
Simple-API (Application Programming Interface) for an Arduino-based
Wireless Sensor Mote

Thiti Sittivangkul*, Weerasak Cheunta**, Nitthita Chirdchoo**,
and Lunchakorn Wuttisittikulkij*

Department of Electrical Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok, Thailand

**Wireless Sensor Network and Embedded System Research Unit,
Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand
thiti_sit@me.com, {weerasak, nitthita}@webmail.npru.ac.th and

lunchakorn.ww@chula.ac.th

Abstract

In this paper, Simple-API for an Arduino-based

platform sensor mote is proposed. It is designed
especially to reduce the complexity and the difficulty
in dealing with MCU hardware register, interface
driver, hardware register and device driver, with
which the wireless sensor network (WSN)
application developers need to involve during
software development. Simple-API allows
developers to focus more on algorithm design and
coding only at the application level, thus providing a
more convenient and faster means in developing an
application for WSNs.

When comparing to the commercially popular
Waspmote platform, it is obvious that coding using
Simple-API requires less effort in coding by
minimizing the complexity in dealing with hardware
level coding.

Keywords: Wireless sensor network, sensor node,
software development, API, microcontroller, coding

1. Introduction

 Recently, wireless sensor networks (WSNs) have
found their share in many real-life applications such
as smart farming, environment monitoring, smart
home automation and many more. To be able to
form a WSN for any application, a number of small
devices equipped with a microcontroller,
communication modules and multiple sensors, must
be deployed [1]. These small devices, or a sensor
mote, are capable of sensing physical phenomenal,
processing and wirelessly transmitting/receiving data
to/from a remote location. A sensor mote is usually
designed to be small-size and lightweight, causing it
to be resource-constraint, in terms of available
battery power, processing capability and memory

capacity [2]. With these limitations, it is highly
challenging when designing and deploying these
sensor motes into a WSN for real-life applications.
 Although there are many different types of sensor
mote currently available in the market today, these
motes normally share similar hardware composition
and functions. As shown in Fig. 1, mote’s
composition can generally be grouped, according to
the function it performs, into four main sub-systems
[3]. These include (1) sensing, (2) processing, (3)
empowering and (4) communicating, sub-systems.
Each of which are responsible for data acquisition,
data processing, empowering the motes and
communication, respectively. These functions are
also applied when dealing with software
development for a sensor mote.

Processing
sub-system

Power Supply
sub-system

Sensing
sub-system

Communication
sub-system

Figure 1: Software category

 In software development, the function of a mote
will be programed by a software developer or a
programmer, typically using C or C++ programming
language. During this process (shown in Fig. 2), the
developer requires to have not only programming
skill but also a good background and understanding
in a hardware level coding, in order to deal with
microcontroller register, interface driver, hardware
register and device driver. Unfortunately, most
application developers are often not familiar with
hardware architecture of a microcontroller, making it

Error ? Debugging

Upload program to
target board

Writing
Application

Writing
Device Driver

Writing
Interface Driver

Start

End

Y

N

Testing

Figure 2: Processes when dealing with an
application development for a wireless sensor

network.

highly difficult in both coding and debugging
process. This consequently slows down the
application development process.

To alleviate the need of manually hardware-level
coding by an application developer, Arduino
platform [4] is introduced. It is an open-source
platform that includes both hardware and software
architectures. Moreover, it is designed especially for
those users who has minimal or no experience in
dealing with microcontrollers [5]. Since the
introduction of Arduino platform, it has continually
gained attentions from many WSN application
developers, due to its capability to seal away the
difficulty in coding at the hardware level.

In detail, Arduino offers a more convenient way
in software development because it provides
common device drivers and interfaces drivers. As a
result, users do not need to learn or have any
experience about microcontroller registers and how
to write source code for common interfaces such as
digital I/O, analog to digital converter, serial
interface, SPI interface and I2C interface. However,

when creating an application with Arduino,
developers are still required to have a good
understanding on how to interface with external
devices (sensors, radio modules etc.) and also a step-
by-step of how each operation must be processed.

A recent advancement in terms of simplicity in
application development for a WSN can be found in
Waspmote [6] platform, which is commercially
launched by Libelium. Specifically, Waspmote is
also an Arduino-based sensor mote which integrates
microcontroller, wireless communication modules
and sensors onto a single circuit board. It also
provides an open-source software environment that
offers common device drivers and interface drivers,
similarly to those found in Arduino platform. The
main differences between the two are that Waspmote
not only support the interfaces and the device drivers
required by the microcontroller, but also provides the
interfaces and the device drivers for communicating
with external devices such as sensors and radio
modules. With these add-ons, Waspmote offers a
more user-friendliness and convenient means in
WSN application development.

Although Waspmote provides device drivers for
both the microcontroller and the external devices,
developers are still required to understand the device
manual and datasheet, in order to perform accurate
order and suitable initialization and configuration
processes, in order to create a WSN application.
Moreover, function calls in Waspmote are non-
trivial, requiring developers to specifically study all
the function names and call sequences before being
able to utilize the devices.

 In this paper, Simple-API for an Arduino-based
platform sensor mote is proposed. It is designed
especially to reduce the complexity and the difficulty
in dealing with MCU hardware register, interface
driver, hardware register and device driver, with
which WSN application developers need to involve
during software development. Simple-API allows
developers to focus more on algorithm design and
coding only at the application level, thus providing a
more convenient and faster means in developing an
application for WSNs.
 The rest of this paper is organized as follows. In
Section 2, we provide a discussion of the design of
the proposed Simple-API. Next, in Section 3, the
gain in terms of a number of lines in coding when
developing an application in both Simple-API and
Waspmote are illustrated. We finally conclude our
work in Section 4.

2. Simple-API

In order to help developers to accelerate the time
required to develop an application on an Arduino-
based sensor mote, we develop a set of APIs,
namely, “Simple-API”. Specifically, as shown in
Fig. 3, simple-API provides a convenient way for

developers by sealing away the need of
understanding the microcontroller architecture and
other hardware-level issues, including the MCU
hardware register, the interface driver, the hardware
register and the device driver from the software
developers’ perspective. By doing so, Simple-API
allows an application developer to be able to focus
more on algorithm design and coding at the
application level (e.g., when a packet should be sent,
which operating mode should the sensor mote be
switched to, in order to minimize battery
consumption, etc.), resulting in a more convenient
and a faster WSN application development.

MCU Hardware Register

Device Driver

Hardware Register

Simple-API

Interface Driver

Application Layer

Hardware Layer

Figure 3: Simple-API seals away of the difficulty in
coding relating to MCU hardware register, interface

driver, hardware register and device driver.

SensorDevice

init(SensorName, Interface);
setParam(SensorName, ParamName, Value);
getParam(SensorName, ParamName);
read(SensorName, ValueName);

CommunicationDevice

init(ModuleName, Interface);
setParam(ModuleName, ParamName, Value);
getParam(ModuleName, ParamName);
sendData(ModuleName, Destination, Msg);
readData(ModuleName, Msg, Msg_Type);

Processing

init();
setTime(Time_Value);
getTime(*Time_Value);
setAlarm(Time_Value, Alarm_Num);
isAlarm(Alarm_Num);
setOperationMode(Mode);

PowerSupply

getBatteryVoltage();
getBattery();
setPower(Slot_Num, Mode);

Figure 4: Example of functions, listed according

to the mote architecture sub-systems.

In detail, Simple-API includes 4 sets of function
calls, corresponding to the 4 sub-systems (sensing,
communicating, processing and empowering) of the
sensor mote hardware architecture. Fig. 4 illustrates
a list of functions, provided by Simple-API, which
can be called to support each sub-system. For
example, let us look at the functions available for
sensing sub-system (see SensorDevice in Fig. 4).
When the developer calls function named init() to
initialize the certain type of sensor (e.g., temperature,
pH or dissolved Oxygen) that is currently of interest
via certain interface (e.g., I2C or SPI interface),
Simple-API is responsible for interfacing in MCU
hardware register level and then starts to
communicate with the sensor, in order to provide
initial setting and configuration. Moreover, when a
function in Simple-API is invoked, it will create an
instance similarly to the instance in found in typical
C++ programming, making it highly recognizable
and user-friendly for most programmers.

3. Result

Fig. 5 shows an example of how Simple-API

provides a more convenient means in developing an
application in WSN. According to the example, to
broadcast a packet in Waspmote environment via
XBEE module, it is important to ensure that XBEE
module must be initialized and configured correctly
before specifically indicating the destination node
ID, data packet to be sent and MAC protocol.

 // Set params to send
paq_sent=(packetXBee*) calloc(1,sizeof(packetXBee));
paq_sent->mode=BROADCAST;
paq_sent->MY_known=0;
paq_sent->opt=0;
xbeeDM.hops=0;
xbeeDM.setOriginParams(paq_sent, "5678", MY_TYPE);
xbeeDM.setDestinationParams(paq_sent,
"0013A200404873F1", data, MAC_TYPE,
DATA_ABSOLUTE);
// Send command
xbeeDM.sendXBee(paq_sent);

(a) Waspmote environment.

 // Set params to send
CommSystem.setParam(nRF24, MAC_TYPE, ALOHA);
CommSystem.setParam(nRF24, MSG_TYPE,
BROADCAST);
dest = "0013A200404873F1";
// Send command
CommSystem.sendData(nRF24, dest, data);

(b) Simple-API environment

Figure 5: Comparison in the total of number of

function calls needed to broadcast a single packet
between Waspmote and Simple-API environment.

These processes are coded by a software developer.
For Simple-API environment, to perform the same
task, it requires smaller number of function calls.
Actually, the function calls needed in Simple-API is
considered minimal since it only requires the
information related to the application level as
needed, such as communication module, MAC
protocol, type of transmission, destination node ID.
The rest of the processes are all handled by Simple-
API automatically.

4. Conclusion

In this paper, we proposed Simple-API for an
Arduino-based platform sensor mote. It is designed
especially to reduce the complexity and difficulty in
dealing with MCU hardware register, interface
driver, hardware register and device driver, with
which the WSN application developers need to
involve during software development. This allows
an application developer to be able to focus more on
algorithm design and coding only at the application
level, thus providing a more convenient means in
developing an application for WSNs. Simple-API
provides four sets of functions. Each of which is
designed to support the task of sensing, processing,
communicating and empowering of a sensor mote.

 When comparing to Waspmote environment, it is
obvious that coding with Simple-API requires less
coding and lower complexity in dealing with
hardware level coding.

References

[1] I. F. Akyildiz, T. Melodia and K. R. Chowdhury,
“A survey on wireless multimedia sensor networks,”
IEEE on Wireless Communications, vol. 14, no. 6,
pp. 32-39, Dec. 2007.
[2] M. A. Razzaque, C. Bleakley and S. Dobson,
“Compression in wireless sensor networks: A survey
and comparative evaluation,” ACM Transactions on
Sensor Network (TOSN), vol. 10, no. 1, pp. 537-568,
Nov. 2013.
[3] T. Sittivangkul, W. Cheunta, N. Chirdchoo, M.
Saadi and L. Wuttisittikulkij, “Design and
development of a wireless sensor mote prototype for
laboratory usage”, ITC-CSCC 2014, pp. 678-681,
Jul., 2014.
[4] Arduino getting start [Online]. Available:
http://ardruino.cc/en/Guide/HomePage.
[5] M. Margolis, “Chapter 1 Getting start”, Arduino
cookbook, 2nd Ed., O’Reilly, pp. 1-3, 2012.
[6] Waspmote [Online]. Available:
http://www.libelium.com/development/waspmote/do
cumentation/waspmote-datasheet/

