# Advanced Glass Science (4016101)

Instructor: Asst.Prof.Dr. Jakrapong Kaewkhao

#### **Course Outine:**

Week 3: Physical properties and advanced measurement/ calculation analysis - Density

#### Structural properties and advanced measurement/calculation analysis

Molar volume
FTIR
XRD *Case studies from international publications*

**Book:** 

A.K., Varshneya. *Fundamentals of inorganic glasses*A., Paul A, *Chemistry of glasses*J.E. Shelby, *Introduction to glass science and technology*





**Physical** properties and advanced measurement/ calculation analysis



The density of a material is defined as the mass of the substance per unit of volume, or

$$\rho = \frac{M}{V} \begin{bmatrix} \rho &= & \text{Density of the sample (g/cm^3)} \\ M &= & \text{Mass of the sample (g)} \\ V &= & \text{Volume of the sample (cm^3)} \end{bmatrix}$$

- If the sample is free of bubbles, voids, or other defects, the calculated density is the *true density* of the material.

- If, however, the sample contains bubbles, which is occasionally the case for glasses, the calculated <u>density will be less than that of the true</u> <u>density</u> and is termed the apparent density.

Physical properties and advanced measurement/ calculation analysis



If the available samples do not have geometrics, we can use *Archimedes' principle* to determine the volume by liquid displacement.



- ρ W<sub>air</sub> W<sub>liquid</sub> ρ<sub>liquid</sub>
- = Density of glass  $(g/cm^3)$
- = Weight of sample in air (g)
- = Weight of sample in liquid (g)
- = Density of liquid (g/cm<sup>3</sup>)

\*Generally accurate to  $\pm 0.001 \text{ g/cm}^3$ 



Analytical Balance 4 digit



### **Structural** properties and advanced measurement/ calculation analysis (*Molar volume*)



The molar volume is defined as the volume occupied by one mole of a material and is obtained by dividing the molecular weight of a material by its density, or

ρ

$$V_m = rac{MW}{
ho}$$

V<sub>m</sub> = Molar volume of the sample (cm<sup>3</sup>/mol) MW = Molecular weight of the sample (g/mol)

= Density of the sample 
$$(g/cm^3)$$

Where 
$$MW = x_{Na_2O} z_{Na_2O} + x_{CaO} z_{CaO} + x_{SiO_2} z_{SiO_2} + x_{Cr_2O_3} z_{Cr_2O_3}$$

X = mole of constituent oxide Z = molecular weight of constituent oxide



#### Fig. 1 Electromagnetic Spectrum



Fig. 2 Various regions of the Electromagnetic spectrum





Fig. 3 The stretching and bending of SiO<sub>2</sub> group



-Structural ideas: Can determine what chemical groups are in a specific compound

-Unit: Wavenumber (cm<sup>-1</sup>)





Fig. 4 Diffraction of x-rays by planes of atoms











Advanced Materials Research Vol. 979 (2014) pp 98-101 © (2014) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.979.98

#### Structural and optical properties of Ho<sup>3+</sup> doped ZnO-Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> glasses

P. Chimalawong<sup>1,a\*</sup>, K. Kirdsiri<sup>2,b</sup>, J. Kaewkhao<sup>2,c</sup>, P. Limsuwan<sup>3,d</sup>

<sup>1</sup>Physics Program, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, 10900, Thailand
<sup>2</sup>Center of Excellence in Glass Technology and Material Science (CEGM), Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand
<sup>3</sup>Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand

<sup>a</sup>c\_parnuwat@hotmail.com, <sup>b</sup>nanoymous@gmail.com, <sup>c</sup>mink110@hotmail.com, <sup>d</sup>opticslaser@yahoo.com



- Composition: 10.0ZnO - 30.0Bi<sub>2</sub>O<sub>3</sub> - (60.0-x)B<sub>2</sub>O<sub>3</sub> - xHo<sub>2</sub>O<sub>3</sub> where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 mol%

- MW of  $B_2O_3 = 69.6202 \text{ g/mol}$
- MW of  $Ho_2O_3 = 377.8588 \text{ g/mol}$

| Ho <sub>2</sub> O <sub>3</sub> concentrations (% mol) | 0.0      | 0.20     | 0.40     | 0.60     | 0.80     | 1.0      |
|-------------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Average molecular weight $M_T(g)$                     | 189.6978 | 190.3142 | 190.9307 | 191.5472 | 192.1637 | 192.7801 |
| Density $\rho$ (g/cm <sup>3</sup> )                   | 3.9570   | 4.0033   | 4.0584   | 4.0680   | 4.0986   | 4.1540   |

$$V_m = rac{MW}{
ho}$$

$$\begin{array}{l} 0.00 \ \mathrm{mol\%} \ ; \mathbf{V}_{\mathrm{m}} = \frac{189.6978}{3.9570} = 47.9398 \ \mathrm{cm^3/mol} \\ 0.20 \ \mathrm{mol\%} \ ; \mathbf{V}_{\mathrm{m}} = \frac{190.3142}{4.0033} = 47.5393 \ \mathrm{cm^3/mol} \\ 0.40 \ \mathrm{mol\%} \ ; \mathbf{V}_{\mathrm{m}} = \frac{190.9307}{4.0584} = 47.0458 \ \mathrm{cm^3/mol} \\ 0.60 \ \mathrm{mol\%} \ ; \mathbf{V}_{\mathrm{m}} = \frac{191.5472}{4.0680} = 47.0863 \ \mathrm{cm^3/mol} \\ 0.80 \ \mathrm{mol\%} \ ; \mathbf{V}_{\mathrm{m}} = \frac{192.1637}{4.0986} = 46.8852 \ \mathrm{cm^3/mol} \\ 0.10 \ \mathrm{mol\%} \ ; \mathbf{V}_{\mathrm{m}} = \frac{192.7801}{4.1540} = 46.4083 \ \mathrm{cm^3/mol} \end{array}$$



ASS-LAB@N

**Fig. 6** Density and molar volume of 10.0ZnO : 30.0Bi<sub>2</sub>O<sub>3</sub> : (60.0-x)B<sub>2</sub>O<sub>3</sub> : xHo<sub>2</sub>O<sub>3</sub> glass system





Journal of Physics and Chemistry of Solids 71 (2010) 965-970



# Optical and electronic polarizability investigation of Nd<sup>3+</sup>-doped soda-lime silicate glasses

#### P. Chimalawong<sup>a,\*</sup>, J. Kaewkhao<sup>b</sup>, C. Kedkaew<sup>a</sup>, P. Limsuwan<sup>a,c</sup>

<sup>a</sup> Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

<sup>b</sup> Center of Excellence in Glass Technology and Materials Science, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand <sup>c</sup> Thailand Center of Excellence in Physics, CHE, 328 Si Ayutthaya Rd., Bangkok 10400, Thailand



Fig. 7 Variation in the density and molar volume with Nd<sub>2</sub>O<sub>3</sub> concentration





Journal of Physics and Chemistry of Solids 72 (2011) 245-251



#### Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses

#### P. Limkitjaroenporn<sup>a,\*</sup>, J. Kaewkhao<sup>b,c</sup>, P. Limsuwan<sup>a,c</sup>, W. Chewpraditkul<sup>a</sup>

<sup>a</sup> Department of Physics, Faculty of Science King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

<sup>b</sup> Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakorn Pathom 73000, Thailand

<sup>c</sup> Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand



- Composition:  $xPbO 20Na_2O (80-x)B_2O_3$  where x = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 55 mol%
- MW of  $B_2O_3 = 69.6202 \text{ g/mol}$
- MW of PbO = 223.1994 g/mol



- 5-20 mol% PbO act as a network former
- Beyond 20 mol% PbO act as *a modifier*

Fig. 8 Molar volume of lead sodium borate glasses

Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2014, Article ID 751973, 5 pages http://dx.doi.org/10.1155/2014/751973







#### Research Article

#### Up- and Downconversion Luminescence Properties of Nd<sup>3+</sup> Ions Doped in Bi<sub>2</sub>O<sub>3</sub>-BaO-B<sub>2</sub>O<sub>3</sub> Glass System

# R. Ruamnikhom,<sup>1</sup> P. Limsuwan,<sup>1</sup> M. Horprathum,<sup>2</sup> N. Chanthima,<sup>3</sup> H. J. Kim,<sup>4</sup> S. Ruengsri,<sup>5</sup> and J. Kaewkhao<sup>3</sup>

<sup>1</sup> Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

<sup>2</sup> Optical Thin-Film Laboratory National Electronics and Computer Technology Center, Pathumthani 12120, Thailand

<sup>3</sup> Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand

<sup>4</sup> Department of Physics, Kyungpook National University, Deagu 702-701, Republic of Korea

<sup>5</sup> Chemistry Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand



- Composition:  $40Bi_2O_3-20BaO-(40-x)B_2O_3-xNd_2O_3$  where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol%
- MW of  $B_2O_3 = 69.6202 \text{ g/mol}$
- MW of PbO

= 223.1994 g/mol



-Density is nonlinearly with increasing with composition of  $Nd_2O_3$  due to different loss rates of  $Bi_2O_3$  at high melting temperature process.

- Molar volume of glasses were decreased composition of  $Nd_2O_3$  due to the decrease of average atomic separation.

Fig. 9 Density and molar volume of  $Nd^{3+}$  doped  $Bi_2O_3$ -BaO-B<sub>2</sub>O<sub>3</sub> glasses





Advanced Materials Research Vols. 93-94 (2010) pp 455-458 © (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.93-94.455

# Effect of Nd<sup>3+</sup> concentration on the Physical and Absorption Properties of Soda-Lime-Silicate Glasses

Parnuwat Chimalawong<sup>1,a</sup>, Jakapong Kaewkhao<sup>2,b</sup> and Pichet Limsuwana<sup>1,c</sup> <sup>1</sup> Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand <sup>2</sup> Glass and Materials Science Research Unit (GMSRU), Faculty of Science and Technology,

Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand

e-mail: <sup>a</sup>c\_parnuwat@hotmail.com, <sup>b</sup>mink110@hotmail.com, <sup>c</sup>opticslaser@yahoo.com



- Composition:  $25Na_2O - 10CaO - (65-x)SiO_2 - xNd_2O_3$  where x = 0.00, 1.00, 2.00, 3.00, 4.00 and 5.00 mol%



**Fig. 10** XRD spectrum of the  $25Na_2O - 10CaO - 65SiO_2 - Nd_2O_3$  glass





Advanced Materials Research Vols. 93-94 (2010) pp 439-442 © (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.93-94.439

#### **Structural Studies of Lead Sodium Borate Glasses**

Pruittipol <u>Limkitjaroenporn</u> 1,a Jakrapong Kaewkhao<sup>2,b</sup>, Suparat Tuscharoen<sup>2,b</sup> Pichet Limsuwan<sup>1,c</sup> Weerapong Chewpraditkul1,c

<sup>1</sup>Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

2 Glass and Materials Science Research Unit (GMSRU), Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakorn Pathom, 73000, Thailand \*E-mail <sup>a</sup>golfpo@hotmail.com, <sup>b</sup> mink110@hotmail.com <sup>c</sup> weerapong.che@kmutt.ac.th



- Composition: xPbO - 20NaO -  $(80-x)B_2O_3$  where x = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 55 mol%

Table 1 Chemical compositions, density and molar volume of glass samples

| Composition (%mol) |                   |            | Density<br>(g/cm <sup>3</sup> ) | molar volume           |
|--------------------|-------------------|------------|---------------------------------|------------------------|
| PbO(x)             | Na <sub>2</sub> O | B2O3(80-x) |                                 | (cm <sup>2</sup> /mol) |
| 5                  | 20                | 75         | 2.5248                          | 30.011                 |
| 10                 | 20                | 70         | 2.8955                          | 28.820                 |
| 15                 | 20                | 65         | 3.2305                          | 28.209                 |
| 20                 | 20                | 60         | 3.5275                          | 28.010                 |
| 25                 | 20                | 55         | 3.7697                          | 28.248                 |
| 30                 | 20                | 50         | 3.9266                          | 29.074                 |
| 35                 | 20                | 45         | 4.0911                          | 29.782                 |
| 40                 | 20                | 40         | 4.2287                          | 30.629                 |
| 45                 | 20                | 35         | 4.4432                          | 30.878                 |
| 50                 | 20                | 30         | 4.5566                          | 31.795                 |
| 55                 | 20                | 25         | 4.7086                          | 32.400                 |

- Composition:  $xPbO - 20NaO - (80-x)B_2O_3$  where x = 5, 10, 15, 20,

25, 30, 35, 40, 45, 50 and 55 mol%



Fig. 11 Infrared transmission spectra of lead sodium borate glasses







Advanced Materials Research Vol. 506 (2012) pp 567-570 © (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.506.567

#### **Preparation and Properties of Glass Produced**

#### from Palm ash

J. Kaewkhao<sup>1,2,a</sup>, S. Ruengsri<sup>1,3,b</sup>, Y. Ruangtaweep<sup>1,a</sup> and P. Limsuwan<sup>2,4,c</sup>

<sup>1</sup>Center of Excellence in Glass Technology and Materials Science (CEGM),

Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand

<sup>2</sup>Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand

<sup>3</sup>Chemistry Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand

<sup>4</sup>Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand

<sup>a</sup>mink110@hotmail.com,<sup>b</sup>suwimonn@live.com, <sup>c</sup>opticslaser@yahoo.com



**Table** 2 Nominal compositions of palm petiole ash at different calcining temperature in oxide form

| Compound                       | Calcining Temperature (°C) |       |       |       |
|--------------------------------|----------------------------|-------|-------|-------|
|                                | 400                        | 600   | 800   | 1000  |
| MgO                            | 5.90                       | 6.00  | 9.30  | 8.40  |
| SiO <sub>2</sub>               | 65.70                      | 67.70 | 60.30 | 65.20 |
| P <sub>2</sub> O <sub>5</sub>  | 2.27                       | 2.43  | 3.21  | 0.99  |
| SO3                            | 1.91                       | 1.81  | 3.35  | 0.88  |
| Cl                             | 6.33                       | 4.34  | 1.95  | 1.45  |
| K <sub>2</sub> O               | 4.42                       | 4.60  | 3.67  | 2.42  |
| CaO                            | 12.4                       | 12.00 | 15.88 | 15.97 |
| TiO <sub>2</sub>               | 0.05                       | 0.05  | 0.07  | 0.07  |
| MnO                            | 0.72                       | 0.68  | 0.80  | 0.84  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.31                       | 0.31  | 0.43  | 0.41  |
| CuO                            | 0.02                       | 0.02  | 0.03  | 0.06  |
| ZnO                            | 0.02                       | 0.02  | 0.02  | 0.02  |
| Al <sub>2</sub> O <sub>3</sub> | -                          | -     | 0.98  | 0.99  |



ASS-LAB@N

Fig. 12 XRD pattern of PPA at different burning temperature





Advanced Materials Research Vol. 748 (2013) pp 304-308 © (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.748.304

#### **Characterization of Rice Straw Ash and Utilization in Glass Production**

Yotsakit Ruangtaweep<sup>a</sup>, Nattapon Srisittipokakun<sup>b</sup>, Kitipun Boonin<sup>b</sup>, Patarawagee Yasaka<sup>c</sup>, Jakrapong Kaewkhao<sup>a</sup>

Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand

<sup>a</sup>mink110@hotmail.com, <sup>b</sup>nattapon2004@gmail.com, <sup>c</sup>kboonin@hotmail.com



Table 3 Compositions analysis of RSA at different calcining temperature in oxide form

|                                | <b>Calcining temperatures</b> (°C) |        |        |        |
|--------------------------------|------------------------------------|--------|--------|--------|
| Compound                       | 400                                | 600    | 800    | 1,000  |
| MgO                            | 2.60                               | 2.60   | 1.80   | 1.80   |
| SiO <sub>2</sub>               | 69.90                              | 71.60  | 81.22  | 85.12  |
| $P_2O_5$                       | 1.54                               | 1.52   | 1.71   | 1.93   |
| SO <sub>3</sub>                | 1.11                               | 1.15   | 1.77   | 0.66   |
| Cl                             | 10.60                              | 9.81   | 2.17   | 1.78   |
| K <sub>2</sub> O               | 9.94                               | 9.81   | 5.75   | 3.50   |
| CaO                            | 3.90                               | 3.15   | 4.90   | 4.40   |
| TiO <sub>2</sub>               | 0.01                               | 0.01   | 0.02   | 0.02   |
| MnO                            | 0.23                               | 0.19   | 0.33   | 0.42   |
| Fe <sub>2</sub> O <sub>3</sub> | 0.13                               | 0.12   | 0.27   | 0.27   |
| CuO                            | 0.02                               | 0.02   | 0.03   | 0.07   |
| ZnO                            | 0.02                               | 0.02   | 0.03   | 0.03   |
| SUM                            | 100.00                             | 100.00 | 100.00 | 100.00 |



ASS-LAB@N

Fig. 13 XRD pattern of RSA at different burning temperature





Advanced Materials Research Vols. 93-94 (2010) pp 455-458 © (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.93-94.455

# Effect of Nd<sup>3+</sup> concentration on the Physical and Absorption Properties of Soda-Lime-Silicate Glasses

Parnuwat Chimalawong<sup>1,a</sup>, Jakapong Kaewkhao<sup>2,b</sup> and Pichet Limsuwana<sup>1,c</sup> <sup>1</sup> Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand <sup>2</sup> Glass and Materials Science Research Unit (GMSRU), Faculty of Science and Technology,

Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand

e-mail: <sup>a</sup>c\_parnuwat@hotmail.com, <sup>b</sup>mink110@hotmail.com, <sup>c</sup>opticslaser@yahoo.com



- Composition:  $25Na_2O - 10CaO - (65-x)SiO_2 - xNd_2O_3$  where x = 0.00, 1.00, 2.00, 3.00, 4.00 and 5.00 mol%



Fig. 14 XRD spectrum of the  $25Na_2O - 10CaO - 65SiO_2 - Nd_2O_3$  glass







Available online at www.sciencedirect.com

# SciVerse ScienceDirect

Procedia Engineering 32 (2012) 787 - 792

Procedia Engineering

www.elsevier.com/locate/procedia

#### I-SEEC2011

# Physical and optical properties of the SLS glass doped with low Cr<sub>2</sub>O<sub>3</sub> concentrations

P. Meejitpaisan<sup>a\*</sup>, J. Kaewkhao<sup>b,c</sup>, P. Limsuwan<sup>a,c</sup>, C. Kedkaew<sup>a</sup>

<sup>a</sup>Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand <sup>b</sup>Center of Excellence in Glass Technology and Materials Science (CEGM), Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand <sup>c</sup>Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand

Elsevier use only: Received 30 September 2011; Revised 10 November 2011; Accepted 25 November 2011.

| • • • • • • • • • • • • • • • • • • • • |                          | ••••• |
|-----------------------------------------|--------------------------|-------|
| nposition of g                          | glass samples            |       |
| Cr <sub>2</sub> O <sub>3</sub> (mol%)   | Glass composition (mol%) |       |
| 0                                       | 65SiO2-25Na2O-10CaO      |       |

Table 4 Chemical compositio

| Glass ID | Cr <sub>2</sub> O <sub>3</sub> (mol%) | Glass composition (mol%)                                                            |
|----------|---------------------------------------|-------------------------------------------------------------------------------------|
| S65Cr0   | 0                                     | 65SiO <sub>2</sub> -25Na <sub>2</sub> O-10CaO                                       |
| S65Cr1   | 0.01                                  | 64.99SiO <sub>2</sub> -25Na <sub>2</sub> O-10CaO-0.01Cr <sub>2</sub> O <sub>3</sub> |
| S65Cr2   | 0.02                                  | 64.98SiO <sub>2</sub> -25Na <sub>2</sub> O-10CaO-0.02Cr <sub>2</sub> O <sub>3</sub> |
| S65Cr3   | 0.03                                  | 64.97SiO <sub>2</sub> -25Na <sub>2</sub> O-10CaO-0.03Cr <sub>2</sub> O <sub>3</sub> |
| S65Cr4   | 0.04                                  | 64.96SiO <sub>2</sub> -25Na <sub>2</sub> O-10CaO-0.04Cr <sub>2</sub> O <sub>3</sub> |
| S65Cr5   | 0.05                                  | 64.95SiO <sub>2</sub> -25Na <sub>2</sub> O-10CaO-0.05Cr <sub>2</sub> O <sub>3</sub> |



Fig. 15 XRD pattern of 0.05 mol% Cr<sub>2</sub>O<sub>3</sub>doped soda lime silicate glass





Fig. 16 The density and molar volume of glass samples as a function of  $Cr_2O_3$  content



#### **Course Outine:**

Week 4: Optical properties, advanced measurement/calculation analysis

- Refractive index
- Dispersion
- Scattering
- Absorption

Case studies from international publications