Design and Implementation of a VoIP System for Campus Usage: A Case Study at NPRU

Presented By

Kanittha Saelim

Co-authors Nitthita Chirdchoo, Weerasak Cheunta and Piya Kovintavewat

Outline

- Motivation
- Design of NPRU-VoIP
 - Analyzing the Traffic
 - Determining the Bandwidth Requirement
 - Designing the Numbering System
- Performance Evaluation
- Conclusions

Motivation

Nakhon Pathom Rajabhat University

- Problem: Internal phone line shortage !!!
- Causes:

1. Expansion in the number of the	2. Frequently damage of an analog
campus's phone users	telephone card
 Have a new PBX system installed time consuming and costly Implementing VoIP technology 	 Good grounding & Surge protector Or Or O
\rightarrow fast installation and cheaper	never-ended problem

• **Proposed Solution:** Existing PBX + VoIP => NPRU-VoIP

Motivation

Nakhon Pathom Rajabhat University

• NPRU-VoIP must

- Minimize the share of the Internet bandwidth
- Support 45 VoIP users throughout the campus
- Support basic call functions (call transfer, call waiting, etc.)
 + add on (conference call, call report, etc.)
- Work smoothly with the existing PBX
- Interconnect with PSTN networks to allow outbound calls

Design of NPRU-VoIP

- Analyzing the Traffic
- Determining the Bandwidth Requirement
- Designing the Numbering System

Analyzing the Traffic

Nakhon Pathom Rajabhat University

• Goal: Determine the number of trunks required between IP-PBX and PBX

- How: Collect statistical data of call traffic (avg no. of call/hour and avg call duration)
 - Internal calls call log from PBX (one-second increment)
 - External calls phone bill from ToT (one-minute increment)

ESTIMATED CALL TRAFFIC DERIVED FROM TABLE I FOR THE FUTURE 45 VOIP USERS

Type of Calls	C	T (hour)	A (Erlangs)	No. of trunks ¹
Internal	27.45	0.018	0.494	4
External	10.35	0.055	0.569	4

According to Erlang B table with the probability of blocking of 1%

Bandwidth Requirement

Nakhon Pathom Rajabhat University

Bandwidth Requirement

Codec Type	Coding Algorithm	MOS score	Bandwidth (kbps)
G.711	PCM	4.1	80
G.726	ADPCM	3.85	48
G.728	LD-CELP	3.61	32
G.729	CS-ACELP	3.92	24

G.711 – Internal calls

G.729 – External calls

FLOWS OF A VOICE CALL AFTER THE INTEGRATION OF A VOIP SYSTEM WITH THE ANALOG PBX

Call Type	Flow of Traffic
$VoIP \rightarrow VoIP$	$A \rightarrow IP-PBX \rightarrow B$
VoIP \rightarrow analog	$A \rightarrow IP-PBX \rightarrow PBX \rightarrow B$
$VoIP \rightarrow PSTN$	$A \rightarrow IP-PBX \rightarrow GSM$ gateway $\rightarrow B$
analog \rightarrow VoIP	$A \rightarrow PBX \rightarrow IP-PBX \rightarrow B$
analog \rightarrow analog	$A \rightarrow PBX \rightarrow B$
analog $\rightarrow PSTN$	$A \rightarrow PBX \rightarrow PSTN \rightarrow B$
$PSTN \rightarrow VoIP$	$A \rightarrow PSTN \rightarrow PBX \rightarrow IP-PBX \rightarrow B$
$\text{PSTN} \rightarrow \text{analog}$	$A \rightarrow PSTN \rightarrow PBS \rightarrow B$

The Design of NPRU-VoIP

- Numbering System (need to be carefully designed!!!)
 - Reduce call processing delay
 - User location and zoning
- What need to be determined
 - Number of digits:
 - Should be enough to support the system in a near future
 - Should be at least 4 digits (XXXX) to reduce the security vulnerability
 - Leading digit:
 - Should not overlap with the number that already been assigned to the users in another system
 - 3XXX \rightarrow 1000 available numbers. \bigcirc

Performance Evaluation

Nakhon Pathom Rajabhat University

C 2013

Sufficiency of the number of trunks

- G.711 (Internal VoIP-to-VoIP)
 - R-factor = 92.477
 - -MOS = 4.34 4.50
- ------ Very satisfied 🙂 --
- G.729 (VoIP-to-PSTN)
 - R-factor = 80.51
- -MOS = 4.03 4.34
- ------ Satisfied 🙂------

- The design and implementation of a NPRU-VoIP system is presented
- Design Issues
 - Analyzing the Traffic
 - Determining the Bandwidth Requirement
 - Designing the Numbering System
- System offers superior voice quality and the number of trunks designed can handle the call traffic load very well.

