on a sparse H matrix over finite field 
GF(q).  We can represent the non-binary LDPC code using a 
Tanner graph as shown in Figure 1.  Recently, regular and 
irregular non-binary LDPC codes over GF(q) are constructed 
based on a PEG algorithm [8], which is one of the most 
promising algorithms.  This algorithm is widely used because 
it provides high code performance and guarantees higher  
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Figure 1. H matrix representation using a Tanner graph. 

girth.  Another popular way to construct an H matrix is based 
on a Quasi-Cyclic (QC) LDPC method proposed by Lin et al. 
[9]. There are some interesting potential applications 
discussed so far in research associated with non-binary LDPC 
codes [10]. 

V. A METHOD OF CONSTRUCTING H MATRIX 
The structure of H has a significant effect on encoding, 

decoding, and code performance in terms of bit-error rate 
(BER).  In general, H can be designed based on structured or 
non-structured method.  For instance, Fan [11] presented an 
array structure of H, which offers a comparable performance 
to a random generated parity-check matrix.  Eleftheriou and 
Olcer [12] proposed a modified array structure (MAC) by 
applying a cyclic shift to Fan’s array, which offered higher 
performance than Fan’s array matrix.  Next, Singhaudom et al.   
[13] introduced an interleaved modified array structure 
(IMAC) by applying a QC matrix into to the cyclic shift of 
Fan’s array [8].  This IMAC is suitable for a large block length 
LDPC codes. After this, Prasartkaew and Choomchuay [14] 
proposed a variant of H matrix for short and moderate block 
length codes, which has comparable performance than IMAC.  

Another very useful method for generating H matrix is 
through a PEG algorithm because it can guarantee high girth 
bound.  Accordingly, we focus on the PEG algorithm in this 
paper to investigate the performance of a non-binary LDPC 
code over its binary counterpart. However PEG algorithm legs 
of special structural property, ongoing research literature 
found on QC -PEG based H matrix and strictly concentrated 
check nodes LDPC codes for high efficient and less complex 
encoding [9].  

A. Progressive Edge Growth Algorithm 
PEG is an algorithm used for constructing an H matrix and 

suitable for encoding and decoding of the LDPC code with a 
large girth. It is considered as most successful approaches for 
construction of finite length LDPC codes.  For an edge, the 
connections between variable nodes and check nodes by an 
edge connection algorithm.  This algorithm is valid for both 
regular and irregular H matrix construction.  In practice, a low 
cycle free Tanner graph provides optimum decoding and PEG 
try to maximize the girth cycle.  We employed same notations 
as used in [8] for describing a tanner graph with n variable 
nodes and m check nodes.  The PEG algorithm can be 
summarized as follows. 

for  𝑗𝑗 = 0 to 𝑛𝑛 − 1 do 
begin  

for  𝑘𝑘 = 0 to 𝑑𝑑𝑠𝑠𝑗𝑗 − 1 do 
begin  
if 𝑘𝑘 = 0 
𝐸𝐸𝑠𝑠𝑗𝑗

0 ←  edge (𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑗𝑗 ), where  𝐸𝐸𝑠𝑠𝑗𝑗
𝑘𝑘  is the first edge 

incident to symbol node js , and jc  is the check node 
such that it has the minimum check node degree under 

the current graph setting 
0 1 1js s sE E E

−
    

else 
expand a sub-graph from symbol node 𝑠𝑠𝑗𝑗  up to depth 
𝑙𝑙 under the current graph setting such that the 
cardinality of 𝑁𝑁𝑠𝑠𝑗𝑗

𝑙𝑙  stops increasing but is less than 𝑚𝑚, 

or  𝑁𝑁𝑠𝑠𝑗𝑗𝑙𝑙���� =  Ø but 𝑁𝑁𝑠𝑠𝑗𝑗𝑙𝑙+1������ =  Ø , then 𝐸𝐸𝑠𝑠𝑗𝑗
𝑘𝑘  ← edge 

(𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑗𝑗 ) where 𝐸𝐸𝑠𝑠𝑗𝑗
𝑘𝑘  is the kth edge incident to 𝑠𝑠𝑗𝑗  and 𝑐𝑐𝑖𝑖  

is a check node picked from set 𝑁𝑁𝑠𝑠𝑠𝑠𝑙𝑙���� having minimum 
check node degree. 
end 

end 
In the above algorithm both symbol nodes and check nodes 

are ordered according to their degrees in non-decreasing order, 
where 𝑑𝑑𝑠𝑠𝑗𝑗  is the degree of symbol nodes 𝑠𝑠𝑗𝑗 , and 𝑁𝑁𝑠𝑠𝑗𝑗

𝑙𝑙  and 𝑁𝑁𝑠𝑠𝑗𝑗𝑙𝑙���� 
are the set of every check node reached by a sub-graph starting 
from symbol node 𝑠𝑠𝑗𝑗  within depth 𝑙𝑙 and its complement, 
respectively. PEG creates a lower bound girth of length 2(𝑙𝑙 +
2). 

VI.  DECODING OF NON-BINARY LDPC 
Several decoding algorithms have been discussed in the 

literature [15] for binary and non-binary LDPC codes, which 
can be summarized as the following steps. 
1. Initialization: By using a received vector r, variable nodes 
are initially assigned with the likelihoods of channel reliability. 
2. Check node update: This step is also called as a horizontal 
step, where each check node is updated using the likelihood 
message from adjacent variable nodes except the considering 
updated check node. A matrix generated based on updated 
check node information to corresponding location in H matrix 
known as Q matrix [16].  



3. Variable node update: This step is known as a vertical 
update, where the variable nodes receive the message from 
adjacent check nodes to update its information and construct R 
matrix [16]. 
4. Iterative decoding: Most likelihood value of code word 
𝑐𝑐𝑛𝑛  � is computed with the step 1 and variable nodes messages. 
Decoded code word is valid only if it satisfies𝑐𝑐𝐻𝐻𝑇𝑇 = 0. In 
case of no valid code word produced, decoding process 
stopped after certain number of iterations.  
A. FFT Based Belief Propagation Decoding for GF(q)  

Generally, the belief propagation algorithm is used for 
decoding a binary LDPC; however, it can also be extended to 
decode a non-binary LDPC code with the expense of increased 
complexity as q increases.  The construction of Q matrix for 
GF(q) becomes more complicated in the horizontal step, as 
more possible non-binary sequences need to satisfy the parity-
check equations, similarly R vertical matrix from Q matrix 
becomes even much more complicated.  Permutation and de-
permutation steps are also necessary for a non-binary LDPC.  
Specifically, the cyclic shift of likelihoods in downwards is 
referred to as permutation and that in upwards is called de-
permutation.  

FFT used in [17][18] to reduce the complexity in 
horizontal step in the belief propagation algorithm perform the 
computation of the check nodes update. In the frequency 
domain for simple product form transforms from convolution 
mathematical implications. By using this method, the 
complexity in the horizontal step for check node update can be 
significantly reduced.  In general, the parity check equations 
must satisfy (1) 

                                         0
1

=∑
=

n

j
jijch ,                               (1) 

where ijh ∈ GF(q) is an element in H, jc ∈ GF(q), 𝑖𝑖 =
1, 2, … ,𝑚𝑚, and 𝑗𝑗 = 1,2, … ,𝑛𝑛.   

Algorithm can be summarized in Figure. 2, known as a 
factor graph of non-binary LDPC. Factor graph is used to 
decode non-binary LDPC codes. It requires two additional 
blocks 1) permutation block; 2) re-ordering block; as 
compared to binary factor graph [16]. 

In factor graph the number of H matrix elements 
connected to coded symbol cj’s is the column weight of code 
and the number of connections to each parity check is the row 
weight of the code. Likelihoods of each coded symbol 𝑓𝑓𝑗𝑗  are 
the column vectors containing 𝑞𝑞 likelihoods of coded symbol.  
A block labeled as ∏ function as reordering block connects 
non-binary element in each row to parity check matrix.  
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Figure 2 Generalized factor graph using FFTs operations for non-binary 
LDPC decoding. 

VII. SIMULATION DETAILS AND RESULTS 
This section shows an example through simulation on how 

binary and non-binary LDPC codes perform.  For simplicity, 
we consider a code rate of 1/2 for an additive white Gaussian 
noise (AWGN) channel.  Each of 9 message symbols xk ∈ 
GF(q) is encoded by a regular non-binary LDPC code, 
resulting in a coded block length of 18 symbols, ak ∈ GF(q). 
The parity-check matrix H has been constructed using PEG 
algorithm. We have taken degree 2 of each variable node, 
hence 2 nonzero elements in each column..The girth of H 
matrix is 6 The received signal can then be expressed as in (2).  

                                   k k ky a n= + ,                                 (2) 
Where 𝑛𝑛𝑘𝑘  is AWGN with zero mean and variance σ2  =
 𝑁𝑁𝑜𝑜/2.  The per-bit signal-to-noise ratio (Eb/N0) is defined as 
10log10  (1/σ2) in decibel (dB).  We compute the BER based 
on a minimum number of 50000 data packets. 

To compare the performance between binary and non-
binary LDPC codes, we use the LDPC decoder with 10 
iterations and plot the BER performance.  Figure 3 compares 
the performance of different LDPC codes over GF(q) at the 
10th iteration in terms of BER, where q = 2, 4, 8, 16, 32, 64 
and 128.  Note that  𝑞𝑞 =  2 represents a binary LDPC code. 
Here, we also plot the BER performance of uncoded bits under 
the influence of same channel conditions and theoretical BER 
for BPSK for fair comparison.  

 As expected, a non-binary LDPC code with large  q 
performs better than that with small q.  As the decoding 
complexity of a non-binary LDPC code with large 𝑞𝑞 is high, 
all advantages gained by this non-binary LDPC code need to 
be balanced against the increased implementation cost. 
 



 
Figure 3BER performance of different LDPC codes over GF(q) at 10th 

iteration 

It could be observed that there is indeed a significant 
performance gain in moving to higher order field reaching 
towards the Shannon’s limit.  

 
Figure 4Average number of iterations required for decoding different LDPC 
codes over GF (q) 

We also compare the performance of different schemes by 
plotting the average number of iterations needed to decode all 
codeword of finite GF (q) LDPC codes as a function of Eb/N0 
as shown in Figure. 4 based on our example.  It is obvious that 
the LDPC codes iteration can help to increase the performance 
of the system. Again, a non-binary LDPC codes with large 𝑞𝑞 
is superior to that with small 𝑞𝑞. 

 

VIII. CONCLUSION 
In this paper, we have presented a study on non-binary 

LDPC codes from associated open literature and its 
performance related to H. matrix construction. We analyzed 
PEG based construction of H matrix for binary and non-binary 

LDPC codes Decoding procedure based on FFT-belief 
propagation for non-binary LDPC codes. Section VII showed 
performance and comparisons of our tested simulation for a 
PEG based regular H matrix. We take into account of higher 
order of GF(q), which outperforms binary LDPC for small to 
medium sized data packets.  
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