Advanced Glass Science (4016101)

Instructor: Asst.Prof.Dr. Jakrapong Kaewkhao

Course Outline:

Week 13: Judd-Ofelt Theory

- Case studies from international publications

Book:A.K., Varshneya. Fundamentals of inorganic glassesA., Paul A, Chemistry of glassesJ.E. Shelby, Introduction to glass science and technology

Ω_2

- Sensitive to both asymmetry and covalency at the RE site
- More affected by the asymmetry of the crystal field and by changes of the energy difference between $4f^{N}$ and $4f^{N-1}5d$ configuration. In other words, Ω_2 increases as nephelauxetic effect increases.
- Strongly enhanced by covalent bonding.
- Relates to the structural changes of the site of RE ions. Ω_2 is raised drastically by lowering the symmetry of rare earth ligand field.
 - Ω_2 in oxide glasses is larger than that in fluoride glasses, which is ascribed to the larger electric field gradient by divalent oxide ions than that by monovalent fluoride ions.
- Depends strongly on the ionic radius of the modifier (of glasses), which, in turn, influences the polarizability of oxygen around RE ion.
- Slightly increases as the number electron of RE ions increase.

Ω_4

- Gained by lowering the covalency of σ chemical bond between RE ion and ligand anions.

- Not directly related to the ligand symmetry of RE ions but to the electron density on the oxide ion, Ω_4 decreases as the electron density on oxygen ions increases.

- Decreases as the number of electron of RE ions increases.

- It may be still risky to discuss the covalency depending on Ω_4 . The notable information which Ω_4 provides may be the electron density around an RE ion.

-Shows a different type of variation related to the rigidity of the medium, and increases in the order crystalline mixed glass<glasses<viscous solutions<hydratedions<halide vapors<complexes of organic ligands.

-Not directly related to the ligand symmetry of RE ions but to the electron density on the oxide ion

- Ω_6 decreases as the electron density on oxygen ions increases.

- Most sensitive to the overlap integral of the 4f and the 5d orbitals.

- Increases with a decrease in the Coulomb interaction, which can be a measure of the crystal field strength.

- Ω_6 increases with an increase of the distance between RE ion and the ligands.

- Ω_6 decreases with increasing covalency between ligands and RE ions due to increasing σ -electron donation of the ligands (2p orbitals of oxygen ion).

- Otherwise, Ω_6 increases with the increase of π -electron donation from the ligands (such as PO₄ tetrahedra).

Radiative properties

The JO parameters along with refractive index (n) are used to predict the radiative properties of excited states of RE ion.

The total radiative transition probability (A_T) for an excited state is the sum of the terms calculated over all the terminal states.

$$A_T(\Psi J) = \sum A(\Psi J, \Psi' J')$$

where
$$A(\Psi J, \Psi' J') = \frac{64\pi^4 \upsilon^3}{3h(2J+1)} \frac{n(n^2+2)^2}{9} S_{ed} + \frac{64\pi^4 \upsilon^3}{3h(2J+1)} n^3 S_{md}$$

The branching ratio (β_R) corresponding to the emission from an excited level to its lower level is given by

$$\beta_{R}(\Psi J, \Psi'J') = \frac{A(\Psi J, \Psi'J')}{A_{T}(\Psi J)}$$

The branching ratios can be used to predict the relative intensities of all emission lines originating from a given excited state. The experimental branching ratios can be found from the relative areas of the emission bands. A_T is related to the radiative lifetime (τ_{rad}) of an excited state by

$$\tau_{rad}(\Psi J) = \frac{1}{A_T(\Psi J)}$$

The peak stimulated emission cross-section, $(\sigma(\lambda_P)(,))$, between the states and having a probability of can be expressed as

$$\sigma(P) \ (\Psi J, \Psi'J') = \frac{\lambda_p^4}{8\pi c n^2 \Delta \lambda_{eff}} A(\Psi J, \Psi'J')$$

where λ_p is the transition peak wavelength and $\Delta \lambda_{eff}$ is its effective line width found by dividing the area of the emission band by its average height. Good laser transitions are characterized by larger cross-sections and smaller $\Delta \lambda_{eff}$ for stimulated emission.

Parameters

(1) Oscillator strength (f_{exp})

Wavelength (nm)

•

(1) Oscillator strength (f_{exp})

(1) Oscillator strength (f_{exp})

$$f_{exp} = \frac{\left(4.318 \times 10^{-9}\right) \times \left(x\right) \times \left(y_{calibrate}, nm/cm\right) \times \left(Area, cm^{2}\right)}{\left(concentration, mol/L\right) \times \left(thickness, cm\right)}$$

Transition	Wavelength λ (nm)	Wavenumber $(v = 1/\lambda, cm^{-1})$	$\mathbf{x} = \Delta \mathbf{x} / \mathbf{w}$ (\mathbf{cm}^{-2})	Ycalibrate (nm/cm)	Peak Area (cm ²)	Concentration (mol/L)	Thickness (cm)	Oscillator Strength $f_{exp}*10^{-6}$
${}^{4}\mathrm{F}_{7/2}$	386	25906.74	5095.99	0.1	0.11	0.208702246	0.3	3.87
⁴ G _{11/2}	425	23529.41	4294.15	0.1	0.01	0.208702246	0.3	0.30
${}^{4}I_{15/2}$	451	22172.95	3619.04	0.1	0.07	0.208702246	0.3	1.75
⁶ F _{3/2}	750	13333.33	1384.83	0.1	0.09	0.208702246	0.3	0.86
⁶ F _{5/2}	800	12500.00	1205.64	0.1	0.55	0.208702246	0.3	4.57
⁶ F _{7/2}	896	11160.71	955.19	0.1	1.24	0.208702246	0.3	8.17
⁶ F _{9/2}	1088	9191.18	646.104	0.1	2.49	0.208702246	0.3	11.10
⁶ H _{9/2}	1266	7898.89	482.151	0.1	12.93	0.208702246	0.3	43.00
⁶ H _{11/2}	1671	5984.44	261.276	0.1	3.15	0.208702246	0.3	5.68

J-O Analysis method Part 2 : Software analysis Part 3 : Emission spectrum analysis

 System requirement for run software 	for run software
System and Security System	
View basic information about your computer	
Windows 7 Ultimate	
Copyright © 2009 Microsoft Corporation. All rights reserved.	
Service Pack 1	

System	
Rating:	System rating is not available
Processor:	Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz 2.60 GHz
Installed memory (RAM):	8.00 GB (2.91 GB usable)
System type:	32-bit Operating System
Pen and Touch:	No Pen or Touch Input is available for this Display

Software files

y + JORP + Dy + Test

library 🔻	Share with •	Burn	New folder		
Name	^		Date modified	Туре	Size
DyJO			5/21/2010 12:23 PM	DAT File	1 KB
Dyrp			1/9/2010 6:40 PM	DAT File	4 KB
DYRp			3/13/1994 9:51 PM	Application	45 KB
Ol 🔳			5/28/2004 9:26 PM	Application	59 KB

Take all file to drive c:

1st Software: JO

1.1. Go into DyJO.dat (by notepad) for set parameter

No. of transition	Refractive index
-------------------	------------------

υ

 f_{Exp}

Transition ⁶ H _{15/2} →	Wavenu mber (υ = 1/λ, cm ⁻¹)	Oscillator Strength f _{exp} *10 ^{∿-6}
4F7/2	25906.74	3.87E-06
4G11/2	23529.41	2.96E-07
4I15/2	22172.95	1.75E-06
⁶ F _{3/2}	13333.33	8.6E-07
⁶ F _{5/2}	12500.00	4.57E-06
⁶ F _{7/2}	11160.71	8.17E-06
⁶ F _{9/2}	9191.18	1.11E-05
⁶ F _{11/2}	7898.89	4.3E-05
⁶ H _{11/2}	5984.44	5.68E-06

DyJO - Notepage
File Edit Format View Help
9,1.6500
7.5,5984,5.68E-6,0.0923,0.0366,0.6410
7.5,7899,4.30E-5,0.9387,0.8292,0.2048
7.5,9191,1.11E-5,0.0000,0.5736,0.7213
7.5,11160,8.17E-6,0.0000,0.1360,0.7146
7.5,12500,4.57E-6,0.0000,0.0000,0.3452
7.5,13333,8.60E-7,0.0000,0.0000,0.0610
7.5,22173,1.75E-6,0.0073,0.0003,0.0654
7.5,23529,2.96E-7,0.0004,0.0145,0.0003
7.5,25906,3.87E-6,0.0000,0.0768,0.0263

 U_{2}, U_{4}, U_{6}

J of ground state

1.2. Run JO.exe resulting to DOS windows

-

C:\Users\Eakgapon\Desktop\J-OTHE~1\JORP\Dy\Test\JO.EXE

File name missing or blank — Please enter name UNIT 3? DyJO.dat UNIT 4? Dy1.out

File Edit F	epad ormat View Help	Ω_2		Ω_4		Ω_6
K = 9	RI = 1.65000	W2 = .4	5619E-18	W4 = .1	0800E-18	W6 = .79800E-19
I GJ EN	EXPT U2SQR I	JASQR U6SC	R FEXPX	6 FCALX6	DELTA	
1 7.50	5984.0 .092	230 .03660	.64100	5.6800	5.9243	2443
2 7.50	7899.0 .938	.82920	.20480	43.0000	42.9678	.0322
3 7.50	9191.0 .000	000 .57360	.72130	11.1000	11.1864	0864
4 7.50	11160.0 .00	000 .13600	.71460	8.1700	8.1506	.0194
5 7.50	12500.0 .00	0000.0000	.34520	4.5700	3.5068	1.0632
6 7.50	13333.0 .00	0000.0000	.06100	.8600	.6610	.1990
7 7.50	22173.0 .00	730 .00030	.06540	1.7500	1.9378	<mark>18</mark> 78
8 7.50	23529.0 .00	040 .01450	.00030	.2960	.42 <mark>47</mark>	1287
9 7.50	25906.0 .00	000 .07680	.02630	3.8700	2.7420	1.1280

2st Software: DyRP

1.1. Go into DyRP.dat (by notepad) for set parameter $\Omega_2, \Omega_4, \Omega_6$ (x10⁻²²) Refractive index

Transition	Wavenu mber $(v = 1/\lambda, cm^{-1})$	Oscillator Strength f _{exp} *10 ^{~6}	DyRP - Notepad File Edit Format View Help 4561.9,1080.0,798.0,1.650 26455,25907,25858,25840,25199,235	529,22172,21142,13891, <u>13333</u>
4F7/2	25906.74	3.87E-06	<u>12500</u> , <u>11161</u> , 10282, 9219, <u>9191</u> , 7898,	7784, <u>5984</u> ,3665,0
4G11/2	23529.41	2.96E-07	0.0,0.00042823,0.0	
⁴ I _{15/2}	22172.95	1.75E-06	0.0,0.000021043,0.0002703	modify just v that
⁶ F _{3/2}	13333.33	8.6E-07	0.00651783,0.000807,0.0004203	relate with you data
⁶ F _{5/2}	12500.00	4.57E-06	0.00002118,0.00430762,0.0031676	and leave the rest
⁶ F _{7/2}	11160.71	8.17E-06	0.0008562 0.00815237 0.0071580	
⁶ F _{9/2}	9191.18	1.11E-05	0.00078624.0.0057323.0.0005259	
⁶ F _{11/2}	7898.89	4.3E-05	0.0023066,0.0024272,0.0033848	
⁶ H _{11/2}	5984.44	5.68E-06	0.00345900,0.00337769,0.0026597	
			0.0096466,0.00188719,0.0034771	
			0.0511916,0.0172161,0.0572554	

1.2. Run DyRP.exe resulting to DOS windows

C:\Users\Eakgapon\Desktop\J-OTHE~1\JORP\Dy\Test\DYRp.EXE

File name missing or blank - please enter file name UNIT 3? DyRP.dat File name missing or blank - please enter file name UNIT 4? Dy2.out 1.3. Analyze Dy2.out file

Find transition from excited state that you want

 $\begin{array}{l} BR: calculated Branching ratio\\ A : radiative transition possibility\\ SMDXE+22: line strength of MD\\ SEDXE+22: line strength of ED\\ Life of 4G5/2: \tau_R \end{array}$

	DY2 - No	tepad						
File	Edit I	Format	View H	lelp				
l;	ENEDIF	;U2SQ;I	U4SQ;l	J6SQ;S	EDXE+22	;SMDXE+	22;A;BR;SI	
9	TRANS 7251.0	ITIONS	FROM 4	4F9/2 L	EVEL	.000	.52 .0001	.005
10	7809.	0000. 0	.0000	.0003	.238	.000	.34 .0001	.003
11	8642.	0.0065	.0008	.0004	30.941	.000	59.10 .0089	.386
12	9981.	0.0002	.0043	.0032	8.146	1.930	30.21 .0046	.148
13	10860.	0.000.0	.0037	.0012	5.004	.000	18.97 .0029	.078
14	11923.	0.0009	.0082	.0072	18.423	.656	96.03 .0145	.329
15	11951.	8000. 0	.0057	.0005	10.197	1.139	57.84 .0087	.197
16	13244.	0.0023	.0024	.0034	15.845	.434	112.22 .0169	.312
17	13358.	0.0035	.0034	.0027	21.550	7.582	210.79 .0318	.576
18	15158.	0.0096	.0019	.0035	48.820	1.157	516.34 .0778	1.095
19	17477.	0.0512	.0172	.0573	297.814	.000	4705.40 .709	4 7.507
20	21142.	0.000. 0	.0049	.0303	29.506	.000	825.27 .1244	.900
A	TOT OF	4F9 =	6633	.04 LIF	E OF 4F	9 = 150		

Wavelength (nm)

Transition	λ _p (nm)	$\upsilon = 1/\lambda$	Peak area (A)	Height of Peak (H)	$\Delta l = A/H$	$\Delta \lambda_{eff} = \Delta I \cdot x_{cal}$	A _R from J-O	σ _e	β	R
'F _{5/2} →		(cm ⁻¹)	(cm ²)	(cm)	(cm)	(nm)	(s ⁻¹)	(cm ²)	Exp = PA/TA	Cal from J-C
⁶ H _{15/2}	479	20876.83	3.57	4.20	0.8500	17.1700	825.27	1.3109E-21	0.2960	0.1244
⁶ H _{13/2}	572	17482.52	8.06	10.80	0.7463	15.0752	4705.4	1.7311E-20	0.6683	0.7094
⁶ H _{11/2}	661	15128.59	0.32	0.40	0.8000	16.1600	516.34	3.1601E-21	0.0265	0.0778
⁶ H _{9/2}	753	13280.21	0.11	0.30	0.3667	7.4067	210.79	4.7403E-21	0.0091	0.0169

l;	ENEDIF;U2SQ;U4SQ;U6SQ;S	EDXE+22	;SMDXE	+22;A;BR;SI	
	TRANSITIONS FROM 4F9/2	LEVEL			
9	7251.0 .0000 .0004 .0000	.462	.000	.52 .0001 .	.005
10	7809.0 .0000 .0000 .0003	.238	.000	.34 .0001	.003
17	13358.0 .0035 .0034 .0027	21.550	7.582	210.79 .0318	.576
18	15158.0 .0096 .0019 .0035	48.820	1.157	516.34 .0778	1.095
19	17477.0 .0512 .0172 .0573	297.814	.000	4705.40 .7094	7.507
20	21142.0 .0000 .0049 .0303	29.506	.000	825.27 .1244	.900
۵	TOT OF 4F9 = 6633 04 1	FE OF 4FG	9 = 150		

$$\tau = \frac{\lambda_p^4}{8\pi cn^2} \cdot \frac{A_R}{\Delta \lambda_{eff}}$$
$$\eta = \frac{\tau_{exp}}{\tau_R}$$

All unit: nm \rightarrow cm

Course Outline:

Week 14: Inokuti Hirayama (IH) Model

- Case studies from international publications