# Advanced Glass Science (4016101)

## Instructor: Asst.Prof.Dr. Jakrapong Kaewkhao

### **Course Outline:**

Week 10: Glass composition, structures and applications (1)

- Boric Glass
- Alkali Boric Glass
- Case studies from international publications
- Book:A.K., Varshneya. Fundamentals of inorganic glassesA., Paul A, Chemistry of glassesJ.E. Shelby, Introduction to glass science and technology





## **Boric Glass or Borate Glass**





**Fig. 1** The superposition of orbitals in  $B_2O_3$ : (1)  $\sigma$ -electrons (2)  $\pi$ -electrons (3) lone pair electrons



Fig. 2 Different structural units present in alkali borate glasses

## Alkali Borate Glasses



(a) Create a nonbridging oxygen (NBO), as in the silicate glasses, by forming  $BO_{2/2}O^{-}M^{+}$ . (The " / 2" subscript is denoted for the connection between a bridging oxygen and two borate ion.

.....

$$\begin{bmatrix} 0 \\ B \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -0 \end{bmatrix} = \begin{bmatrix} 0 \\ B \\ -0 \end{bmatrix} = \begin{bmatrix} 0 \\ -0$$

(b) Convert boron from a 3 - coordination state (" $B_3$  state") to a 4 - coodination state (" $B_4$  state"). Tetrahedral borate,  $B_4$  is commonly found in alkali and alkali earth borate glass.

$$\begin{array}{c} 0 \\ B \\ -0 \end{array} + \frac{1}{2}M_{2}O = \begin{array}{c} 0 \\ B^{-} \\ -0 \end{array} + \begin{array}{c} 0 \\ B^{-} \\ 0 \end{array}$$

Fig. 3 (a) Creation of NBO when introduction of modifier to borate glass(b) Structure change from B3 to B4 introduction of modifier to borate glass

## **Alkali Borate Glasses**



Fig. 4 Variation of  $B_4$  with  $R_2O$  concentration



**Fig. 5** Variation in the number of bridging oxygen atoms ( $O_b$ ), the coefficient of thermal expansion ( $\alpha$ T) and the softening temperature ( $S_p$ ) as a function of alkali-oxide concentration in a  $B_2O_3$ -containing binary glass



Coordination and valence state of transition metal ions in alkali-borate glasses

A. Terczyńska-Madej\*, K. Cholewa-Kowalska, M. Łączka



**Fig. 6** FTIR spectra of base alkali-borate glasses modified with Li, Na and K oxides. Recorded at room temperature.

**Table. 1** Band positions (mmax) in the absorption spectra and optical basicity of the alkali-borate glasses doped with cobalt ions in octahedral and tetrahedral coordination spheres.

| Oxide modifier    | Optical basicity, | Band position (O                                          | Co <sup>2+</sup> ), v (cm <sup>-</sup>         | ·1)                                   |  |  |
|-------------------|-------------------|-----------------------------------------------------------|------------------------------------------------|---------------------------------------|--|--|
| R20               | /1cal (           | Octahedral                                                | Tetrahedral                                    |                                       |  |  |
|                   |                   | $v_1 = v_2 = {}^4T_{1g}(F)$<br>$\xrightarrow{4}T_{1g}(P)$ | $v_3 = {}^4A_2(F)$<br>$\rightarrow {}^4T_1(P)$ | Molar<br>extinction<br>coefficient, ε |  |  |
| Li <sub>2</sub> O | 0426              | 19 960 17 889<br>(501 nm)<br>(559 nm)                     | -                                              | 28,421ª                               |  |  |
| Na <sub>2</sub> O | 0427              | 19 960 17 986<br>(501 nm)<br>(556 nm)                     | -                                              | 20,016ª                               |  |  |
| K <sub>2</sub> O  | 0432              | 19 881 17 575<br>(503 nm)<br>(569 nm)                     | 15 748<br>(635 nm)                             | 24,456ª                               |  |  |



**Fig. 7** Absorption spectra of the borate glasses modified with Li, Na or K oxides and doped with Co ions.

**Table. 2** Band positions (mmax) in the absorption spectra and optical basicity of the alkali-borate glasses doped with Nikle ions in octahedral and tetrahedral coordination spheres.

0,8

| 1             | Oxide<br>modifier<br>R-O                                                                                           | Optical<br>basicity, | Band positio                                             | n (Ni <sup>2+</sup> , octahedral                                         | l), v <sub>max</sub> (cm <sup>-1</sup> ) |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|
| 1<br>5<br>1 - | - 2 -                                                                                                              | 2 *cal               | $v_1 = {}^{3}A_{2g}(F)$<br>$\rightarrow {}^{3}T_{1g}(P)$ | $v_2 = {}^{3}A_{2g}(F) \rightarrow {}^{1}E_{g}(D) \text{ ca.}$<br>755 nm | Molar<br>extinction<br>coefficient, ε    |
| 1 -           | Li <sub>2</sub> O                                                                                                  | 0.426                | 24,039<br>(416 nm)                                       | Shoulder                                                                 | 11,821ª                                  |
|               | Na <sub>2</sub> O                                                                                                  | 0.427                | 24,213<br>(413 nm)                                       | Shoulder                                                                 | 12,183ª                                  |
|               | K <sub>2</sub> O                                                                                                   | 0.432                | 24,156<br>(414 nm)                                       | Shoulder                                                                 | 12,013ª                                  |
| s L<br>s N    | s Li <sub>2</sub> O*4B <sub>2</sub> O <sub>3</sub> + Ni<br>s Na <sub>2</sub> O*4B <sub>2</sub> O <sub>2</sub> + Ni |                      |                                                          |                                                                          |                                          |



**Fig. 8** Absorption spectra of the borate glasses modified with Li, Na or K oxides and doped with Ni ions.



**Table. 4** Band positions (mmax) in the absorption spectra and optical basicity of the alkali-borate glasses doped with manganese ions in octahedral and tetrahedral coordination spheres.

| Oxide modifier<br>R2O | Optical basicity,<br>$\Lambda_{cal}$ | ptical basicity, Band position of Mn ions, $v_r$ |                                          |
|-----------------------|--------------------------------------|--------------------------------------------------|------------------------------------------|
| -                     |                                      |                                                  | Molar extinction coefficient, $\epsilon$ |
| Li <sub>2</sub> O     | 0.426                                | 21,322<br>(469 nm)                               | 8752ª                                    |
| Na <sub>2</sub> O     | 0.427                                | 21,186<br>(472 nm)                               | 12,883ª                                  |
| K <sub>2</sub> O      | 0.432                                | 21,008<br>(476 nm)                               | 29,452ª                                  |



### Structure and properties of alkaline earth borate glasses

Y. D. Yiannopoulos, G. D. Chryssikos & E. I. Kamitsos<sup>1</sup>

*Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation,* 48, Vass. Constantinou Ave., 116 35 Athens, Greece



**Fig. 11** Glass transition temperature, Tg, as a function of metal oxide content in borate glasses,  $xMO(1-x)B_2O_3$ . Tg data for alkali borate glasses (M=Li<sub>2</sub> to Cs<sub>2</sub>)

 $\blacktriangle \text{Li}_2 \bullet \text{Na}_2 \bullet \text{K}_2 \lor \text{Rb}_2 \blacksquare \text{Cs}_2$ 



Infrared absorption



Fig. 14 Comparison of the infrared spectra of alkaline earth borate glasses,  $xMO.(1-x)B_2O_3$ , with (a) x=0.33 and (b) x=0.45



**Fig. 15** Deconvoluted far infrared profiles of 0.45MO.  $0.55B_2O_3$  glasses (M=Mg, Ca, Sr, Ba). Experimental spectra are shown by continuous lines, Gaussian component bands by dashed lines and simulated spectra by dotted lines



Fig. 16 Comparison of the far infrared spectra of glass and crystal with composition  $0.5CaO-0.5B_2O_3$ . Dashed component bands resulted from the deconvolution of the glass spectrum



**Fig. 17** Raman spectra of xBaO.(1-x)B<sub>2</sub>O<sub>3</sub> glasses for (a)  $0 \le x \le 0.33$  and (b)  $0.40 \le x \le 0.47$ 

Raman intensity

**(a)** 



**Fig. 18** Raman spectra of xMgO.(1-x)B<sub>2</sub>O<sub>3</sub> glasses

| Wavenumber<br>(cm <sup>-1</sup> ) | IR band assignments                                                                                                                                                 |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ~400-600                          | Bi-O-Bi and Bi-O in BiO <sub>6</sub> octahedral                                                                                                                     |  |  |  |
| ~470                              | Total symmetric bending vibrations of BiO <sub>3</sub> units                                                                                                        |  |  |  |
| ~520                              | Bi-O bonds in BiO <sub>6</sub> units                                                                                                                                |  |  |  |
| ~540                              | Doubly degenerating stretching vibrations of BiO <sub>3</sub> units                                                                                                 |  |  |  |
| ~726                              | B-O-B linkages                                                                                                                                                      |  |  |  |
| ~950–980                          | Stretching vibrations of $B-\emptyset$ bonds in $B\emptyset_4$<br>units from tri, tetra, and penta borate groups                                                    |  |  |  |
| 1176-1500                         | B-O stretching vibrations of trigonal BO <sub>3</sub> units only                                                                                                    |  |  |  |
| ~1320-1470                        | B-O symmetric stretching vibrations of var-<br>ied borate groups in $BO_3$ units<br>$B-O^-$ symmetric stretching vibrations of<br>varied borate groups in $BO_2O^-$ |  |  |  |

**Table 5** IR band assignmentsfor the borate glass

#### **NOTE:**

**Raman** and **FTIR** spectroscopy differ in some key fundamental ways. Raman spectroscopy depends on a **change in polarizability of a molecule**, whereas IR spectroscopy depends on **a change in the dipole moment**. Raman spectroscopy measures relative frequencies at which a sample scatters radiation, unlike IR spectroscopy which measures absolute frequencies at which a sample absorbs radiation.



**Fig. 19** Dependence of glass transition temperature, Tg, on the effective force constant, FM–O, of the metal ion oxygen bond in alkaline and alkali metal borate glasses of the diborate composition,  $0.33MO-0.67B_2O_3$ . Lines are least square fittings. A diborate glass is not formed in the Mg borate system

#### Effect of Nd<sup>3+</sup> Concentration on the Physical and Absorption Properties of Sodium-Lead-Borate Glasses

S. Mohan<sup>\*,a</sup>, K. S. Thind<sup>b</sup>, and G. Sharma<sup>b</sup>

<sup>a</sup>Lecturer in Physics, BBK DAV College for Women, Amritsar, India

<sup>b</sup>Department of Physics, Guru Nanak Dev University, Amritsar, India

| Glass | Composition in mol % |     |          |           |  |  |
|-------|----------------------|-----|----------|-----------|--|--|
| Class | Na <sub>2</sub> O    | PbO | $B_2O_3$ | $Nd_2O_3$ |  |  |
| NPBN1 | 9.00                 | 30  | 60       | 1.00      |  |  |
| NPBN2 | 8.75                 | 30  | 60       | 1.25      |  |  |
| NPBN3 | 8.50                 | 30  | 60       | 1.50      |  |  |
| NPBN4 | 8.25                 | 30  | 60       | 1.75      |  |  |
| NPBN5 | 8.00                 | 30  | 60       | 2.00      |  |  |
|       |                      |     |          |           |  |  |



Fig. 20 Variation of density and molar volume with the concentration of  $Nd_2O_3$ 

|                                                          | Glass Sample |        |        |        |        |  |
|----------------------------------------------------------|--------------|--------|--------|--------|--------|--|
| Physical property                                        | NPBN1        | NPBN2  | NPBN3  | NPBN4  | NPBN5  |  |
| Refractive index (n)                                     | 1.652        | 1.652  | 1.652  | 1.652  | 1.652  |  |
| $Density\left(\rho\right)\left(g/cm^{3}\right)$          | 4.24         | 4.36   | 4.55   | 4.48   | 4.51   |  |
| Average molecular weight $(\overline{M})$ (g)            | 117.59       | 118.26 | 118.93 | 119.59 | 120.26 |  |
| Molar Volume $(V_M)$ (cm <sup>3</sup> )                  | 27.69        | 27.11  | 26.14  | 26.68  | 26.67  |  |
| Ion concentration $N (\times 10^{20} \text{ ions/cm}^3)$ | 4.35         | 5.55   | 6.91   | 7.90   | 9.03   |  |
| lon concentration<br>c(moles/liter)                      | 0.72         | 0.92   | 1.15   | 1.31   | 1.50   |  |
| Polaron radius $r_p(\hat{A})$                            | 5.32         | 4.90   | 4.56   | 4.36   | 4.17   |  |
| Field Strength $F$ (×10 <sup>15</sup> cm <sup>2</sup> )  | 1.06         | 1.25   | 1.44   | 1.58   | 1.73   |  |
| Inter nuclear distance $r_i(\hat{A})$                    | 13.20        | 12.16  | 11.31  | 10.81  | 10.34  |  |
| Dielectric constant (ɛ)                                  | 2.73         | 2.73   | 2.73   | 2.73   | 2.73   |  |
| Molar refraction $(R_M)$                                 | 10.12        | 9.91   | 9.56   | 9.76   | 9.75   |  |
| Reflection losses (R %)                                  | 6.04         | 6.04   | 6.04   | 6.04   | 6.04   |  |



Fig. 21 Cut-off wavelength for sodium-lead-borate glasses containing varying amounts of  $Nd_2O_3$ 





#### **Course Outine:**

Week 11: Glass composition, structures and applications (3)

- Phosphate Glass
- Alkali-and Phosphate Glass
- Case studies from international publications