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ABSTRACT

Although there are numerous time synchronization algo-
rithms recently proposed for terrestrial wireless sensor net-
works, none of these could be directly applied to underwater
acoustic sensor networks. This is because they typically as-
sume that the propagation delay is negligible, which is not
the case in underwater. Furthermore, the sensor nodes in
underwater tend to have some degree of mobility due to
wind or ocean current, which complicates the problem even
more by introducing time-varying delay.

In this paper, we propose a cluster-based synchronization
algorithm for underwater acoustic mobile networks, called
“MU-Sync”. Our design avoids frequent re-synchronization
by estimating both the clock skew and offset. As underwa-
ter mobile networks experience both time-varying and long
propagation delay, previous works that estimate the clock
skew using a single least square error linear regression tend
to be inaccurate. In the MU-Sync, the clock skew is esti-
mated by performing the linear regression twice over a set of
local time information gathered through message exchanges.
The first linear regression enables the cluster head to offset
the effect of long and varying propagation delay; the second
regression in turn obtains the estimated skew and offset.
With the help of MAC-level time stamping, we can further
reduce the nondeterministic errors that are commonly en-
countered by those synchronization algorithms that rely on
message exchanges.
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1. INTRODUCTION
The clock synchronization problem has drawn consider-

able attention from researchers in the past few decades, es-
pecially in the area of wireless sensor networks, due to its
wide variety of possible applications such as environmental
monitoring, target tracking, security surveillance, and many
more. In wireless sensor networks, each node performs its
task (e.g., sensing the environment) in a distributed manner;
the often time-sensitive data from multiple sensor nodes are
then aggregated and converted to more meaningful informa-
tion by using techniques such as data fusion. For example,
in a target tracking application, while the interesting object
is moving, sensors in different areas sense the object and re-
port the presence of the object in its local vicinity. These
distributed reports can then be fused to extract information
such as the speed and direction of the moving object.

Most of the applications in sensor networks require that
all sensor nodes have a common time scale (e.g., all syn-
chronized), so that they can coordinate and collaborate with
each other in order to accomplish their tasks. Basically, we
can classify these applications into three categories based
on the synchronization level required [2, 1]. Some appli-
cations merely require the order of the event occurrences,
while there may be other applications that require the time
interval of each of the event occurrences. Yet, there may
also be applications that require the absolute time at which
each event occurs. In addition, not only would the appli-
cation layer find time-synchronization useful; other layers,
such as MAC and networking layers, may also benefit from
time synchronization. For example, PCAP [3] and the Slot-
ted FAMA [4] are examples of MAC protocols that require
time synchronization.

Because of the usefulness of time synchronization, numer-
ous synchronization algorithms have been recently proposed
for terrestrial wireless sensor networks; however, none of
these can be directly applied to underwater acoustic sen-
sor networks for several reasons. Firstly, the previously pro-
posed algorithms are designed for high speed radio communi-
cation, and they typically assume that the propagation delay
is negligible. In contrast, underwater communication mainly
uses acoustic channel with a low propagation speed of ap-
proximately 1500 m/s, thus resulting in significantly longer
propagation delay [5]. Radio communication is unsuitable in
underwater due to its high attenuation rate, which severely



limits its communication range. Although radio waves can
still be used for long range communication at extra low fre-
quencies (30-300 Hz), it is rather impractical due to the need
for large antennas and high transmission power [6].

Secondly, the terrestrial synchronization algorithms typi-
cally do not worry much about the re-synchronization fre-
quency. In contrast, synchronization overhead is an im-
portant issue in underwater acoustic networks, due to its
low data rate resulting from its narrow available bandwidth.
Specifically, the amount of available bandwidth depends on
the targeted communication range; a long-range system that
operates over several tens of kilometers may have a band-
width of only a few kilohertz, while a short-range system
operating over several tens of meters may have more than a
hundred kilohertz of bandwidth [6]. Thus, the synchroniza-
tion algorithm should be able to maintain a certain accuracy
without the need for frequent re-synchronization, in order
to avoid excessive consumption of the traffic capacity. Fur-
thermore, when re-synchronization is required, the overhead
incurred should not degrade the system performance.

Moreover, the nodes in underwater sensor networks tend
to exhibit some degree of mobility due to wind and ocean
current, even if they were designed to be“static”nodes with-
out any self-propelling capability. In addition, Autonomous
Underwater Vehicles (AUVs) may also be deployed for sens-
ing tasks. Thus, the synchronization algorithm must be able
to cope with the sensors’ movement, which introduces time-
varying delay. From empirical observation, the ocean cur-
rent typically moves at the rate of 3 - 6 km/hr (around 0.83
- 1.67 m/s) [7], while the existing AUVs typically move at a
rate of up to 2 m/s.

In this paper, we propose a cluster-based synchronization
algorithm for underwater acoustic mobile networks, called
“MU-Sync”. Our design avoids frequent re-synchronization
by estimating both the clock skew and offset. As underwa-
ter mobile networks experience both time-varying and long
propagation delay, we estimate the skew and offset by per-
forming least square error linear regression twice over a set of
local time information gathered through message exchanges.
With the help of MAC-level time stamping, we can further
reduce the nondeterministic errors that are commonly en-
countered by those synchronization algorithms that rely on
message exchanges.

The remainder of this paper is organized as follows. In
Section 2, we discuss possible causes of error typically found
in time synchronization. We then describe the previous
works for clock synchronization in both terrestrial and un-
derwater networks in Section 3. In Section 4, we provide the
details of the MU-Sync, as well as an analysis of the possible
synchronization error. Next, Section 5 describes the simula-
tions that were carried out to compare the performance of
the proposed schemes with several others. Section 6 then
provides a discussion of the algorithm, and finally, we give
our conclusions in Section 7.

2. THE CAUSES OF ERROR IN TIME SYN-

CHRONIZATION
In any clock synchronization algorithm, an error may still

exist even at the instance immediately after the synchro-
nization. As time progresses, this error grows proportion-
ally with time, and re-synchronization is hence required. In
order to avoid frequent re-synchronization, the error should

be minimized. In this section, we explore the possible causes
of error, and ways to reduce it. Specifically, we can divide
them into two categories as will be discussed next.

2.1 Errors Caused by Uncertainty of Message
Delivery Time

Many existing synchronization algorithms often utilize the
technique of message exchange between synchronizing nodes,
in order to acquire their local clock drift. By utilizing the
message exchange technique, the common sources of error
for clock synchronization, (first introduced by Koeptz and
Schwab [8, 9]), come from the uncertainty of the following:

• Send time: The time used to construct the message
and send the request to the MAC layer. It is non-
deterministic and also dependent on the current load
as well as the operating system. The error arising from
the send time can be minimized by utilizing MAC-layer
time stamping at the sender side.

• Access time: The delay incurred while waiting to
access the channel until the transmission begins. The
amount of access time depends on the current network
traffic and the nature of the running MAC protocol.
Physical layer time stamping can be used to eliminate
this error.

• Propagation time: The time it takes to transmit the
message from the sender to the receiver. The propa-
gation time is highly deterministic depending on the
distance between the sender and the receiver. In ter-
restrial sensor networks, it is often considered as a neg-
ligible contribution of synchronization error due to the
high speed of radio wave. However, when dealing with
underwater acoustic sensor networks, this becomes a
major cause of synchronization error, as will be dis-
cussed in Section 4.3.

• Receive time: The time it takes to process the noti-
fication of an incoming message.

2.2 Other Causes of Synchronization Errors
Even when the clocks of two nodes are perfectly synchro-

nized at the beginning, their clocks may drift if inconsis-
tency occurs due to changes of the surrounding environment,
such as when the nodes experience changes in temperature,
pressure, battery voltage, etc. As underwater sensor nodes
typically exhibit some mobility, it is highly likely that they
encounter changes in the abovementioned parameters, and
hence require re-synchronization more often than static ter-
restrial sensor networks. Moreover, the clock can also be
affected by the interaction of other components of the sen-
sor system. For example, the sensor may miss an interrupt
while busy transmitting or receiving a packet, as described
in [10].

3. RELATED WORK
The timer inside each clock uses a crystal oscillator oper-

ating at a certain angular frequency, which determines the
rate at which the clock runs [1]; this is also widely referred to
as the clock’s “skew”. Typically, each clock may have slight
differences in angular frequency due to the manufacturing
process. These skew differences cause the drift among the
sensor nodes. In general, we often model the local time of
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Figure 1: Illustration of clock drifts.

Node i using two parameters, namely, its skew and its offset,
as follows:

Ti(t) = ait + bi, (1)

where ai and bi are the skew and offset of Node i, and t is the
ideal time or Universal Time Coordinated (UTC). The offset
arises when each sensor node has a different starting time.
Fig. 1 shows the drift of two clocks having different skews
and offsets. Note that, while the offset causes constant error
independent of time, the skew can cause increasing error
as time progresses. Thus, in order to avoid the need for
frequent resynchronization, the synchronization algorithm
must be able to accurately estimate both the clock skew
and offset.

The previously proposed synchronization schemes found
in the literature can be divided into two categories: the
receiver–receiver based approach, and the sender–receiver
based approach. An example of the receiver-receiver based
approach is the Reference Broadcast Synchronization (RBS)
scheme [11]. In RBS, a node sends a beacon pulse to its
neighbors. Upon receiving the pulse, the receiver marks its
local time at which it receives the beacon pulse. By assuming
that the propagation delay is negligible, each of the receivers
is assumed to have received the beacon pulse at the same
instance. Next, each pair of the receivers simply exchange
their pulse receiving time to calculate the difference in their
offsets. For higher accuracy, the scheme can be extended to
use multiple beacon pulses to determine both the clock skew
and the clock offset by using linear regression and statisti-
cal technique, respectively. As we can see, the RBS does not
rely on the time stamp from the sender side; this reduces the
sender’s nondeterministic effect which we have previously
discussed in Section 2. Although the authors claim that
RBS can achieve very high accuracy (1.6 µs using 30 bea-
con pulses), its performance can degrade drastically when
operating in mobile underwater acoustic networks, in which
long and varying propagation delay is dominant. Moreover,
with the use of unidirectional beacon pulse, it is impossible
to compute and compensate for the propagation delay, thus
leading to large synchronization error.

On the other hand, instead of using unidirectional mes-
sage exchange as in the RBS, the sender-receiver approach
combines bidirectional message exchange with local time

stamping, in order to retrieve the node’s offset and skew.
Ganeriwal et al. proposed TPSN [2], a two-phase network-
wide synchronization algorithm for wireless sensor networks.
The TPSN first uses a level discovery phase to define the
hierarchical topology of the whole network. Then, in the
synchronization phase, a pair of nodes can learn their clock
drift using bidirectional message exchange, with the send-
ing node inserting its local time stamp on each message.
The drift and propagation delay can be extracted from the
time stamp collected from the two-way message exchange.
The main drawback of TPSN is that it computes the clock
drift by only estimating the offset. Without correcting the
clock’s skew, it is obvious that the TPSN will need frequent
re-synchronization.

Although there has been extensive study of underwater
acoustic networks from all around the world, the work in
the area of underwater synchronization is still very limited.
Syed and Heidemann recently propose the TSHL [12], which
is a time synchronization algorithm designed for high latency
networks. The design tries to minimize the synchronization
error by estimating and compensating both the clock skew
and offset, utilizing MAC-layer time stamping and bidirec-
tional message exchange. While assuming that all the nodes
in the network are static, the TSHL takes into account the
long propagation delay when determining the clock offset.
The clock skew estimation can be achieved by applying lin-
ear regression over multiple two-way reference packet ex-
changes. Our MU-Sync is different in that the cluster node
takes the responsibility to initiate and compute the clock
skew and offset of its neighboring nodes. By doing so, the
cluster head can easily determine the number of reference
packets needed in order to meet a certain level of accuracy.
In addition, the TSHL assumes that the propagation delay
is constant during the n reference packet exchanges, which
is no longer valid in mobile networks.

Recently, Tian et al. proposed a localization and syn-
chronization scheme for 3D underwater acoustic networks
in [13], using atomic multilateration and iterative multilater-
ation techniques. The scheme utilizes external anchor nodes
that are located on the surface of the ocean, which already
know their locations and time without error. The synchro-
nization packet broadcasted from the anchor i includes the
current location (xi, yi, zi) of the anchor, and the time of
transmitting the packet (ti). In order to compute its lo-
cation, each node needs to hear from at least five anchor
nodes. Upon receiving enough synchronization packets, the
node performs multilateration in order to obtain its location.
Next, the node learns the drift between itself and the anchor
by comparing its local time of receiving the packet with ideal
time (ti plus the propagation delay). The main drawback of
this scheme is that it may not always be practical to have
anchor nodes floating on the surface of the ocean, due to se-
curity reason. Moreover, the algorithm utilizes a hierarchical
approach for network-wide synchronization (multi-hop net-
works). This means that, in order to synchronize a node, it
needs to have at least five neighboring nodes of a higher hi-
erarchical level, acting as beacon nodes. This may be quite
difficult to achieve in underwater acoustic networks since the
number of sensor nodes are typically limited due to econom-
ical reasons. The most serious drawback is that the scheme
only aims to estimate the offset. Without estimating the
clock skew, frequent resynchronization is expected.



4. HOW THE PROTOCOL WORKS

4.1 Overview of the MU-Sync
The MU-Sync is designed to minimize the drift between

nodes by estimating and compensating both the skew and
offset using a two-phase operation, namely, the skew and off-
set acquisition phase, and the synchronization phase. In the
first phase, the clock skew and offset is estimated by apply-
ing linear regression twice over a set of n reference beacons.
While all of the existing synchronization algorithms perform
linear regression only once to retrieve the estimated skew,
the MU-Sync performs it twice. The first regression allows
the cluster head to extract the amount of propagation delay
that each reference (REF) packet encounters. After adjust-
ing the REF beacons’ timings with their respective propa-
gation delays, a second linear regression is performed over
this new set of points, from which the estimated skew ( ˆ̂ay)

and offset (
ˆ̂
by) of Node y can be obtained.

Since the MU-Sync is cluster-based, it can easily be ap-
plied to mobile multi-hop underwater sensor networks. In
contrast to the TSHL, in which each node computes its own
skew and offset, the cluster head in the MU-Sync takes the
responsibility to start the synchronization process and cal-
culate its neighbors’ skew and offset.

4.2 Details of the MU-Sync
In Phase 1, the synchronization process starts with the

cluster head (also referred to as Node x throughout the rest
of this section) broadcasting the ith REF packet to its neigh-
bors at time T1,i, as shown in Fig. 2. Upon receiving the
REF packet, the neighboring node marks its local time as
T2,i and responds to the cluster head at time T3,i, informing
it about the T2,i and T3,i timestamps. Note that, in order
to reduce the chances of a collision, each neighboring node
may introduce some small random interval before respond-
ing to the REF packet. When the cluster head receives the
response from its neighboring node y at time T4,i, it waits
for some duration denoted as REF TX INT before trans-
mitting the (i + 1)th REF packet, and continues the same
procedure until it has reached the number of required REF
packets, n, or until the error of the linear regression is be-
low a certain threshold. Next, the cluster head performs
the first linear regression over the set of local times reported
by Node y to obtain its first estimated skew (ây), as illus-
trated in Fig. 3. The value of ây is then used to compute the
amount of one-way propagation delay that each REF packet
has encountered, using the local time stamps T1,i, T2,i, T3,i

and T4,i:

D̂
x→y

t1→t2,i =
1

2

[

T4,i − T1,i +
T2,i − T3,i

ây

]

(2)

where D
x→y

tm→tn,i denotes the propagation delay between node
x’s location at time tm and node y’s location at time tn of

the ith REF packet, where 1 ≤ i ≤ n. We next subtract the
estimated propagation delay corresponding to each of the
data points to obtain a new set of data points. The clus-
ter head then runs the second linear regression to obtain
the final estimated skew and offset of neighboring node y,

denoted by ˆ̂ay and
ˆ̂
by , respectively.

In the synchronization phase shown in Fig. 4, the cluster

head broadcast all neighbors’ ˆ̂ay and
ˆ̂
by, so that every neigh-

bor can keep track of these parameters. When every node in

the cluster knows the skew and offset of every other node in
the cluster, we can claim that cluster-wide synchronization
has been achieved.

4.3 Error Analysis of Propagation Delay Esti-
mation

Now, let us assume that the clock of Node x can be mod-
eled by using its skew and offset relative to an ideal clock in
a similar form as (1). The following set of equations of the
node’s local time can hence be derived:

T1 = axt1 + bx (3)

T2 = ayt2 + by (4)

T3 = ayt3 + by (5)

T4 = axt4 + bx (6)

The ideal time of t2 and t4 can also be written as

t2 = t1 + D
x→y
t1→t2

, (7)

and

t4 = t3 + D
y→x
t3→t4

. (8)

Our objective is to estimate the one-way propagation delay
D

x→y
t1→t2

from the round trip time, which can be written as

D
x→y
t1→t2

=
(t2 − t1) + (t4 − t3)

2
, (9)

By substituting (7) and (8) into (2), the estimated prop-

agation delay D̂
x→y
t1→t2

computed at Node x is

D̂
x→y
t1→t2

=
1

2

[

ax(t4 − t1) −
ay

ây

(t3 − t2)

]

. (10)

Since we are interested in the relative drift of Node y com-
pared to Node x, we let ax = 1 which results in

D̂
x→y
t1→t2

=
1

2

[

(t4 − t1) −
ay

ây

(t3 − t2)

]

(11)

=
1

2

[

(1 −
ay

ây

)(t3 − t1) + D
y→x
t3→t4

+
ay

ây

D
x→y
t1→t2

]

(12)

As D
x→y
t1→t2

is an average of the propagation delay obtained
from t4 − t3 and t2 − t1, while the actual delay is t4 − t3, we
can calculate the error of propagation delay estimation (∆)
as

∆ =
∣

∣

∣
D̂

y→x
t3→t4

− D
y→x
t3→t4

∣

∣

∣
(13)

=
1

2

∣

∣

∣

∣

(1 −
ay

ây

)(t3 − t1) − D
y→x
t3→t4

+
ay

ây

D
x→y
t1→t2

∣

∣

∣

∣

. (14)

Equation (14) indicates that the error of the propagation
delay estimation depends on three parameters:

1. The relative drift between the estimated and the real
skew:

ay

ây

2. The time interval t3 − t1
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∣

∣

∣
D

y→x
t3→t4

−
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ây
D

x→y
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∣

∣

∣

We can rewrite (14) as

∆ =
1

2

∣

∣

∣

∣

(1 −
ay

ây

)(t3 − t1) −
vnode(t4 − t3)

vs

+
ay

ây

vnode(t2 − t1)

vs

∣

∣

∣

∣

, (15)

where vnode and vs are the relative speed between Node x

and Node y and the speed of sound in underwater, respec-
tively. After obtaining the propagation delay, the cluster
head is now able to estimate Node y’s offset, b̂y, by first de-
ducting the propagation delay effect and running the linear

regression again to obtain both ˆ̂ay and
ˆ̂
by.

5. SIMULATIONS AND RESULTS

5.1 Simulation Setup
In our simulation setup, the sensor nodes are allowed to

move randomly within an area of 1000 m by 1000 m. We
assume that the speed of sound in underwater is constant
at 1500 m/s, and there is no skew variation arising from
a change in the environment as previously discussed in Sec-
tion 2.2, so that we can concentrate solely on the effect of the

Cluster 

head

Neighboring 
node y

(ay, by)^ ^̂^

Figure 4: Phase 2: Synchronization phase.

parameters that we are interested in. The nondeterministic
errors encountered during the message exchange is modeled
using Gaussian distribution, as suggested by Elson and Es-
trin [11]. Unless specified otherwise, we use the following set
of parameters for our simulations:

• Maximum speed of the sensor node (Vmax) is 2 m/s.

• Clock skew is 40 ppm.

• Clock offset is 10 ppm.

• The number of beacons used to perform linear regres-
sion is 25.

• The duration t3 − t2 is 0 s.

• The time interval between two successive reference pack-
ets is 5 s.

• The sensor nodes change its speed randomly within the
range of [0, Vmax], with an average interval of 600 s.

• The sensor nodes change its direction randomly within
the range of [−45◦, 45◦], with an average interval of
600 s.

• Clock granularity is 1 µs.

• Receive jitter is 15 µs.

We study the following parameters in order to investigate
their effects on the MU-Sync’s performance:

1. The node’s initial skew

2. The number of beacons

3. The duration of t3 − t2

4. The frequency at which the sensors change direction

5. The speed of the sensors

We choose to benchmark our scheme with the TSHL, as
well as a network that does not undergo any synchronization.
Although the TSHL is designed for static underwater sen-
sor networks, which assume long but constant propagation
delay, it is the closest form of underwater synchronization
scheme available thus far.
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5.2 Results
In all the results shown in this section, each data point

is obtained from the average of 1000 simulation runs. The
error bars in the figures represent the standard deviations.
Fig. 5 shows how the error in time estimation grows for each
scheme as time elapses since the last synchronization. As can
be seen, the MU-Sync perform better than the TSHL signif-
icantly. In fact, the TSHL is even worse than the case where
no synchronization is performed. Its poor performance arises
from its poor accuracy in estimating the skew. This is due
to its assumption that the inter-node propagation delay is
constant during the skew estimation process. When a node
moves, the propagation delay varies with time; hence, if the
linear regression is applied blindly without taking this into
consideration, it causes inaccurate skew estimation. The
small error in skew estimation can cause severe drift as time
progresses. For example, the error can grow as large as 8 s
within a day of operation even with a skew error that is as
small as 0.0001.
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When we vary the neighboring nodes’ clock skew from 5-
100 ppm, Fig. 6 shows that the MU-Sync’s performance is
independent of the node’s initial skew. However, when the
initial skew error is less than 10 ppm, the MU-Sync’s perfor-
mance is worse than the unsynchronized one. We can also
see in Fig. 6 that both the TSHL and the MU-Sync achieve
a constant average error regardless of the neighboring node’s
initial skew, because both algorithms estimate the skew and
try to compensate for it. However, the TSHL’s performance
is much worse than even the unsynchronized version. The
high standard deviation noticed from the error bars for the
TSHL is due to the high variation of the propagation delay
arising from node mobility. This happens when the linear
regression is applied to estimate the skew over the set of
points {T1,i, T2,i} where 1 ≤ i ≤ n. For the rest of this sec-
tion, we decide to continue our study without the TSHL as
thus far its performance is poorer than the unsynchronized
version.



0 50 100 150 200 250 300 350 400 450
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Average direction change interval (s)

E
rr

o
r 

m
e
a
s
u
re

d
 a

t 
1
0
 s

 a
ft
e
r 

s
y
n
c
h
ro

n
iz

a
ti
o
n
 c

o
m

p
le

te
s
 (

s
)

MU−Sync

No sync

Figure 9: The effect of the average direction change
interval.

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

V
max

 (m/s)

E
rr

o
r 

m
e
a
s
u
re

d
 a

t 
1
0
 s

 a
ft
e
r 

s
y
n
c
h
ro

n
iz

a
ti
o
n
 c

o
m

p
le

te
s
 (

s
)

MU−Sync

No sync

No sync (worst−case)

MU−Sync (worst−case)

The typical value of V
max

 = 2 m/s

Figure 10: Effect of Vmax.

We next study the effect of the number of beacons on the
synchronization error. It is obvious that a higher number
of reference beacons used for linear regression will result in
a lower error in estimation. Fig. 7 illustrates that a finer
synchronization can be achieved by adjusting the number of
reference beacons fed into the linear regression. With our
cluster head synchronization approach, the MU-Sync can
easily adjust the number of beacons used adaptively. Note
that the larger the number of beacons to be collected for
linear regression, the longer it takes to finish the synchro-
nization process; this also explains why the slope of the un-
synchronized version is linearly increasing as seen in Fig. 7.

The varying of the time interval t3 − t2 also affects the
synchronization error. As shown in Fig. 8, when we vary
the duration of t3 − t2 from 0 s (the neighboring node re-
sponds to the REF beacon right after it finishes receiving
the packet) to 25 s (the neighboring node responds 25 s af-
ter it receives the REF), the synchronization error of the
MU-Sync increases with the duration of t3 − t2. However,

when the interval of t3− t2 goes beyond 25 s, the error tends
to stabilize, or even decrease. The explanation is that the
parameter t3 − t2 does not directly affect the synchroniza-
tion error; instead, the relative distance between the cluster
head and the neighboring node at time t1 → t2 and t3 → t4
plays a more important role. Since we are currently using
half of the round trip time to estimate the one-way propa-
gation delay, the estimation error depends on the value of
∣

∣D
x→y
t1→t2

− D
y→x
t3→t4

∣

∣. We verify our claim by examining at
the worst-case plot. Here, we notice that the error increases
steeply as the duration of t3− t2 increases. This effect is less
significant when the nodes move in a more random manner.

Fig. 9 shows that changing the direction of the nodes fre-
quently does not significantly affect the synchronization er-
ror. Here, we vary the average direction change interval from
10 s to 400 s.

Fig. 10 shows the impact of the sensor’s speed on the syn-
chronization error. As can be seen, the synchronization error
increases with the parameter Vmax (look at the worst-case
MU-Sync plot). This is because, when the sensor is allowed
to move very fast, the value of

∣

∣D
x→y
t1→t2

− D
y→x
t3→t4

∣

∣ can be so
large that using (12) to estimate the propagation delay is
no longer accurate enough. Fortunately, in most networks,
we would expect the nodes to undergo speed and direction
changes over time, rather than persisting in the worst-case
setting all the time. Therefore, the effect of Vmax is, on the
average, much less significant on the synchronization error
(as indicated by the average MU-Sync plot).

6. DISCUSSION
In this section, we discuss the applicability of the MU-Sync,

and also how it may be improved.

• Although the MU-Sync seems to have a higher over-
head than the TSHL, as it requires the neighboring
node to send a response for every REF packet received,
it can easily be integrated with existing handshaking
MAC protocols such as MACA [14], Slotted FAMA [4],
MACA-MN [15], PCAP [3], etc., by piggybacking the
REF and its response within the RTS/CTS packets.
While the MU-Sync could achieve finer synchroniza-
tion by having a higher number of beacons messages,
the TSHL may not benefit from this approach when
the nodes are mobile, since it does not account for
time-varying propagation delay. In fact, since a higher
number of beacon messages also require a longer du-
ration to finish collecting the beacons, the TSHL may
become even more vulnerable to violating the constant
propagation delay assumption.

• From our simulation, Fig. 8 (look at the worst-case)
shows that the MU-Sync cannot cope when the dura-
tion of t3 − t2 is longer than approximately 25 s. The
major factor that causes the error comes from the tech-
nique used to estimate the one-way propagation delay.
Although (12) is widely used to calculate the one-way
propagation delay from the round trip time, it may not
be suited in our scenario. Since the nodes keep moving
during the interval (t2, t3), significant error may be in-
troduced when the propagation delay is estimated as
half the round-trip time. A better method is hence
needed in order to achieve higher accuracy.



• One advantage that the MU-Sync has over the TSHL is
that, when the cluster head broadcasts its neighboring
nodes’ estimated skew and offset, every node learns
the estimated skew and offset of all other nodes in the
same cluster, instead of just the relative parameters
between the cluster head and a particular node.

• Although we do not discuss how a cluster selects its
cluster head in this paper, the task can be achieved by
applying an existing cluster head selection algorithm
as presented in [16, 17, 18].

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a cluster-based synchro-

nization algorithm for mobile underwater acoustic networks,
known as the MU-Sync. Unlike those existing synchroniza-
tion schemes designed for terrestrial sensor networks that
treat the propagation delay as negligible, the MU-Sync takes
into account both long and time-varying propagation de-
lays. Through simulations, we find that the accuracy of
the MU-Sync is highly dependent on the accuracy of the
propagation delay estimation, as it is a major contributor
to synchronization error for underwater acoustic networks.
We are currently using half of the round-trip time as an es-
timation of the one-way propagation delay. This may result
in low accuracy if the propagation delay varies significantly
within the round trip message exchange. In our future work,
we plan to concentrate on how the varying propagation de-
lay can be estimated more accurately, while maintaining low
overhead.

8. REFERENCES
[1] F. Sivrikay and B. Yener, “Time Synchronization in

Sensor Networks: A Survey,” in IEEE Network, Volume
18, Issue 4 July-Aug. 2004, pp 45–50.

[2] S. Ganeriwal, R. Kumar, and M. Srivastava,
“Timing-Sync Protocol for Sensor Networks,” in Proc.
1st int. conf. on Embedded networked sensor systems,
Sept. 2002.

[3] X. Guo, M. R. Frater, and M. J. Ryan, “A
propagation-delay-tolerant collision avoidance protocol
for underwater acoustic sensor networks,” in Proc.
MTS/IEEE OCEANS’06, 2006.

[4] M. Molins, M. Stojanovic, “Slotted FAMA: a MAC
protocol for underwater acoustic networks,” in Proc.
MTS/IEEE OCEANS’06, 2006.

[5] N. Chirdchoo, W. S. Soh, K. C. Chua, “Aloha-based
MAC Protocols with Collision Avoidance for
Underwater Acoustic Networks,” in Proc. IEEE
INFOCOM 2007, May 2007.

[6] I. F. Akyildiz, D. Pompili, and T. Melodia,
“Underwater acoustic sensor networks: research
challenges,” Elsevier’s Journal of Ad Hoc Networks, vol.
3, no. 3, 2005, pp. 257–279.

[7] P. Xie and J. H. Cui, “SDRT: A Reliable Data
Transport Protocol for Underwater Sensor Networks,”
Technical Report: UbiNet-TR06-03 , Feb. 2006

[8] H. Kopetz and W. Schwabl, “Global time in distributed
real-time system,” Technical Report 15/89, Technische
Universitat Wien, 1989.

[9] H. Kopetz and W. Schwabl, “Clock Synchronization in
Distributed Real-Time Systems,” in IEEE Transactions
on Computers, C-36(8), Aug. 1987, p. 933–939.

[10] Q. Li and D. Rus, “Global Clock Synchronization in
Sensor Network,” in IEEE Transactions on Computers,
vol. 55, no. 2, Feb 2006, pp. 214–226.

[11] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Time
Synchronization using Reference Broadcasts,” in Proc.
5th Symp. Op. Sys. Design and Implementation,
Boston, MA, Dec. 2002.

[12] A. A. Syed and J. Heidemann, “Time Synchronization
for High Latency Acoustic Networks,” in Proc.
INFOCOM 2006, April 2006, pp. 1–12.

[13] C Tian, W. Liu, J. Jin, J. W, and Y. Mo.
“Localization and Synchronization for 3D Underwater
Acoustic Sensor Networks,” Springer Berlin /
Heidelberg , pp. 622–631, 2007.

[14] P. Karn, “MACA-a new channel access method for
packet radio,” in Proc. ARRL/CRRL, 22 Sept, 1990.

[15] N. Chirdchoo, W. S. Soh, K. C. Chua, “MACA-MN: A
MACA-based MAC Protocol for Underwater Acoustic
Networks with Packet Train for Multiple Neighbors” in
Proc. IEEE VTC2008-Spring, Singapore, May 2008.

[16] H. Chen and S. Megerian, “Cluster Sizing and Head
Selection for Efficient Data Aggregation and Routing in
Sensor Networks,” in Proc. IEEE WCNC 2006, pp.
2318–2323, 2006.

[17] K. Dasgupta, K. Kalpakis, and P. Namjoshi. “An
Efficient Clustering-based Heuristic for Data Gathering
and Aggregation in Sensor Networks,” in Proc. IEEE
WCNC 2003, March 2003.

[18] G. Chopra, S. Srivastava, and A. Karandikar, “A novel
clustering strategy for efficient routing in adhoc
networks,” in Proc. IEEE ICPWC 2005, pp. 67–71,
2005.


