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Abstract— Although there are many MAC protocols that have
been proposed for terrestrial wireless networks with a wide
variety of aspects, these protocols cannot be applied directly in
underwater acoustic networks due to the channel’s uniqueness
of having low data rate and long propagation delay. In order
to achieve a high throughput, both characteristics must be
taken into account in the MAC design. We propose a random
access MAC protocol for multi-hop underwater acoustic networks
based on receiver reservation, which we shall call the “Receiver-
initiated Packet Train” (RIPT) protocol. It is a handshaking-
based protocol that addresses the channel’s long propagation
delay characteristic by utilizing receiver-initiated reservations, as
well as by coordinating packets from multiple neighboring nodes
to arrive in a packet train manner at the receiver. Our simulation
results have confirmed that the RIPT protocol can achieve our
goal of having high and stable throughput performance while
maintaining low collision rate.

Index Terms— Underwater acoustic communication, Underwa-
ter acoustic telemetry, Access protocols, Communication systems,
Data communication, Multiaccess communication, Simulation.

I. INTRODUCTION

The issue of medium access control (MAC) has been widely

studied for terrestrial wireless networks, especially ad-hoc

networks, due to many interesting applications that involve

wireless sensor networks. Ad-hoc networks are useful in ap-

plications where there is no infrastructure, and no centralized

control. In order to cover the whole area of interest, the size of

the network may grow large and become a multi-hop network.

It is widely known that in such networks, hidden and exposed

terminal problems are the main causes of low throughput.

The hidden-terminal problem causes high collision rate, while

the exposed-terminal problem causes a node to become over-

conservative when transmitting packets. These problems tend

to result in under-utilization of the channel.

In terrestrial wireless networks, there are two main ap-

proaches in MAC protocol designs to alleviate the abovemen-

tioned problems. The first approach is the use of a busy signal

to inform the hidden node about an ongoing transmission.

Upon hearing the busy signal, the hidden node will avoid

accessing the channel until the busy signal ends. This could

help resolve the hidden and exposed terminal problems to

some extent, depending on the variation of those techniques

that fall within this category. Examples of such protocols
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are BTMA [1], RI-BTMA [2], and DBTMA [3]. In order

to utilize the busy signal approach, every node needs to be

equipped with more than one transceiver. This may not be

feasible for some applications such as sensor networks, in

which cost is a major concern. The second approach, on

the other hand, uses a handshaking mechanism to reduce the

hidden and exposed terminal problems without requiring any

additional hardware. “Handshaking” refers to the exchange of

multiple small control packets prior to transmitting a longer

data packet. This approach has been studied extensively, and

many ad-hoc MAC protocols are designed based on this idea.

MACA [4] was the first MAC protocol that uses the hand-

shaking mechanism. Some other examples of handshaking-

based MAC protocols are MACAW [5], MACA-BI [6] and

the widely used IEEE 802.11 protocol.

While there are many MAC protocols proposed to-date

addressing the hidden and exposed-terminal problems for ter-

restrial multi-hop wireless networks, none of them are directly

applicable to multi-hop underwater acoustic networks. This is

because these terrestrial MAC protocols are designed for high

speed radio communication, and they typically assume that

the propagation delay is negligible. In contrast, underwater

communication mainly uses acoustic channel with a low

propagation speed of approximately 1500 m/s, thus resulting

in significantly longer propagation delay. Another unique char-

acteristic of underwater acoustic channel that affects the MAC

protocol’s performance is its narrow available bandwidth,

which leads to low data rate. Specifically, the amount of

available bandwidth depends on the communication range; a

long-range system that operates over several tens of kilometers

may have a bandwidth of only a few kilohertz, while a short-

range system operating over several tens of meters may have

more than a hundred kilohertz of bandwidth [7].

Both of the abovementioned characteristics of the acoustic

channel, namely, long propagation delay and narrow available

bandwidth, are the key factors that prevent the direct appli-

cation of the terrestrial MAC protocols in underwater. The

narrow available bandwidth implies that it may not be practical

to set aside a separate frequency band for transmitting busy

signals. The long propagation delay, on the other hand, makes

it very expensive to transmit multiple control packets (e.g.,

RTS/CTS frames) before every data packet transmission. In

fact, both [8] and [9] have shown that such a technique offers

a lower throughput than the well-known Aloha protocol when

applied in underwater acoustic networks.

The high latency overhead introduced by the control packets

of handshaking-based protocols implies that the channel’s
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utilization may be improved if multiple data packets in the

form of a packet train can be transmitted for every set of

handshake. This is one of the key motivations underlying our

proposed MAC protocol, which we call the “Receiver-initiated

Packet Train” (RIPT) protocol. While the RIPT protocol is

also handshaking-based, the key difference here is that the

reservations are receiver-initiated. As will be explained in

Section III later on, the use of receiver-initiated reservations

is crucial in reducing data packet collisions in the presence

of long propagation delays. Another novel concept of the

RIPT protocol is that the “packet train” that arrives at the

receiver after each set of handshaking is actually formed

by transmissions from multiple neighboring nodes. This is

built on the assumption that every node knows the inter-node

propagation delay between itself and each of its immediate

neighbors, so that it can schedule its transmissions accordingly

to ensure that a packet train can be formed at the receiver. This

design results in high channel utilization, as well as low data

packet collisions.

The remainder of this paper is organized as follows. In

Section II, we describe briefly some related work in MAC

protocol design for underwater acoustic networks. We then

present in Section III the RIPT protocol that we propose for

underwater networks with distributed topology. Section IV

describes the simulations that were carried out to compare

the performance of the proposed scheme with several others.

In Section V, we provide further insights into our proposed

scheme, and finally, we give our conclusions in Section VI.

II. RELATED WORK

Currently, the research efforts in underwater MAC protocols

are still in their infancy stage. Some work in the literature, such

as [10], has adopted a centralized control approach, which

requires a master node to configure the data scheduling, and

pass the control messages to its slaves. On the other hand,

the distributed control approach, in which each node decides

on its own whether to send out a packet, appears to be more

attractive. This is largely due to the latter’s advantages, such

as scalability, faster response to topology changes, smaller

number of control messages, as well as immunity from node

(master node) failure. In [11], Rodoplu and Park propose

a MAC protocol that achieves energy efficiency by reduc-

ing collisions. The protocol illustrates a novel idea of how

an underwater network can achieve a locally synchronized

schedule without acquiring the absolute-timing information.

Specifically, each node schedules by itself the time to transmit

the next packet randomly, and broadcasts this information

by attaching it to the current data packet along with its

transmission cycle. Upon hearing the broadcast, the other

nodes will know when to wake up for the subsequent packet,

and they may go to sleep at other times. However, in order to

operate at a low collision rate, each node requires a small duty

cycle, which makes it difficult to achieve high throughput.

In [12], Morns et al. propose two scheduling protocols

to control data packet transmission and arrival times. One

protocol is based on Code Division Multiple Access (CDMA),

while the other one is based on Time Division Multiple Access

(TDMA). However, both protocols require clock synchroniza-

tion between all the nodes. Also, the time slot allocation for

individual nodes becomes hard to manage when the number

of nodes grow. Guo et al. introduce the propagation-delay-

tolerant collision avoidance protocol (PCAP) in [8], which is

a handshaking-based protocol. It also requires clock synchro-

nization between neighboring nodes, just like those in [12].

Besides the requirement of request-to-send (RTS) and clear-

to-send (CTS) frames, it allows a sender to perform other

actions during the long wait between the RTS and CTS frames.

Although its maximum throughput is 20%, which is higher

than what the conventional handshaking protocol can achieve

in underwater typically, it is merely comparable to Aloha’s

throughput. Molins and Stojanovic propose in [13] a slotted

random access MAC protocol, which, yet again, requires clock

synchronization. It is also handshaking-based, but an RTS or

CTS frame can only be transmitted at the beginning of each

time slot. Although the protocol achieves guaranteed collision

avoidance for its data packets, the long slot length requirement

and the handshaking mechanism itself affect the throughput.

Recently, Aloha-based protocols have also gained the inter-

est of underwater network researchers due to their simplicity.

The throughput analysis of Aloha in underwater is recently

presented in [14] and [15]. In [16], we proposed two Aloha-

based MAC protocols, namely, Aloha with collision avoidance

(Aloha-CA) and Aloha with advance notification (Aloha-AN).

Both protocols are capable of exploiting the acoustic channel’s

long propagation delay, leading to superior throughput perfor-

mance and lower collision rates when compared with other

Aloha-based variants. In Aloha-CA, when a node overhears

a packet’s header, it calculates the busy durations of all its

neighbors that would result from this packet. While the idea

is simple, it is shown to improve throughput moderately. The

Aloha-AN, on the other hand, transmits a notification packet

(NTF) prior to each data packet. The NTF packet helps the

node’s neighbors to avoid transmitting packets that would

collide with the impending packet at their respective receivers.

This helps Aloha-AN achieve high and stable throughput,

reaching maxima of approximately 32% and 66% over a

2400 bps channel in a single-hop network, when the packet

sizes are 2400 bits and 9600 bits, respectively. Note that,

although both Aloha-CA and Aloha-AN work well in single-

hop networks, they do not adequately address the hidden and

exposed terminal problems in multi-hop networks.

III. THE RECEIVER-INITIATED PACKET TRAIN (RIPT)

PROTOCOL

A. Overview

Although the RTS/CTS mechanism is widely used for alle-

viating the hidden and exposed terminal problems in terrestrial

multi-hop networks, they suffer from two main drawbacks

when they are applied in underwater acoustic networks. Firstly,

the need for at least one full round-trip exchange of control

packets prior to sending every data packet introduces consid-

erable latency, due to the long propagation delay. This leads to

under-utilization of the channel, and low throughput. Secondly,

the long propagation delay also seriously impacts the ability
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of the RTS/CTS handshake mechanism to resolve the hidden

terminal problem, because it now takes much longer for a node

to receive RTS and CTS packets from its neighbors, which

extends the vulnerable period. This leads to higher collision

rate, and again, low throughput. For the first drawback, some

previously proposed protocols [13], [17] attempt to increase

the channel utilization by sending a train of packets after each

successful handshake. Note that the packet train concept has

also been proposed for terrestrial wireless networks in [18].

For the second drawback, it appears that receiver-initiated

reservations are better at avoiding collisions in the presence

of long propagation delay, since the receiver has accurate

information on its own current state.

The important observations above lead us to propose the

RIPT protocol. While it also seeks to alleviate the hidden and

exposed terminal problems through a handshaking mechanism,

it does a better job at avoiding collisions by utilizing receiver-

initiated reservations. In order to improve channel utilization,

we propose the idea of “multiple-node polling”, in which

multiple nodes are allowed to transmit data packets to a single

receiver within each round of handshake. By assuming that

every node knows the propagation delays between itself and its

neighboring nodes, the transmissions can be scheduled in such

a way that the data packets will be received by the receiver in

the form of a packet train. This is different from the packet

train approach in [13], [17], [18], in which the train of packets

that a receiver receives are sent by a single transmitter.

We now give more insights into the RIPT protocol’s de-

sign. As discussed in [15], the performance of high latency

networks, such as underwater networks, is affected by both

space and time uncertainty. The space uncertainty is caused

by the nodes’ locations, which result in different propagation

delays, while the time uncertainty is caused by the randomness

of packet arrivals. The RIPT overcomes the space uncertainty

by carefully scheduling the data packet transmissions to avoid

collision at the receiver, using the knowledge of inter-node

propagation delays. For the time uncertainty, we realize that

those techniques widely used in terrestrial MAC (e.g., syn-

chronizing transmission, sensing channel [15]) are not appro-

priate in underwater since they only remove the uncertainty

at the transmitter, but not at the receiver. Moreover, unlike

other transmitter-initiated protocols that encounter two types

of data packet collision, namely, “transmit-receive collision”

and “receive-receive collision”, a receiver-initiated approach

only experiences receive-receive collision. This is because a

receiver knows exactly when the current handshake will end,

and how long it should defer its own transmission in order

to avoid a transmit-receive collision. The above reasonings

explain why we have adopted a receiver-initiated approach

in designing the RIPT protocol. Note that transmit-receive

collision refers to the scenario whereby an incoming packet

arrives at a node while it is transmitting. In this case, the

incoming packet will not be heard. On the other hand, receive-

receive collision occurs when two or more packets arrive at a

receiver simultaneously, causing all packets to be corrupted.

Instead of the typical 3-way (RTS/CTS/DATA) handshake

found in protocols such as MACA, the RIPT protocol utilizes

a receiver-initiated 4-way (RTR/SIZE/ORDER/DATA) hand-

TABLE I

NOTATIONS USED FOR EXPLAINING THE RIPT PROTOCOL.

Notation Description

tj Time at which the neighbor of order j finishes receiving
the RTR packet

tSIZE,j Time at which the neighbor of order j starts transmitting
its SIZE packet

tbusy Time at which receiver finishes receiving last SIZE packet

tout,rcv Timeout at receiver

tout,x Timeout at node x

ttx,x Time at which node x starts transmitting DATA packet

trx,x Time at which node x’s DATA packet first arrives at receiver

trx Time at which first DATA packet within the packet train
may arrive at receiver

Mtrain Number of DATA slots currently reserved at receiver

Mtrain,max Maximum allowable value for Mtrain

Nb Number of broadcast packets (if any) from the receiver

Nslots,i Number of DATA slots allocated to the ith node to transmit

Dx Propagation delay between node x and the receiver

Dx(j) Propagation delay between the receiver and node x(j)
which has order j

Dmax Maximum Dx among all first-hop neighbors of the receiver

Dx, y Propagation delay between node x and node y

n Average number of first-hop neighbors per node

nhidden Average number of hidden terminals per node

TRTR Transmission time of each fixed-length RTR packet

TORDER Transmission time of each fixed-length ORDER packet

TSIZE Transmission time of each fixed-length SIZE packet

TDATA Transmission time of each fixed-length DATA packet

Tavg Average time interval between initiating RTRs at a node

Tguard Guard time to protect against any estimation error in the
inter-node propagation delays

shake. The RTR (Ready-To-Receive) packet serves to inform

all of the initiating receiver’s neighbors that the receiver node

is ready to act as a receiver for a certain duration of time.

A series of SIZE packets will then be sent by the receiver’s

neighbors to inform the receiver about the number of packets

that each neighbor wishes to send to it. The receiver then sends

an ORDER packet, which informs its neighbors the relative

order to transmit their data packets, and how many packets

they are allowed to transmit. Finally, the respective neighbors

transmit their DATA packets.

B. How the Protocol Works

As mentioned earlier, the RIPT protocol requires every node

to know the inter-node propagation delay between itself and

each of its immediate neighbors. Therefore, the protocol works

best in either a static network, or one with limited mobility but

every node can determine its own position. For static networks,

such inter-node propagation delays can be estimated during

initialization, in which all nodes take turns to broadcast some

control packets to its neighbors. Upon hearing such a packet

from one of its neighbors, a node can calculate its propagation

delay by comparing the timestamp on the packet with its local

clock. Although this procedure requires time synchronization
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Fig. 1. 4-way handshaking with multiple-node polling.

among all the nodes, the assumption is quite reasonable

because the initialization stage is short, and thus any clock

drift will be negligible if the synchronization is carried out

right before deployment. Note that the RIPT protocol no

longer requires time synchronization beyond the initialization

stage. For the case where each node has positioning capability,

messages could be exchanged between neighboring nodes to

update each other about their locations, which can then be

used for computing the inter-node propagation delays.

We now explain how the RIPT protocol works. Table I

shows the notations that are used, while Fig. 1 shows an

example of how the 4-way handshake is carried out.

1) 4-way handshake initiation by the RTR packet: when an

idle node wishes to become a receiver, it initiates the 4-way

handshake by broadcasting an RTR packet. In order to avoid

any confusion, we shall clarify that the terms “receiver”, and

“senders”, refer to the initiating node that intends to be a

receiver, and its immediate neighbors that have packets to

send to it, respectively. The RTR packet contains the initiating

receiver’s node ID, the number of DATA slots reserved at the

receiver (M train), and the inter-node propagation delay from

itself to each of its neighbors, if necessary; for the case of a

static network, the inter-node propagation delay information

can be exchanged during initialization, and does not need to

be retransmitted with every RTR packet. Note that these inter-

node propagation delays will be used by each neighboring

node to compute the time at which it needs to send its SIZE

packet, which will be explained later in Section III-B.2. In

order to accommodate the need to broadcast DATA packets,

the RTR packet also includes a flag to indicate whether the

receiver has any DATA packet to broadcast, as well as a

field that indicates the total number of DATA packets it will

broadcast (N b). As mentioned earlier, the RTR packet serves

to inform all of the receiver’s neighbors that the former is

ready to act as a receiver for a certain duration of time.

2) Transmission slot request using the SIZE packet: when

a neighboring node hears the RTR packet, it needs to respond

with a SIZE packet. The rule of thumb is to transmit the SIZE

packet immediately upon receiving the RTR packet, subject

to the condition that it will not collide with another node’s

SIZE packet at the receiver. Any such collision will be costly

because the receiver will not allocate any DATA slot to a

neighboring node if it does not hear the latter’s SIZE packet,

and will result in low throughput. Fortunately, such collisions

can be easily avoided if the inter-node propagation delay

between the receiver and each of its neighbors are known to all

of these neighbors. Note that the overhead incurred to maintain

this information is of the order of O(n2) per node (where n

is the average number of first-hop neighbors per node), if it

is statically maintained at each node. If this information is

provided by the RTR packet instead, then the overhead is in

the order of O(n). The information allows each neighboring

node to compute the time at which it is supposed to transmit

its SIZE packet without colliding with other SIZE packets at

the receiver. The node first arranges the inter-node propagation

delays between the receiver and each of the neighboring nodes

in ascending order. If there are multiple nodes having the same

propagation delay, the conflict is resolved by granting priority

to the node with the smaller node ID. Suppose the node finds

that it has the order j, and tj is the time at which it finishes

receiving the RTR packet. The time at which it should transmit

its SIZE packet is given by

tSIZE,j = max[tj , (tSIZE,j − 1 + Dx(j−1) + Tguard

+TSIZE − Dx(j))], (1)

where tSIZE,1 = t1, Dx(j) is the propagation delay between the

receiver and the neighboring node x(j) that has order j, and

Tguard is a small guard time that can be inserted to protect

against any estimation error in the inter-node propagation

delays. We will discuss more about how the value of Tguard

may be chosen in Section V, but it should be noted for now that

the amount of Tguard required is usually very small compared

to the DATA packet’s transmission time.

In order to better understand the above algorithms, we

shall look at the example in Fig. 1. As can be seen, if both

neighboring nodes #2 and #3 respond with their SIZE packets

immediately upon hearing the RTR packet, their SIZE packets

will collide at the receiver. Here, neighboring node #3 defers

transmitting its SIZE packet, so as to ensure that it will only

arrive at the receiver after neighboring node #2’s SIZE packet

has been completely received.

Having resolved the time to transmit its SIZE packet, the

neighboring node will also compute the busy duration at the

receiver that will be caused by all the SIZE packets sent from
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the receiver’s neighbors. The end of this busy duration is

denoted by tbusy (see Fig. 1), which is the time at which the

receiver finishes receiving the SIZE packet sent from its most

distant neighbor of order n, where n is the number of first-hop

neighbors that the receiver has. Every first-hop neighboring

node can then calculate tbusy locally as follows:

tbusy = tSIZE,n + Dx(n) + TSIZE. (2)

The value of tbusy will then be used to compute tout,rcv, which

is the time at which the receiver is expected to finish receiving

the entire packet train. Specifically,

tout,rcv = tbusy + 2Dmax + TORDER + (Nb · TDATA)

+(Mtrain · TDATA) + n · Tguard. (3)

We now describe the information contained within a neigh-

boring node’s SIZE packet. It contains the number of relay

DATA packets, as well as the number of its own DATA packets

that it wishes to transmit to the receiver. It also contains its

own timeout, calculated as

tout,x = tout,rcv − Dx, (4)

where Dx is the propagation delay between the receiver and

the node itself. Note that tout,x is the timeout that node x

sets to release itself from the current handshaking loop. This

timeout needs to be large enough to allow the receiver to finish

receiving all the DATA packets in the current handshaking

loop. However, it does not need to be as large as tout,rcv,

because of the propagation delay Dx between the receiver

and itself. It simply needs to be large enough such that

any transmission from this node beyond the timeout will not

interfere with the receiver.

The SIZE packet serves two purposes. Besides informing

the receiver about the number of relay and new DATA packets

to be transmitted, it also informs each of the receiver’s second-

hop neighbors (i.e., its hidden nodes) to avoid initiating an

RTR handshake until a certain timeout. For a second-hop

neighbor (say, node y), upon receiving the SIZE packet sent

by the first-hop neighbor (say, node x), its timeout is

tout,y = tout,x + Dx, y, (5)

where Dx, y is the propagation delay between node x and

node y. The need for the second-hop neighbors to avoid

becoming receivers is key for achieving a stable throughput. If

the second-hop neighbors were to act as receivers, they may

lose some DATA packets due to collisions arising from the

first-hop neighbors’ transmissions.

It is also important to note that the RIPT protocol still

functions properly even when some of the receiver’s neighbors

miss the RTR broadcast. When such a case arises, the only

impact on RIPT is that the particular neighbor will not respond

with a SIZE packet, and subsequently, it will not be allocated

any DATA slot for the current round of handshake.

3) Transmission order broadcast through the ORDER

packet: after the receiver has acquired all the SIZE packets

from its neighbors, it allocates its available DATA slots (i.e.,

M train) using a simple strategy. The rule of thumb is to priori-

tize all relay DATA packets over new DATA packets, because

TABLE II

AN EXAMPLE ILLUSTRATING THE SLOT ASSIGNMENT STRATEGY, WHERE

MTRAIN = 4.

Priority Node ID Relay packets New packets Slots assigned

1 Neighbor #2 0 3 2
2 Neighbor #1 2 1 2
3 Neighbor #3 0 3 0

Total number of slots assigned 4

the relay packets have already consumed channel resources

to reach the intermediate nodes, and it would be wasteful if

they were to be discarded due to buffer overflow. We now

explain the assignment strategy using the example shown in

Table II, where M train = 4. First, each of the neighboring nodes

is assigned a unique priority randomly. Their requirements are

then sorted according to decreasing node priority. Next, the

receiver runs through the “relay packets” column according to

the node priorities, and accommodate as many relay packets

as possible. If there are still available DATA slots after

considering the relay packets, the node will then run through

the “new packets” column, and assign the remaining DATA

slots accordingly. Upon completing the slot assignment, the

receiver then transmits the ORDER packet, which contains

the total number of DATA slots assigned to each neighboring

node, the order of transmission, the broadcast flag, as well

as the number of DATA packets to broadcast. Notice that the

receiver resends the information on broadcast packets so as

to improve the chances of its neighbors to be ready for them.

Immediately after transmitting the ORDER packet, the receiver

transmits its broadcast packets, if any.

4) DATA train transmission: upon hearing the ORDER

packet, a node that has been allocated at least one DATA

slot must compute the time at which it shall start its DATA

transmission, so that its packets will form a packet train at

the receiver with the other senders’ packets. Note that the

transmission start time must take into account the propagation

delay to the receiver. For instance, if node x’s DATA packet

is expected to reach the receiver at time trx,x, it shall start

transmitting the packet at

ttx,x = trx,x − Dx. (6)

Suppose node x is assigned by the receiver as the lth node to

transmit, we can obtain trx,x as

trx,x = tbusy + 2Dmax + TORDER + (Nb · TDATA)

+(l − 1) · Tguard +

l−1
∑

i=1

Nslots,i · TDATA, (7)

where Nslots,i is the number of slots allocated to the ith node.

C. Adaptive Train Size

In actual implementation, the packet train size M train for

each handshaking loop should not be held constant, because

the offered load would fluctuate with time. When the load is

low, only a few neighbors may have DATA packets to transmit,

or, in the worst case, no neighbor has any DATA packet to
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transmit. On the other hand, when the load is high, many

neighbors may wish to transmit DATA packets. A self-adaptive

algorithm would allow each node to adapt the M train parameter

according to the current load observed. In particular, the total

number of DATA packets that all neighbors wish to transmit

during the current handshaking loop could be used to predict

a suitable M train value for the future handshaking loop.

We now describe a possible approach as follows. If the re-

ceiver finds that its M train is not large enough to accommodate

all the slot requests from its neighbors, it increases M train by 2

for the next round. If it finds that there are insufficient slot

requests to fill up its M train, it decreases M train by 1. The

main reason why the algorithm is more conservative when

decreasing M train is due to the relative reliability of the above

two triggers. To understand this, we need to be aware that the

sum of slot requests computed from those SIZE packets that it

receives does not always reflect the true number of packets that

its neighbors wish to send. The inaccuracy may arise because

some neighbors’ SIZE packets might have been corrupted, or

it may be because some neighbors are required to remain silent

as they are currently involved in other handshaking loops.

Although the computed sum may not be accurate, if it happens

to be higher than the current M train, there is no ambiguity that

the current M train is indeed too small. On the other hand, if the

sum is less than M train, the receiver cannot be sure whether

its M train is indeed too large, because there might be missing

information. Note that the change in M train only affects the

next round of handshake. Also, there should be a maximum

limit for M train, so as to avoid any receiver from capturing the

channel for too long.

D. When to Initiate an RTR Packet

Because the RIPT protocol requires a node that wishes to act

as a receiver to initiate the handshaking loop by broadcasting

an RTR packet, the timing of initiating RTR packets is an

important issue. Although a traffic prediction scheme might

be useful for helping a node to schedule the proper time to

initiate the handshaking loop, it is beyond the scope of our

study. Here, we simply pick the exponential distribution for

the time between RTR-initiations, with an average of T avg.

In order to avoid the same node from acting as a receiver

successively before other neighboring nodes have a chance at

playing the role, we make use of a “fairness bit” at each node.

If a node has just been released from a handshaking loop while

acting as a receiver, it will set this bit to ‘0’. While in this

state, it will not initiate any RTR packet. The fairness bit can

only be reset once the node has served as a sender in any

subsequent handshaking loop. However, if the node’s fairness

bit has been set to ‘0’ for longer than a threshold time tlimit,

it will reset the fairness bit back to ‘1’ to avoid any deadlock.

IV. SIMULATIONS AND RESULTS

A. Simulation Model

Our simulation model consists of 36 static nodes arranged

in a grid topology, as shown in Fig. 2. However, instead of

precisely placing each node at a grid intersection point, we

introduce some degree of randomness by allowing each node

Fig. 2. Our simulation network topology. Note that the nodes are not placed
precisely at the grid intersection points. Also, the arrows in the figure only
show the routes between a single node and its 16 two-hop neighbors.

to deviate from the grid intersection point by a maximum

of 10% of its grid spacing, in both the x and y directions.

The deviations from the grid intersection points are introduced

here in order to ensure that the network topology resembles a

real scenario, whereby the nodes are usually non-equidistantly

placed. Note, however, that the RIPT still works even if the

neighboring nodes are equidistant. The transmission range of

each node is assumed to be 1.75 times the grid spacing, such

that each node has exactly eight neighbors within its range. In

order to avoid edge effects, we have adopted the wraparound

strategy, such that even the nodes at the boundaries will have

eight one-hop neighbors. Note that, in a real scenario where

edge effects exist, we expect the throughput to be higher than

our simulation results; this is because the nodes at the network

edge usually have lower number of hidden and exposed nodes,

thus resulting in lower number of collisions.

We assume that the traffic load is divided evenly among

all nodes according to the Poisson distribution. For routing,

in order to make it easier to interpret the results, we consider

two-hop routes only, rather than varying number of hops. For

each packet that is generated by a node, we randomly pick

its destination to be any of the node’s 16 two-hop neighbors

with equal probability. Also, we apply static routing here.

The arrows in Fig. 2 show the routes originating from one

particular node (the round node) to each of its 16 two-hop

neighbors. We do not show the two-hop routes for each of the

remaining 35 nodes when they behave as source nodes, but

their two-hop routes have exactly the same pattern.

We also assume that all the nodes are equipped with half-

duplex, omnidirectional modems, with a fixed data rate of

2400 bps. The acoustic propagation speed is assumed to be

1500 m/s. Since the RIPT is designed to perform indepen-

dently of the physical layer, and our simulation study only

focuses on the RIPT’s performance in the MAC layer, we do

not specify the modulation scheme used. Here, the channel

is also assumed to be error-free, so that all packet losses are

purely due to the MAC protocol’s performance. We also do not

implement ACK for any of the schemes simulated, thus there

is no retransmission for lost packets. All control packets (i.e.,

RTR, SIZE, and ORDER) have the same size of 100 bits,
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Fig. 3. The effect of M train,max and T avg on throughput.

while DATA packets are 2400-bit long. The buffer size for both

new packets and relayed packets are set to 100 each, and the

parameter M train is initialized to 1. We choose to benchmark

our protocol with two previously proposed schemes, namely,

Aloha-AN [16] and MACA [4]. For both of these protocols, we

set the control packet length (i.e., NTF packet for Aloha-AN,

and RTS/CTS packets for MACA) to 64 bits, while keeping

all other parameters the same. Note that, all the protocols in

our simulation study are random access MAC protocols that do

not require any time synchronization. We also investigate both

700 m and 7000 m grid spacings to evaluate the performance

of the protocols under different average propagation delays.

B. Simulation Results

The simulation duration for each data point was 8×105 s, so

that the 95% confidence interval for any throughput per node

is within ±0.0002 from its sample mean. Here, we adopt the

definition of “throughput” from [9], and define “throughput per

node” as the average throughput over 36 nodes as follows:

Throughput per node =

1

36

[

No. of Packets Received/Simulation Time

Data Rate/Packet Length

]

(8)

1) Factors Affecting the RIPT’s Performance:

• Mtrain,max and Tavg: Fig. 3 shows how the parameters

M train,max and T avg affect the RIPT’s throughput when the

offered load per node is 0.07. Note that this is the offered

load that is high enough to cause the RIPT’s throughput to

saturate. From the figure, we can observe that when T avg

becomes large, the throughput actually decreases. Ideally,

T avg should be as small as possible, in order to reduce

the packet delays. For the case where the grid spacing is

700 m, we observe that the suitable range of M train,max

varies with T avg. For example, when T avg is 10 s, the suit-

able range of M train,max would be approximately [25,40].

However, when T avg increases to 100 s, the suitable range

of M train,max also increases to [35,70]. This is intuitive

since a larger T avg would imply that there are more DATA

packets waiting to be transmitted in each handshake.

When M train,max is outside these suitable ranges, we see

that the RIPT’s throughput deteriorates. Furthermore, for

any T avg, the throughput initially increases as M train,max

increases, but begins to decrease when M train,max is too

large. This can be explained as follows. If M train,max is too

small, the network actually spends more time exchanging

control packets rather than transmitting DATA packets,

which results in low throughput. On the other hand,

if M train,max is too large, the throughput may also be

low due to the higher chances of collisions, and also

due to more unutilized reserved slots. Note that, despite

using a receiver-initiated handshaking approach, the RIPT

still encounters collisions, just like other transmitter-

initiated handshaking approaches. Collisions can occur

between the various combinations of control packets and

DATA packets. When a node transmits longer train of

packets, there is a higher chance that it may miss the

control packets from its other neighbors, thus losing the

opportunity to keep an accurate view of its neighbors’

status (e.g., when they are acting as receivers); this in

turn reduces the node’s capability to avoid collisions. In

addition, if a neighboring node misses an RTR packet,

it will not be able to transmit DATA packets to the

receiver, even if it has many packets to send; this may

result in unutilized reserved slots at the receiver. Another

point worth mentioning about Mtrain,max is its effect on

packet delay. Although not shown here, we have found

via simulations that the packet delay tends to increase

when Mtrain,max becomes larger.

• Inter-node Propagation Delay: When the grid spacing is

increased from 700 m to 7000 m, we can see from Fig. 3

that the throughput becomes less sensitive to the variation

in T avg. However, changes in M train,max still produce

significant changes in the throughput. The suitable ranges

of M train,max have also increased compared to the previous

case. This is intuitive since more DATA packets should

be transmitted in each round of handshake in the presence

of longer propagation delay, in order to stay efficient. It

should also be mentioned that the overall throughput has

also dropped significantly compared to the previous case.

This is a common observation among handshaking-based

MAC protocols.

• Packet Length: We have also performed simulations for

the case where the packet length is increased to 4800 bits.

However, we do not show the results here because sim-

ilar conclusions can be made as above. Nevertheless, it

should be mentioned that a larger DATA packet length is

observed to reduce the effects of M train,max on throughput.

2) Performance Comparison Against Aloha-AN and MACA:

For a better understanding of the RIPT protocol’s performance

when compared against Aloha-AN and MACA, we use four

metrics as our performance measure, as follows:

• Throughput: As can be seen in Fig. 4, the RIPT out-

performs both MACA and Aloha-AN significantly as

the load increases. The throughput of Aloha-AN, when

implemented in the current multi-hop network setting,
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becomes lower than that of MACA at high load, although

the latter is designed for terrestrial networks. This is

because Aloha-AN does not address the hidden terminal

issue in its design, which becomes worse when the load

is high. The results obtained from the study of MACA

has proven that handshaking-based schemes could help

reduce collisions in multi-hop underwater networks by

alleviating the hidden terminal problem. It also guarantees

a stable throughput at high load. However, as seen in

Fig. 4, its throughput is much lower when compared

to our RIPT protocol. This is largely due to MACA’s

inefficiency in underwater since it only transmits a single

data packet per round of handshake, which suffers from

under-utilization of the channel when the propagation

delay is high. In contrast, our RIPT protocol improves

channel utilization by forming a packet train at the

receiver for each round of handshake.
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Fig. 6. Comparing the packet delays of RIPT, MACA, and Aloha-AN.

• Number of DATA Packet Transmissions and Col-

lisions: In Fig. 5, the RIPT transmits approximately

as many DATA packets as the Aloha-AN, while hav-

ing less number of collisions. This confirms that the

RIPT avoids collisions by maintaining more accurate

information about the receiver compared to Aloha-AN.

When comparing the RIPT against MACA, the RIPT

transmits much more packets than MACA. This arises

from our technique of using multiple neighbors to form

a packet train at the receiver, which is much more efficient

than MACA. Despite being able to offer a high and

stable throughput, the RIPT suffers from much higher

number of collisions than MACA. Although the RIPT’s

handshaking-based mechanism can greatly alleviate the

hidden terminal problem in multi-hop networks, it can-

not resolve the problem completely. Thus, whenever a

collision occurs, a large number of DATA packets within

a packet train may be corrupted. In contrast, the MACA

only transmits a single DATA packet during each round of

handshake, and hence, it loses less packets in a collision.

• Delay: Fig. 6 shows the delay performance of the three

schemes. At very low load (below 0.01), the RIPT has the

worst delay performance. This is because of its receiver-

initiated approach, whereby a sender needs to wait until

there is a handshake initiated by the receiver before it can

attempt transmit a DATA packet to the latter. Moreover,

its packet train tends to be very short when the load is

low, thus making the overhead of its 4-way handshake

mechanism more significant. However, beyond a load of

0.01, its delay becomes shorter than the MACA. This is

the point where the average packet train size has grown

large enough to overcome the overheads incurred by both

the 4-way handshake, and the average waiting time for

the handshake initiation by the receiver. The Aloha-AN

is seen to have the best delay performance among all

the three schemes. This is due to the fact that it is not

a handshaking-based protocol, and only uses a one-way

notification mechanism.
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V. DISCUSSION

An important point that we would like to stress about the

RIPT protocol is that, a neighboring node can compute the

time at which it needs to transmit its SIZE packet and its

DATA packet train, based on the time at which it receives the

RTR packet; in other words, there is no need for absolute clock

synchronization. In a way, this bears some similarity with the

MAC protocol proposed in [11], in which the neighboring

nodes can achieve a locally synchronized schedule without

absolute clock synchronization. Therefore, the purpose of the

guard times in the RIPT protocol is merely to buffer any

error in the inter-node propagation delays that were previously

estimated. These small guard times are required at strategic

instances within the 4-way handshake. It is important to note

that we do not require the guard time to be inserted between

every DATA packet that is sent; it is only inserted between the

string of packets that are transmitted from different neighbors.

Also, the guard time only needs to be as large as the maximum

expected error in the inter-node propagation delay estimation,

which may be in the order of tens of milliseconds. Note, also,

that it is possible for the RIPT protocol to correct any error

in the delay estimates through the following enhancement. A

receiver can examine the timings at which the SIZE packets are

arriving from its neighbors, and calculate their deviations from

the expected arrival times. The receiver can then include the

timing corrections the next time it broadcasts an RTR packet

to these neighbors.

Earlier in Section IV-B, we have seen that if M train,max

is too large, it may result in low throughput as well. In

the following, we provide some guidelines for selecting an

appropriate M train,max. As the receiver and the senders need to

exchange control packets before the DATA packet train can be

transmitted, the inter-node propagation delays thus introduce

some amount of fixed-cost (Cfix) in each handshake. Assuming

that the receiver does not have any packet to broadcast, and

also assuming the worst-case scenario whereby all the n first-

hop neighbors are located at Dmax from the receiver, the 4-way

handshake incurs a fixed-cost overhead of

Cfix = 4Dmax + TRTR + nTSIZE + TORDER. (9)

Thus, the total transmission time of the DATA packet train

must be longer than Cfix, in order to justify this overhead.

Besides the above constraint, M train,max should also be able to

accommodate all the DATA packets waiting to be transmitted

in each of the receiver’s neighbors. Assuming that the network

is operating in the high load region, at which all nodes are

backlogged. Thus, in each handshake, M train,max should ideally

be large enough to accommodate (nhidden +n) DATA packets,

where n is the average number of first-hop neighbors per node,

and nhidden is the average number of hidden terminals per node.

Thus, the size of M train,max can be calculated as

Mtrain,max =

⌈

max

(

Cfix

TDATA

, nhidden + n

)⌉

. (10)

So far, we have assumed a scenario whereby all nodes are

statically deployed, and set up at the same time. We now

discuss how the RIPT can be modified to handle network

dynamics caused by new nodes joining an existing network.

Suppose a new node, Node y, wishes to be considered by a

receiver as one of its possible transmitting neighbors. In order

to cope with this, a receiver’s 4-way handshake can include an

additional listening interval, T join, right after the time at which

it expects the last bit of the last SIZE packet, which we denote

by T SIZE end. In order to declare its presence, Node y first

listens to the receiver’s RTR packet, and calculates the value

of T SIZE end from the inter-node propagation delay information

attached within the RTR packet. Next, it transmits a short JOIN

packet that will be received at the receiver some time within

the T join interval. This can be ensured if T join is larger than

the maximum propagation delay between one-hop neighbors,

which depends on the transmission range. Since clock synchro-

nization is no longer available, Node y must try to estimate

the propagation delay between itself and the receiver as half of

the round-trip time (RTT) instead. The RTT can be obtained

using a technique that exchanges time-stamped messages (as

nicely described in [19]); in our case, the ORDER packet is

used to piggyback the time-stamped message in the reverse

direction. Once Node y obtains the propagation delay to the

receiver, it transmits this information to the receiver during the

next round of handshake, to be received within the receiver’s

T join interval again. It can then be formally included as one of

the receiver’s neighbors. Note that a receiver does not need to

include T join in every handshake; it can use a flag within its

RTR packet to indicate whether the current 4-way handshake

includes the interval T join. In this way, the receiver can control

the overhead incurred, which is a tradeoff with how soon a new

node can join as its neighbor.

Although we have omitted the effects of channel packet

losses (e.g., due to bit errors) in our discussion so far, we

will now discuss them briefly. Note that, a neighboring node

can calculate when to transmit its SIZE packet and DATA

train, so long as it has received the RTR packet and the

ORDER packet correctly. If these packets were corrupted, the

neighboring node simply does not get to transmit any DATA

train in the current round of handshake, which causes the

throughput to drop. Nevertheless, the other neighboring nodes

can still proceed without any timing conflict. Conversely, if a

receiver does not receive a neighbor’s SIZE packet correctly, it

will not allocate any DATA slot for that neighbor, which also

reduces the throughput. This, however, only has an isolated

effect on that neighbor, but not other neighbors.

Overall, the RIPT is suitable for delay-tolerant underwater

applications that are required to operate at high load, such

as undersea exploration and data collection. In particular, it

is efficient for networks in which every node has a large

number of neighbors. This is because the RIPT allows multiple

neighbors to transmit to a receiver at one go to form a packet

train, in contrast to other handshaking-based protocols that

would require every neighbor to perform dedicated handshake

with the receiver. Furthermore, due to its receiver-initiated

handshaking nature, the RIPT would be more appropriate for

applications in which the offered load does not fluctuate too

rapidly. Otherwise, the system parameter Mtrain may not adapt

fast enough, which leads to inefficiency.

Although the RIPT protocol has shown good throughput and

delay performance with our current settings, we would like to
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comment on some possible future studies as follows:

• Determining the time between RTR initiations: Al-

though it is currently chosen to be an exponentially

distributed random variable with an average of Tavg, the

value of Mtrain can potentially help the node determine

the suitable time between RTR initiations, as these two

parameters have shown some correlation.

• Performance benchmarking: It is also interesting to see

how the RIPT compares against other MAC protocols

that are also designed for underwater multi-hop networks,

such as Slotted FAMA [13].

VI. CONCLUSION

With the use of the acoustic channel in underwater com-

munications, underwater networks are characterized by its

long propagation delay and low data rate. Because of these

unique properties, the MAC protocols designed for terrestrial

networks cannot be directly applied in underwater. In this

paper, we have proposed and studied a new MAC protocol for

multi-hop underwater acoustic networks – RIPT. The RIPT

protocol is a random access handshaking-based protocol that

addresses the channel’s long propagation delay characteristic

by utilizing receiver-initiated reservations, as well as by coor-

dinating packets from multiple neighboring nodes to arrive in a

packet train fashion. We have confirmed through simulations

that the RIPT can achieve high and stable throughput with

proper values of packet train size, M train, as well as average

time between handshake initiations, T avg.
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